INSTRUCTOR’S MANUAL
TO ACCOMPANY
DAVID M. KROENKE AND DAVID J. AUER

Database Processing
Fundamentals, Design, and Implementation
13th Edition

CHAPTER TWO
INTRODUCTION TO STRUCTURE QUERY LANGUAGE

[image:]
Prepared By
David J. Auer
Western Washington University

Copyright © 2014 Pearson Education, Inc.

·
CHAPTER OBJECTIVES
To understand the use of extracted data sets
To understand the use of ad-hoc queries
To understand the history and significance of Structured Query Language (SQL)
To understand the basic SQL SELECT/FROM/WHERE framework as the basis for database queries
To be able to write queries in SQL to retrieve data from a single table
To be able to write queries in SQL to use the SQL SELECT, FROM, WHERE, ORDER BY, GROUP BY, and HAVING clauses
To be able to write queries in SQL to use SQL DISTINCT, AND, OR, NOT, BETWEEN, LIKE, and IN keywords
To be able to use the SQL built-in functions of SUM, COUNT, MIN, MAX, and AVG with and without the use of a GROUP BY clause
To be able to write queries in SQL to retrieve data from a single table but restricting the data based upon data in another table (subquery)
To create SQL queries that retrieve data from multiple tables using the SQL join and JOIN ON operations
To create SQL queries that retrieve data from multiple tables using the SQL OUTER JOIN operation
ERRATA
There are no known errors at this time. Any errors that are discovered in the future will be reported and corrected in the Online DBP e13 Errata document, which will be available at http://www.pearsonhighered.com/kroenke.
TEACHING SUGGESTIONS
Database files to illustrate the examples in the chapter and solution database files for your use are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The best way for students to understand SQL is by using it. Have your students work through the Review Questions, Project Questions and the Marcia’s Dry Cleaning and Morgan Importing Project Questions in an actual database. Students can create databases in Microsoft Access with basic tables, relationships and data from the material in the book. SQL scripts for Microsoft SQL Server, Oracle Database and MySQL versions of Cape Codd, WPC, MDC and MI are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Microsoft Access database files for Cape Codd and the NASDAQ data (NDX.accdb), together with SQL scripts for Microsoft SQL Server, Oracle Database and MySQL versions of Cape Codd, MDC and MI are available for student use in the Student Resources on the text’s Web site (www.pearsonhighered.com/kroenke).
The SQL processors in the various DBMSs are very fussy about character sets used for SQL statements. They want to see plain ASCII text, not fancy fonts. This is particularly true of the single quotation (') used to designate character strings, but I’ve also had problems with the minus sign. If your students are having problems getting a “properly structured SQL statement” to run, look closely for this type of problem.
There is a useful teaching technique which will allow you to demonstrate the SQL queries in the text using Microsoft SQL Server if you have it available.
Open the Microsoft SQL Server Management Studio, and create a new SQL Server database named Cape-Codd.
In the Microsoft SQL Server Management Studio, use the SQL statements in the *.sql text file DBP-e13-MSSQL-Cape-Codd-Create-Tables.sql to create the RETAIL_ORDER, ORDER_ITEM and SKU_DATA tables [the WAREHOUSE and INVENTORY tables, used in the Review Questions, are also created].
In the Microsoft SQL Server Management Studio, use the SQL statements *.sql text file DBP-e13-MSSQL-Cape-Dodd-Insert-Data.sql to populate the RETAIL_ORDER, ORDER_ITEM and SKU_DATA tables [the WAREHOUSE and INVENTORY tables, used in the Review Questions, are also populated].
In the Microsoft SQL Server Management Studio, open the *.sql text file DBP-e13-MSSQL-Cape-Codd-Query-Set-CH02.sql. This file contains all the queries shown in the Chapter 2 text.
Highlight the query you want to run and click the Execute Query button to display the results of the query. An example of this is shown in the following screenshot.
All of the *.sql text files needed to do this are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Microsoft Access 2013 does not support all SQL-92 (and newer) constructs. While this chapter still considers Microsoft Access as the DBMS most likely to be used by students at this point in the course, there are some Review Questions and Project Questions that use the ORDER BY clause with aliased computed columns that will not run in Access (see Review Questions 2.42 – 2.44 and Project Questions 2.63.e – 2.63.g). The correct solutions for these questions were obtained using Microsoft SQL Server 2012. The Microsoft Access results without the ORDER BY clause are also shown, so you can assign these problems without the ORDER BY part of the questions.
Microsoft Access 2013 does not support SQL wildcard characters (see Review Questions 2.36 – 2.38), although it does have equivalent wildcard characters as described in the chapter. The correct solutions for these questions were obtained using Microsoft SQL Server 2012.
For those students who are used to procedural languages, they may have some initial difficulty with a language that does set processing like SQL. These students are accustomed to processing rows (records) rather than sets. It is time well spent to make sure they understand that SQL processes tables at a time, not rows at a time.
Students may have some trouble understanding the GROUP BY clause. If you can explain it in terms of traditional control break logic (sort rows on a key then process the rows until the value of the key changes), they will have less trouble. This also explains why the GROUP BY clause will present the rows sorted even though you do not use an ORDER BY clause.
At this point, students familiar with Microsoft Access will wonder why they are learning SQL. They have made queries in Microsoft Access using Microsoft Access's version of Query-By-Example (QBE), and therefore never had to understand the SQL. In many cases, they will not know that Microsoft Access generates SQL code when you create a query in design view. It is worth letting them know this is done and even showing them the SQL created for and underlying a Microsoft Access query.
It is also important for students to understand that, in many cases, the Query-By-Example forms such as Microsoft Access’ design view can be very inefficient. Also, the QBE forms are not available from within an application program such as Java or C, and so SQL must be written.
It has been our experience that a review of a Cartesian Product from an algebra class is time well spent. Show students what will happen if a WHERE statement is left off of a join. The following example will work. Assume you create four tables with five columns each and 100 rows each. How many columns and rows will be displayed by the statement:
	SELECT * FROM TABLE1, TABLE2, TABLE3, TABLE4;
The result is 20 columns (not bad) but 100,000,000 rows (100 * 100 = 10,000, 10,000 * 100 = 1,000,000, 1,000,000 * 100 = 100,000,000). This happens because the JOIN is not qualified. If they understand Cartesian products then they will understand how to fix a JOIN where the results are much too large.
Note that in the Marcia's Dry Cleaning project, where in some previous editions we have used tables named ORDER and ORDER_ITEM, we have changed these table names to INVOICE and INVOICE_ITEM. We did this because ORDER is an SQL reserved word (part of ORDER BY). Therefore, when the table name ORDER is used as part of a query, it may need to be ("must be" in Access 2013) enclosed in delimiters as [ORDER] if the query is going to run correctly. The topic of reserved words and delimiters is discussed in more detail in Chapters 6 and 7. However, now is a good time to introduce it to your students.
Note that Microsoft Access SQL requires the INNER JOIN syntax instead of the standard SQL syntax JOIN used by Microsoft SQL Server, Oracle Database and MySQL
[bookmark: _GoBack]
ANSWERS TO REVIEW QUESTIONS
What is a business intelligence (BI) system?
A business intelligence (BI) system, is a system used to support management decisions by producing information for assessment, analysis, planning and control.
What is an ad-hoc query?
An ad-hoc query is a query created by the user as needed, rather than a query programmed into an application.
What does SQL stand for, and what is SQL?
SQL stands for Structured Query Language. SQL is the universal query language for relational DBMS products.
What does SKU stand for, and what is an SKU?
SKU stands for stock keeping unit. An SKU is a an identifier used to label and distinguish each item sold by a business.
Summarize how data were altered and filtered in creating the Cape Codd data extraction.
Data from the Cape Codd operational retail sales database were used to create a retail sales extraction database with three tables: RETAIL_ORDER, ORDER_ITEM and SKU_DATA.
The RETAIL_ORDER table uses only a few of the columns in the operational database. The structure of the table is:
RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 	OrderTotal)
For this table, the original column OrderDate (in the data format MM/DD/YYYY [04/26/2013]) was converted into the columns OrderMonth (in a Character(12) format so that each month is spelled out [April]) and OrderYear (in an Integer format with each year appearing as a four-digit year [2013]).
We also note that the OrderTotal column includes tax, shipping and other charges that do not appear in the data extract. Thus, it does not equal the sum of the related ExtendedPrice column in the ORDER_ITEM table discussed below.
The ORDER_ITEM table uses an extract of the items purchased for each order. The structure of the table is:
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
For this table, there is one row for each SKU associated with a given OrderNumber, representing one row for each type of item purchased in a specific order.
The SKU_DATA table uses an extract of the item identifying and describing data in the complete operational table. The structure of the table is:
SKU_DATA (SKU, SKU_Description, Department, Buyer)
For this table, there is one row to describe each SKU, representing one particular item that is sold by Cape Codd.
Explain, in general terms, the relationships of the RETAIL_ORDER, ORDER_ITEM, and SKU_DATA tables.
In general, each sale in RETAIL_ORDER relates to one or more rows in ORDER_ITEM that detail the items sold in the specific order. Each row in ORDER_ITEM is associated with a specific SKU in the SKU_DATA table. Thus one SKU may be associated once with each specific order number, but may also be associated with many different order numbers (as long as it appears only once in each order).
Using the Microsoft Access Relationship window, the relationships (including the additional relationships with the INVENTORY and WAREHOUSE tables described after Review Question 2.15) are shown in Figure 2-24 and look like this:
[image:]
Figure 2-23 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables
In traditional database terms (which will be discussed in Chapter 6) OrderNumber and SKU in ORDER_ITEM are foreign keys that provide the links to the RETAIL_ORDER and SKU_DATA tables respectively. Using an underline to show primary keys and italics to show foreign keys, the tables and their relationships are shown as:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 	OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
Summarize the background of SQL.
SQL was developed by IBM in the late 1970s, and in 1992 it was endorsed as a national standard by the American National Standards Institute (ANSI). That version is called SQL-92. There is a later version called SQL3 that has some object-oriented concepts, but SQL3 has not received much commercial attention.
What is SQL-92? How does it relate to the SQL statements in this chapter?
SQL-92 is the version of SQL endorsed as a national standard by the American National Standards Institute (ANSI) in 1992. It is the version of SQL supported by most commonly used database management systems. The SQL statements in the chapter are based on SQL-92 and the SQL standards that followed and modified it.
What features have been added to SQL in versions subsequent to the SQL-92?
Versions of SQL subsequent to SQL-92 have extended features or added new features to SQL, the most important of which, for our purposes, is support for Extensible Markup Language (XML).
Why is SQL described as a data sublanguage?
A data sublanguage consists only of language statements for defining and processing a database. To obtain a full programming language, SQL statements must be embedded in scripting languages such as VBScript or in programming languages such as Java or C#.
What does DML stand for? What are DML statements?
DML stands for data manipulation language. DML statements are used for querying and modifying data.
What does DDL stand for? What are DDL statements?
DDL stands for data definition language. DDL statements are used for creating tables, relationships and other database querying and modifying data.

What is the SQL SELECT/FROM/WHERE framework?
The SQL SELECT/FROM/WHERE framework is the basis for queries in SQL. In this framework:
· The SQL SELECT clause specifies which columns are to be listed in the query results.
· The SQL FROM clause specifies which tables are to be used in the query.
· The SQL WHERE clause specifies which rows are to be listed in the query results.
Explain how Microsoft Access uses SQL.
Microsoft Access uses SQL, but generally hides the SQL from the user. For example, Microsoft Access automatically generates SQL and sends it to the Microsoft Access’s internal Access Database Engine (ADE, which is a variant of the Microsoft Jet engine) every time you run a query, process a form or create a report. To go beyond elementary database processing, you need to know how to use SQL in Microsoft Access.
Explain how enterprise-class DBMS products use SQL.
Enterprise-class DBMS products, which include Microsoft SQL Server, Oracle Corporation’s Oracle Database and MySQL, and IBM’s DB2, require you to know and use SQL. All data manipulation is expressed in SQL in these products.
The Cape Codd Outdoor Sports sale extraction database has been modified to include two additional tables, the INVENTORY table and the WAREHOUSE table. The table schemas for these tables, together with the SKU table, are as follows:
RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager, Squarefeet)
INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand, QuantityOnOrder)
The five tables in the revised Cape Codd database schema are shown in Figure 2-24. The column characteristics for the WAREHOUSE table are shown in Figure 2-25, and the column characteristics for the INVENTORY table are shown in Figure 2-26. The data for the WAREHOUSE table are shown in Figure 2-27, and the data for the INVENTORY table are shown in Figure 2-28.
[image:]

Figure 2-24 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables

[image:]

Figure 2-25 - Column Characteristics for the WAREHOUSE Table

[image:]

Figure 2-26 - Column Characteristics for the INVENTORY Table

[image:]

Figure 2-27 - Cape Codd Outdoor Sports WAREHOUSE Data
[image:]

Figure 2-28 - Cape Codd Outdoor Sports INVENTORY Data

If at all possible, you should run your SQL solutions to the following questions against an actual database. A Microsoft Access database named Cape-Codd.accdb is available on our Web site (www.pearsonhighered.com/kroenke) that contains all the tables and data for the Cape Codd Outdoor Sports sales data extract database. Also available on our Web site are SQL scripts for creating and populating the tables for the Cape Codd database in Microsoft SQL Server, Oracle Database, and MySQL.
NOTE: All answers below show the correct SQL statement, as well as SQL statements modified for Microsoft Access 2013 when needed. Whenever possible, all results were obtained by running the SQL statements in Microsoft Access 2013, and the corresponding screen shots of the results are shown below. As explained in the text, some queries cannot be run in Microsoft Access 2013, and for those queries the correct result was obtained using Microsoft SQL Server 2012. The SQL statements shown should run with little, if any, modification needed for Oracle Database 11g Release 2 and MySQL 5.6.
Solutions to Project Questions 2.17 – 2.55 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
If your students are using a DBMS other than Microsoft Access, the SQL code to create and populate the Cape Codd database is available in the *.sql script files for SQL Server 2012, Oracle Database 11g, and MySQL 5.5 in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
There is an intentional flaw in the design of the INVENTORY table used in these exercises. This flaw was purposely included in the INVENTORY tables so that you can answer some of the following questions using only that table. Compare the SKU and INVENTORY tables, and determine what design flaw is included in INVENTORY. Specifically, why did we include it?
The flaw is the inclusion of the SKU_Description attribute in the INVENTORY table. This attribute duplicates the SKU_Description attribute and data in the SKU_DATA table, where the attribute rightfully belongs. By duplicating SKU_Description in the INVENTORY table, we can ask you to list the SKU and its associated description in a single table query against the INVENTORY table. Otherwise, a two table query would be required. If these tables were in a production database, we would eliminate the INVENTORY.SKU_Description column.

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:
Write an SQL statement to display SKU and SKU_Description.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description
FROM 		INVENTORY;

[image:]

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:
SELECT 	UNIQUE SKU, SKU_Description
FROM 		INVENTORY;

[image:]

Write an SQL statement to display SKU_Description and SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU_Description, SKU
FROM 		INVENTORY;

[image:]

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:
SELECT 	UNIQUE SKU_Description, SKU
FROM 		INVENTORY;

[image:]
Write an SQL statement to display WarehouseID.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	WarehouseID
FROM 		INVENTORY;

[image:]
Write an SQL statement to display unique WarehouseIDs.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT	DISTINCT WarehouseID
FROM 		INVENTORY;

[image:]
Write an SQL statement to display all of the columns without using the SQL asterisk (*) wildcard character.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	WarehouseID, SKU, SKU_Description,
			QuantityOnHand, QuantityOnOrder
FROM 		INVENTORY;

[image:]
Write an SQL statement to display all of the columns using the SQL asterisk (*) wildcard character.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	*
FROM 		INVENTORY;

[image:]

Write an SQL statement to display all data on products having a QuantityOnHand greater than 0.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	*
FROM 		INVENTORY
WHERE		QuantityOnHand >0;

[image:]

Write an SQL statement to display the SKU and SKU_Description for products having QuantityOnHand equal to 0.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description
FROM 		INVENTORY
WHERE		QuantityOnHand =0;

[image:]

Write an SQL statement to display the SKU, SKU_Description, and Warehouse for products having QuantityOnHand equal to 0. Sort the results in ascending order by WarehouseID.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description, WarehouseID
FROM 		INVENTORY
WHERE		QuantityOnHand =0
ORDER BY	WarehouseID;

[image:]
Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for products having QuantityOnHand greater than 0. Sort the results in descending order by WarehouseID and ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand > 0
ORDER BY		WarehouseID DESC, SKU;

[image:]

Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0. Sort the results in descending order by WarehouseID and in ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand = 0
	AND		QuantityOnOrder > 0
ORDER BY		WarehouseID DESC, SKU;

[image:]
Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort the results in descending order by WarehouseID and in ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand = 0
	OR			QuantityOnOrder = 0
ORDER BY		WarehouseID DESC, SKU;

[image:]
Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than 10. Do not use the BETWEEN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM 			INVENTORY
WHERE			QuantityOnHand > 1
	AND		QuantityOnhand < 10;

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than 10. Use the BETWEEN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM 			INVENTORY
WHERE			QuantityOnHand BETWEEN 2 AND 9;

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having an SKU description starting with ‘Half-dome’.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE 'Half-dome%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE 'Half-dome*';

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having a description that includes the word 'Climb'.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '%Climb%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '*Climb*';

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having a ‘d’ in the third position from the left in SKU_Description.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '__d%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '??d*';

[image:]

Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-Hand column. Include meaningful column names in the result.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	COUNT(QuantityOnHand) AS NumberOfRows,
			SUM(QuantityOnHand) AS TotalQuantityOnHand,
			AVG(QuantityOnHand) AS AverageQuantityOnHand,
			MAX(QuantityOnHand) AS MaximumQuantityOnHand,
			MIN(QuantityOnHand) AS MinimumQuantityOnHand
FROM 		INVENTORY;

[image:]

Explain the difference between the SQL built-in functions COUNT and SUM.
COUNT counts the number of rows or records in a table, while SUM adds up the data values in the specified column.
Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand, grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results in descending order of TotalItemsOnHand.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID
ORDER BY 	TotalItemsOnHand DESC;

The correct results, obtained from SQL Server 2008 R2 / 2012, are:
[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID
ORDER BY 	SUM(QuantityOnHand) DESC;

[image:]

Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand, grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from the sum, and name the sum TotalItemsOnHandLT3. Display the results in descending order of TotalItemsOnHandLT3.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
ORDER BY		TotalItemsOnHandLT3 DESC;

[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
ORDER BY		SUM(QuantityOnHand) DESC;

[image:]
Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from the sum, and name the sum TotalItemsOnHandLT3. Show Warehouse ID only for warehouses having fewer than 2 SKUs in their TotalItemsOnHandLT3. Display the results in descending order of TotalItemsOnHandLT3.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
HAVING		COUNT(*) < 2
ORDER BY		TotalItemsOnHandLT3 DESC;

[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
HAVING		COUNT(*) < 2
ORDER BY		SUM(QuantityOnHand) DESC;

[image:]
In your answer to Review Question 2.38, was the WHERE or HAVING applied first? Why?
The WHERE clause is always applied before the HAVING clause. Otherwise there would be ambiguity in the SQL statement and the results would differ according to which clause was applied first.

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.55:
Write an SQL statement to display the SKU, SKU_Description, and WarehouseID, WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or Chicago warehouse. Do not use the IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	(WarehouseCity = 'Atlanta'
			 OR	WarehouseCity = 'Bangor'
	 OR	WarehouseCity = 'Chicago')

[image:]

Write an SQL statement to display the SKU, SKU_Description, and WarehouseID, WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or Chicago warehouse. Use the IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity IN ('Atlanta', 'Bangor' ,'Chicago');

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or Chicago warehouse. Do not use the NOT IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
NOTE: The symbol for “not equal to” is < >. Since we want the query output for warehouses that are not Atlanta or Bangor or Chicago as a set, we must ask for warehouses that are not in the group (Atlanta and Bangor and Chicago). This means we use AND in the WHERE clause – if we used OR in the WHERE clause, we would end up with ALL warehouses being in the query output. This happens because each OR eliminates only one warehouse, but that warehouse still qualifies for inclusion in the other OR statements. To demonstrate this, substitute OR for each AND in the SQL statement below.
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity <> 'Atlanta'
	AND	WarehouseCity <> 'Bangor'
	AND	WarehouseCity <> 'Chicago';

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or Chicago warehouse. Use the NOT IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity NOT IN ('Atlanta', 'Bangor' ,'Chicago');

[image:]

Write an SQL statement to produce a single column called ItemLocation that combines the SKU_Description, the phrase “is in a warehouse in”, and WarehouseCity. Do not be concerned with removing leading or trailing blanks.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that the SQL syntax will vary depending upon the DBMS—see the discussion in Chapter 2.
SELECT 	SKU_Description+' is in a warehouse in '
			+WarehouseCity AS ITEM_Location
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID;

[image:]

Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description, WarehouseID
FROM 		INVENTORY
WHERE		WarehouseID IN
			(SELECT		WarehouseID
			 FROM		WAREHOUSE
			 WHERE		Manager = 'Lucille Smith');

[image:]
Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items stored in a warehouse managed by ‘Lucille Smith’. Use a join, but do not use JOIN ON syntax.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND		Manager = 'Lucille Smith';

[image:]
Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items stored in a warehouse managed by ‘Lucille Smith’. Use a join using JOIN ON syntax.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM 		INVENTORY JOIN WAREHOUSE
	ON	INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE		Manager = 'Lucille Smith';

[image:]
For Microsoft Access:
Microsoft Access requires the SQL JOIN ON syntax INNER JOIN instead of just JOIN:
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM 		INVENTORY INNER JOIN WAREHOUSE
	ON	INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE		Manager = 'Lucille Smith';

[image:]
Write an SQL statement to show the WarehouseID and average QuantityOnHand of all items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		WarehouseID,
				AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 			INVENTORY
WHERE			WarehouseID IN
				(SELECT 	WarehouseID
				 FROM		WAREHOUSE
				 WHERE	Manager = 'Lucille Smith')
GROUP BY		WarehouseID;

[image:]
Write an SQL statement to show the WarehouseID and average QuantityOnHand of all items stored in a warehouse managed by ‘Lucille Smith’. Use a join, but do not use JOIN ON syntax.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		INVENTORY.WarehouseID,
				AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 			INVENTORY, WAREHOUSE
WHERE			INVENTORY.WarehouseID = WAREHOUSE.WarehouseID
	AND		Manager = 'Lucille Smith'
GROUP BY		INVENTORY.Warehouse.ID;

Note the use of the complete references to INVENTORY.Warehouse—the query will NOT work without them.
[image:]
Write an SQL statement to show the WarehouseID and average QuantityOnHand of all items stored in a warehouse managed by ‘Lucille Smith’. Use a join using JOIN ON syntax.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	INVENTORY.WarehouseID,
AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 		INVENTORY JOIN WAREHOUSE
	ON	INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE		Manager = 'Lucille Smith'
GROUP BY	INVENTORY.WarehouseID;

[image:]

For Microsoft Access:
Microsoft Access requires the SQL JOIN ON syntax INNER JOIN instead of just JOIN:
SELECT 	INVENTORY.WarehouseID,
AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 		INVENTORY INNER JOIN WAREHOUSE
	ON	INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE		Manager = 'Lucille Smith'
GROUP BY	INVENTORY.WarehouseID;

[image:]

Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder and sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name the sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand as TotalItemsOnHand.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		WarehouseID,
				SUM(QuantityOnOrder) AS TotalItemsOnOrder,
				SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID, QuantityOnHand;
[image:]
Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState, Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of ‘Lucille Smith’. Use a join.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e13-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	W.WarehouseID, WarehouseCity,
			WarehouseState, Manager,
			SKU, SKU_Description, QuantityOnHand
FROM 		INVENTORY AS I, WAREHOUSE AS W
WHERE		I.WarehouseID=W.WarehouseID
	AND	Manager = 'Lucille Smith';

[image:]
Note the use of the complete references to INVENTORY.WarehouseID (aliased as I.Warehouse) and WAREHOUSE.WarehouseID (aliased as W.WarehouseID)—the query will NOT work without them.
Explain why you cannot use a subquery in your answer to question 2.50.
In a query that contains a subquery, only data from fields in the table used in the top-level query can be included in the SELECT statement. If data from fields from other tables are also needed, a join must be used. In question 2.50 we needed to display WAREHOUSE.Manager but INVENTORY would have been the table in the top-level query. Therefore, we had to use a join.
Explain how subqueries and joins differ.
(1) In a query that contains a subquery, only data from fields in the table used in the top-level query can be included in the SELECT statement. If data from fields from other tables are also needed, a join must be used. See the answer to question 2.53.
(2) The subqueries in this chapter are non-correlated subqueries, which have an equivalent join structure. In Chapter 8, correlated subqueries will be discussed, and correlated subqueries do not have an equivalent join structure—you must use subqueries.

Write an SQL statement to show the WAREHOUSE and INVENTORY and include all rows of WAREHOUSE in your answer, regardless of whether they have any INVENTORY. Run this statement.
SELECT	W.WarehouseID, WarehouseCity, WarehouseState, Manager,
			SKU, SKU_Description, QuantityOnHand, QuantityOnOrder
FROM		WAREHOUSE AS W LEFT JOIN INVENTORY AS I
			ON	W.WarehouseID = I.WarehouseID;

[image:]

ANSWERS TO PROJECT QUESTIONS
For this set of project questions, we will continue creating a Microsoft Access database for the Wedgewood Pacific Corporation (WPC) that we created in Chapter 1. Founded in 1957 in Seattle, Washington, WPC has grown into an internationally recognized organization. The company is located in two buildings. One building houses the Administration, Accounting, Finance, and Human Resources departments, and the second houses the Production, Marketing, and Information Systems departments. The company database contains data about company employees, departments, company projects, company assets such as computer equipment, and other aspects of company operations.
In the following project questions, we have already created the WPC.accdb database with the following two tables (see Chapter 1 Project Questions):
DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
Now we will add in the following two tables:
PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)
The four tables in the revised WPC database schema are shown in Figure 2-28. The column characteristics for the PROJECT table are shown in Figure 2-29, and the column characteristics for the ASSIGNMENT table are shown in Figure 2-31. Data for the PROJECT table are shown in Figure 2-30, and the data for the ASSIGNMENT table are shown in Figure 2-32.
[image:]
Figure 2-29 – The WPC Database with the PROJECT and ASSIGNMENT Tables

Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using the column characteristics, create the PROJECT table in the WPC.accdb database.
SQL Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-30 - Column Characteristics for the PROJECT Table
[image:]

Create the relationship and referential integrity constraint between PROJECT and DEPARTMENT. Enable enforcing of referential integrity and cascading of data updates, but do not enable cascading of data from deleted records.
SQL Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-31 shows the data for the WPC PROJECT table. Using the Datasheet view, enter the data shown in Figure 2-27 into your PROJECT table.
Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-31 - Sample Data for the PROJECT Table
[image:]
Figure 2-32 shows the column characteristics for the WPC ASSIGNMENT table. Using the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.
Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-32 - Column Characteristics for the ASSIGNMENT Table
[image:]

Create the relationship and referential integrity constraint between ASSIGNMENT and EMPLOYEE. Enable enforcing of referential integrity, but do not enable either cascading updates or the cascading of data from deleted records.
Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]

Create the relationship and referential integrity constraint between ASSIGNMENT and PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do not enable cascading updates.
Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]

Figure 2-33 shows the data for the WPC ASSIGNMENT table. Using the Datasheet view, enter the data shown in Figure 2-33 into your ASSIGNMENT table.
Solutions to Project Questions 2.56 – 2.65 are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-33 - Sample Data for the ASSIGNEMENT Table
[image:]

In Project Question 2.58, the table data was entered after referential integrity constraints were created in Project Question 2.57. In Project Question 2.62, the table data was entered after referential integrity constraints were created in Project Questions 2.59 and 2.60. Why was the data entered after the referential integrity constraints were created instead of before the constraints were created?
Both the PROJECT and ASSIGNMENT tables have foreign keys. PROJECT.Department is the foreign key in PROJECT, and both ASSIGNMENT.ProjectID and ASSIGNMENT.EmployeeNumber are foreign keys in ASSIGNMENT, If data was entered into these columns before the referential integrity constraints were established, it would be possible to enter foreign key data that had no corresponding primary key data. Thus, we establish the referential integrity constraints so that the DBMS will not allow inconsistent data to be entered into the foreign key columns.
Using Access SQL, create and run queries to answer the following questions. Save each query using the query name format SQL-Query-02-##, where the ## sign is replaced by the letter designator of the question. For example, the first query will be saved as SQL-Query-02-A.Write SQL queries to produce the following results:
Solutions to Project Questions 2.64 A–N are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
A. What projects are in the PROJECT table? Show all information for each project.
/***** Question A - SQL-Query-02-A ************************/

SELECT * FROM PROJECT;

[image:]

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the PROJECT table?
/***** Question B - SQL-Query-02-B ************************/

SELECT		ProjectID, Name, StartDate, EndDate
FROM		PROJECT;

[image:]
C. What projects in the PROJECT table started before August 1, 2013? Show all the information for each project.
Note that the answer is an empty set— – there are no PROJECTs that were started before August 1, 2013. This answer may surprise students, but it is the correct and intended answer. Point out in class that sometimes the results of a query will be an empty set. Then ask your class to rerun the query with the dates August 1, 2012 and August 1, 2014 and compare the results of the three queries.
/***** Question C - SQL-Query-02-C ************************/

SELECT		*
FROM		PROJECT
WHERE		StartDate < #01-AUG-13#;

[image:]

D. What projects in the PROJECT table have not been completed? Show all the information for each project.
/***** Question D - SQL-Query-02-D ************************/

SELECT		*
FROM		PROJECT
WHERE		EndDate IS NULL;

[image:]
E. Who are the employees assigned to each project? Show ProjectID, Employee-Number, LastName, FirstName, and Phone.
/***** Question E - SQL-Query-02-E ************************/

SELECT		ProjectID, E.EmployeeNumber, LastName, FirstName, Phone
FROM		ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
			ON A.EmployeeNumber=E.EmployeeNumber;

[image:]

F. Who are the employees assigned to each project? Show the ProjectID, Name, and Department. Show EmployeeNumber, LastName, FirstName, and Phone.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone)
/***** Question F - SQL-Query-02-F ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			P.Department AS ProjectDepartment,
			E.EmployeeNumber, LastName, FirstName,
			Phone AS EmployeePhone
FROM		(ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID;

[image:]

G. Who are the employees assigned to each project? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone.
/***** Question G - SQL-Query-02-G ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
ORDER BY	P.ProjectID;

[image:]

H. Who are the employees assigned to projects run by the marketing department? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone.
/***** Question H - SQL-Query-02-H ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
WHERE		DepartmentName='Marketing'
ORDER BY	P.ProjectID;

[image:]
I. How many projects are being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias NumberOfMarketingProjects.
/***** Question I - SQL-Query-02-I ************************/

SELECT		COUNT(*) AS NumberOfMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]

J. What is the total MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias TotalMaxHoursForMarketingProjects.
/***** Question J - SQL-Query-02-J ************************/

SELECT		SUM(MaxHours) AS TotalMaxHoursForMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]
K. What is the average MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias AverageMaxHoursForMarketingProjects.
/***** Question K - SQL-Query-02-K ************************/

SELECT		AVG(MaxHours) AS AverageMaxHoursForMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]
L. How many projects are being run by each department? Be sure to display each DepartmentName and to assign an appropriate column name to the computed results.
Note the use of the alias NumberOfDepartmentProjects.

/***** Question L - SQL-Query-02-L ************************/

SELECT		Department, COUNT(*) AS NumberOfDepartmentProjects
FROM		PROJECT
GROUP BY	Department;

[image:]
M. Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using the JOIN ON syntax. Run this statement.
For Microsoft SQL Server, Oracle Database and MySQL:
/***** Review Question 2.55 M **/

SELECT	E.*, A.*, P.*
FROM	EMPLOYEE AS E JOIN ASSIGNMENT AS A
		ON	E.EmployeeNumber = A.EmployeeNumber
			JOIN PROJECT AS P
				ON A.ProjectID = P.ProjectID;

For Microsoft Access:
Microsoft Access requires the SQL JOIN ON syntax INNER JOIN instead of just JOIN:
SELECT	E.*, A.*, P.*
FROM	(EMPLOYEE AS E INNER JOIN ASSIGNMENT AS A
		ON	E.EmployeeNumber = A.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID = P.ProjectID;

[image:]

N. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows of EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT. Run this statement.
/***** Review Question 2.55 N ***/
				
SELECT	E.*, A.*
FROM	EMPLOYEE AS E LEFT JOIN ASSIGNMENT AS A
		ON	E.EmployeeNumber = A.EmployeeNumber;

[image:]

Using Access QBE, create and run new queries to answer the questions in exercise 2.64. Save each query using the query name format QBE-Query-02-##, where the ## sign is replaced by the letter designator of the question. For example, the first query will be saved as QBE-Query-02-A.
Solutions to Project Questions 2.65 A–N are contained in the Microsoft Access database DBP-e13-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
The results of each query will be identical to the corresponding SQL query in the previous Project Question. Here we will show the QBE design of the query.
1. What projects are in the PROJECT table? Show all information for each project.
[image:]
P. What are the ProjectID, Name, StartDate, and EndDate values of projects in the PROJECT table?
[image:]
Q. What projects in the PROJECT table started before August 1, 2013? Show all the information for each project.
[image:]
R. What projects in the PROJECT table have not been completed? Show all the information for each project.
[image:]

S. Who are the employees assigned to each project? Show ProjectID, Employee-Number, LastName, FirstName, and Phone.
[image:]
T. Who are the employees assigned to each project? Show the ProjectID, Name, and Department. Show EmployeeNumber, LastName, FirstName, and Phone.
[image:]

U. Who are the employees assigned to each project? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
This question is more complicated than it seems. It also raises the important question of why students need to know SQL, and provides one answer: QBE equivalents may not always work, or at least they don’t work as intended. You should use this question as the basis for a discussion of this issue.
We have already run this query as an SQL query, and gotten the correct results. That SQL Query (from RQ 2.61-G) is
/***** Question G - SQL-Query-02-G ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
ORDER BY	P.ProjectID;

The results, which are correct, of this query are:
[image:]
If we build the obvious corresponding QBE query we get (note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):
[image:]
This QBE query shows the solution to the question as stated, but it will not run correctly due to how Microsoft Access interprets the JOIN...ON commands in the QBE query it itself created! The QBE query results are:
[image:]
Compare these results with those shown for SQL-Query-2-G above, and you will see the difference and these results are clearly wrong. Looking at the data itself and thinking about what the query results should be also makes it obvious that there is a problem here.
For reference, here is the SQL code that Microsoft Access created from the QBE query:
SELECT		PROJECT.ProjectID, PROJECT.Name AS [Project Name],
PROJECT.Department, DEPARTMENT.Phone AS DepartmentPhone, EMPLOYEE.EmployeeNumber, EMPLOYEE.LastName, EMPLOYEE.FirstName, EMPLOYEE.Phone AS EmployeePhone
FROM 		((DEPARTMENT INNER JOIN PROJECT ON
					DEPARTMENT.DepartmentName = PROJECT.Department)
					INNER JOIN EMPLOYEE ON
					DEPARTMENT.DepartmentName = EMPLOYEE.Department)
					INNER JOIN ASSIGNMENT ON
						(PROJECT.ProjectID = ASSIGNMENT.ProjectID)
						 AND
						(EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)
ORDER BY 	PROJECT.ProjectID;
What can we do? There are two work arounds.
First, create the query without Department Phone. This is the only column needed from the DEPARTMENT table, which can thus be eliminated from the query. The QBE query is (note the use of the aliases ProjectName, ProjectDepartment and EmployeePhone):
[image:]
The results will be correct, but without the DepartmentPhone column. The results are:
[image:]
Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you can illustrate building a set of queries, where each one uses the previous query and adds one additional table. This is possible because Microsoft Access allows saved queries to be used as the equivalent of a table in a query. By adding in one table at a time, you can control the JOIN...ON statement sequence, and obtain the correct answer.
This is a much better solution, because the end result is exactly what we want, rather than a truncated version of it.
You should use this solution in class to illustrate how to use Microsoft Access query objects as pseudo tables in queries, and point out that they can also be used in forms and reports.
The steps below show how to create the needed sequence of QBE queries:
(1) Create a query that joins PROJECT and ASSIGNMENT, and name it QBE-Query-02-G-PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query. Also note the use of the two aliases ProjectName and ProjectDepartment:
[image:]
(2) Create a query that joins QBE-Query-02-G-PA and DEPARTMENT, and name it QBE-Query-02-G-PAD. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-G-PA. Also note the use of the alias DepartmentPhone:
[image:]

(3) Create a query that joins QBE-Query-02-G-PAD and EMPLOYEE, and name it QBE-Query-02-G-PADE. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-G-PAD. Also note the use of the alias EmployeePhone:
[image:]
The query results are now correct:
[image:]

V. Who are the employees assigned to projects run by the marketing department? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
This question is identical to question G except for the restriction to marketing department projects. And, again, this question is more complicated than it seems. It also raises the important question of why students need to know SQL, and provides one answer: QBE equivalents may not always work, or at least they don’t work as intended. You should use this question as the basis for a discussion of this issue.
We have already run this query as an SQL query, and gotten the correct results. That SQL Query (from RQ 2.61-H) is
/***** Question H - SQL-Query-02-H ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
WHERE		DepartmentName='Marketing'
ORDER BY	P.ProjectID;

The results, which are correct, of this query are:
[image:]
If we build the obvious corresponding QBE query we get (note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):
[image:]
The results are:
[image:]
Compare these results with those shown for SQL-Query-02-H above, and you will see the difference.
For reference, here is the SQL code that Microsoft Access created from the QBE query:
SELECT 	PROJECT.ProjectID, PROJECT.Name AS [Project Name],
			PROJECT.Department AS ProjectDepartment,
			DEPARTMENT.Phone AS DepartmentPhone, EMPLOYEE.EmployeeNumber,
			EMPLOYEE.LastName, EMPLOYEE.FirstName,
			EMPLOYEE.Phone AS EmployeePhone
FROM		((DEPARTMENT INNER JOIN PROJECT ON
				DEPARTMENT.DepartmentName = PROJECT.Department)
				INNER JOIN EMPLOYEE ON
					DEPARTMENT.DepartmentName = EMPLOYEE.Department)
				INNER JOIN ASSIGNMENT ON
					(PROJECT.ProjectID = ASSIGNMENT.ProjectID)
					 AND
					(EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)
WHERE 		(((PROJECT.Department)="Marketing"))
ORDER BY 	PROJECT.ProjectID;

The problem we are encountering here is the same as described above in 2.64 G. Again, there are two work arounds. First, create the query without Department Phone. This is the only column needed from the DEPARTMENT table, which can thus be eliminated from the query. The QBE Query is (note the use of the aliases ProjectName, ProjectDepartment and EmployeePhone):
[image:]
The results will be correct, but without the DepartmentPhone column:
[image:]
Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you can illustrate building a set of queries, where each one uses the previous query and adds one additional table. This is possible because Microsoft Access allows saved queries to be used as the equivalent of a table in a query. By adding in one table at a time, you can control the JOIN...ON statement sequence, and obtain the correct answer.
This is a much better solution, because the end result is exactly what we want, rather than a truncated version of it.
You should use this solution in class to illustrate how to use Microsoft Access query objects as pseudo tables in queries, and point out that they can also be used in forms and reports.
The steps below show how to create the needed sequence of QBE queries:

(1) Create a query that joins PROJECT and ASSIGNMENT, and name it QBE-Query-0H-G-PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query, and note the use of the aliases ProjectName and ProjectDepartment:
[image:]
(2) Create a query that joins QBE-Query-02-H-PA and DEPARTMENT, and name it QBE-Query-02-H-PAD. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-H-PA, and note the use of the alias DepartmentPhone:
[image:]

(3) Create a query that joins QBE-Query-02-H-PAD and EMPLOYEE, and name it QBE-Query-02-H-PADE. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-H-PAD, and note the use of the alias EmployeePhone:
[image:]
The query results are now correct:
[image:]

W. How many projects are being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]
X. What is the total MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]

Y. What is the average MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]
Z. How many projects are being run by each department? Be sure to display each DepartmentName and to assign an appropriate column name to the computed results.
[image:]
AA. Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using the JOIN ON syntax. Run this statement.
[image:]
AB. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows of EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT. Run this statement.
[image:]

The following questions refer to the NDX table of data as described starting on page 72. You can obtain a copy of this data in the Access database, DBPe11-NDX.accdb located on this text's Web site at www.pearsonhighered.com/kroenke.
Write SQL queries to produce the following results:
A. The ChangeClose on Fridays.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP e13-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-A *** */

SELECT 	ChangeClose
FROM 		NDX
WHERE		TDayOfWeeK = 'Friday';

[image:]
B.
The minimum, maximum, and average ChangeClose on Fridays.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e13-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-B *** */

SELECT 	MIN (ChangeClose) AS MinFridayChangeClose,
			MAX (ChangeClose) AS MaxFridayChangeClose,
			AVG (ChangeClose) AS AverageFridayChangeClose
FROM 		NDX
WHERE		TDayOfWeeK = 'Friday';

[image:]
C. The average ChangeClose grouped by TYear. Show TYear.
Since TYear is being displayed, it makes sense to sort the results by TYear although this is not explicitly stated in the question.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-C *** */

SELECT 		TYear, AVG (ChangeClose) AS AverageChangeClose
FROM 			NDX
GROUP BY		TYear
ORDER BY 	TYear;

[image:]
D. The average ChangeClose grouped by TYear and TMonth. Show TYear and TMonth.
Since TYear and TMonth are being displayed, it makes sense to sort the results by TYear and TMonth although this is not explicitly stated in the question.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-D-A *** */

SELECT 	TYear, TMonth,
			AVG (ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TMonth
ORDER BY TYear, TMonth;

[image:]

Unfortunately, the table NDX does not contain a numeric value of the month, so in order to sort the months correctly, we need a TMonthNumber which has a column containing a representative number for each month (January = 1, February = 2, etc.)
Although the SQL DDL and DML for doing this is not covered until Chapter 7, this is a good exercise in adding a column to an existing table, and you may want to show this to your students at this time.
We can create this column as follows (note that Microsoft Access can only run one SQL command at a time!):
/* *** SQL-ALTER-TABLE-2-63-D *** */

ALTER TABLE NDX
		ADD COLUMN TMonthNumber Int NULL;

/* *** SQL-UPDATES-2-63-D *** */

UPDATE NDX
		SET	TMonthNumber = 1
		WHERE	TMonth = 'January';

UPDATE NDX
		SET	TMonthNumber = 2
		WHERE	TMonth = 'February';

UPDATE NDX
		SET	TMonthNumber = 3
		WHERE	TMonth = 'March';

UPDATE NDX
		SET	TMonthNumber = 4
		WHERE	TMonth = 'April';

UPDATE NDX
		SET	TMonthNumber = 5
		WHERE	TMonth = 'May';

UPDATE NDX
		SET	TMonthNumber = 6
		WHERE	TMonth = 'June';

UPDATE NDX
		SET	TMonthNumber = 7
		WHERE	TMonth = 'July';

UPDATE NDX
		SET	TMonthNumber = 8
		WHERE	TMonth = 'August';

UPDATE NDX
		SET	TMonthNumber = 9
		WHERE	TMonth = 'September';

UPDATE NDX
		SET	TMonthNumber = 10
		WHERE	TMonth = 'October';

UPDATE NDX
		SET	TMonthNumber = 11
		WHERE	TMonth = 'November';

UPDATE NDX
		SET	TMonthNumber = 12
		WHERE	TMonth = 'December';

===

An SQL or QBE Query can be used to show the data in the table (use GROUP BY):
[image:]
Now that the NDX table includes this column, we can use it as follows to sort the data correctly:
/* *** SQL-Query-2-63-D-B *** */

SELECT 	TYear, TMonth,
			AVG (ChangeClose) AS AverageFridayChangeClose
FROM 		NDX
GROUP BY	TYear, TMonth, TMonthNumber
ORDER BY TYear, TMonthNumber;

[image:]
E. The average ChangeClose grouped by TYear, TQuarter, TMonth shown in descending order of the average (you will have to give a name to the average in order to sort by it). Show TYear, TQuarter, and TMonth. Note that months appear in alphabetical and not calendar order. Explain what you need to do to obtain months in calendar order.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-E *** */

SELECT 	TYear, TQuarter, TMonth,
			AVG(ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY AverageChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-E-Access *** */

SELECT 	TYear, TQuarter, TMonth,
			AVG(ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY AVG(ChangeClose) DESC;

The result is:
[image:]
In order to obtain the months in calendar order, we would have to use the TMonthNumber column we created in PQ 2.63-D with a numerical value for each month (1, 2, 3, …, 12) and sort by those values.
F.
 The difference between the maximum ChangeClose and the minimum ChangeClose grouped by TYear, TQuarter, TMonth shown in descending order of the difference (you will have to give a name to the difference in order to sort by it). Show TYear, TQuarter, and TMonth.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-F *** */

SELECT 	TYear, TQuarter, TMonth,
			(MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY DifChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-F-Access *** */

SELECT 	TYear, TQuarter, TMonth,
			(MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY (MAX(ChangeClose) – MIN(ChangeClose)) DESC;

The query result is:
[image:]
G. The average ChangeClose grouped by TYear shown in descending order of the average (you will have to give a name to the average in order to sort by it). Show only groups for which the average is positive.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-G *** */

SELECT 	 TYear,
			 AVG(ChangeClose) AS AverageChangeClose
FROM 		 NDX
GROUP BY TYear
HAVING 	 AVG(ChangeClose) > 0
ORDER BY AverageChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-G-Access *** */

SELECT 	 TYear,
			 AVG(ChangeClose) AS AverageChangeClose
FROM 		 NDX
GROUP BY TYear
HAVING 	 AVG(ChangeClose) > 0
ORDER BY AVG(ChangeClose) DESC;

The result is:
[image:]
H. Display a single field with the date in the form: day/month/year. Do not be concerned with trailing blanks.
Solutions to Project Questions 2.66.A – 2.66.H are contained in the Microsoft Access database DBP-e13-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
The solution to this question requires the student to use the DBMS help function or other references to figure out a conversion function to convert the numerical day of the month to a character string that can be combined with other data already in character format. The original table NDX does not have a numeric value for month, so the names of the months will appear in the solution. If we want the numeric value of the month, we could use the modified NDX table, which has a numeric value TMonthNumber column. We would need to use the data type conversion on this field as well.
The SQL Statement using SQL Server 2012 character string functions is:
/* *** SQL-Query-2-63-H *** */

SELECT 	 CAST (TDayOfMonth AS Char (2)) + ' / ' +
			 TMonth + ' / ' + TYear AS DisplayDate
FROM 		 NDX;

The SQL Statement (as created with Expression Builder) for Microsoft Access 2013 is:
/* *** SQL-Query-2-63-H-Access *** */

SELECT	[NDX]![TDayOfMonth]
			&'/'&[NDX]![TMonth]
			&'/'&[NDX]![TYear] AS DisplayDate
FROM 		NDX;

The Microsoft Access 2013 result is:
[image:]
It is possible that volume (the number of shares traded) has some correlation with the direction of the stock market. Use the SQL you have learned in this chapter to investigate that possibility. Develop at least five different SQL statements in your investigation.
If volume is correlated with the direction of the stock market, this means that there should be either:
(1) POSITIVE CORRELATION: Higher volume when the market closes higher, or
(2) NEGATIVE CORRELATION: Higher volume when the market closes lower.
When does the market close higher? When NDX.ChangeClose is positive.
/* *** SQL-Query-2-64-A *** */

SELECT 	 TMonth, TDayOfMonth, TYear, ChangeClose
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]

When does the market close lower? When NDX.ChangeClose is negative.
/* *** SQL-Query-2-64-B *** */

SELECT 	 TMonth, TDayOfMonth, TYear, ChangeClose
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]

Now, what are the average positive and negative changes?
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]/* *** SQL-Query-2-64-C *** */

SELECT 	 AVG (ChangeClose) AS AvgPositiveChange
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]
/* *** SQL-Query-2-64-D *** */

SELECT 	 AVG (ChangeClose) AS AvgNegativeChange
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]
Now, what are the average volumes associated with the positive and negative changes?
/* *** SQL-Query-2-64-E *** */

SELECT 	 AVG (ChangeClose) AS AvgPositiveChange,
			 AVG (Volume) AS AvgVolumeOnPositiveChange
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]
/* *** SQL-Query-2-64-F *** */

SELECT 	 AVG (ChangeClose) AS AvgNegativeChange,
			 AVG (Volume) AS AvgVolumeOnNegativeChange
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]
So, when there is a positive, or upward, change in the market we have an average volume of 641417.1117318 shares traded, and when we have a negative, or downward, change in the market we have an average volume of 6742500.66698428 shares. These numbers do not look significantly different, we will conclude that there is no correlation between the direction of the market movement and the volume of shares traded (if we wanted to be more formal, we could use a statistical procedure and do a hypothesis test as to whether or not there is really a statistically significant difference between these two numbers).
	
Chapter Two – Introduction to Structured Query Language

Page 2-7
Copyright © 2014 Pearson Education, Inc.

MARCIA’S DRY CLEANING CASE QUESTIONS
Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from the competition by providing superior customer service. She wants to keep track of each of her customers and their orders. Ultimately, she wants to notify them that their clothes are ready via e-mail. To provide this service, she has developed an initial database with several tables. Three of those tables are the following:
CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)
In the database schema above, the primary keys are underlined and the foreign keys are shown in italics. The database that Marcia has created is named MDC, and the three tables in the MDC database schema are shown in Figure 2-34.
[image:]
FIGURE 2-34 – The MDC Database
The column characteristics for the tables are shown in Figures 2-34, 2-35, and 2-36. The relationship between CUSTOMER and INVOICE should enforce referential integrity, but not cascade updates or deletions, while the relationship between INVOICE and INVOICE_ITEM should enforce referential integrity and cascade both updates and deletions. The data for these tables are shown in Figures 2-38, 2-39, and 2-40.
We recommend that you create a Microsoft Access 2013 database named MDC-CH02.accdb using the database schema, column characteristics, and data shown above, and then use this database to test your solutions to the questions in this section. Alternatively, SQL scripts for creating the MDC-CH02 database in SQL Server, Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke .

[image:]
Figure 2-35 - Column Characteristics for the CUSTOMER Table

[image:]
Figure 2-36 - Column Characteristics for the INVOICE Table
[image:]
Figure 2-37 - Column Characteristics for the INVOICE_ITEM Table
[image:]
Figure 2-38 - Sample Data for the MDC Database CUSTOMER table
[image:]
Figure 2-38 - Sample Data for the MDC Database INVOICE table
[image:]
Figure 2-39 - Sample Data for the MDC Database INVOICE_ITEM table

Write SQL statements and show the results based on the MDC data for each of the following:
1. Show all data in each of the tables.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-A-CUSTOMER *** */

SELECT 	*
FROM 		CUSTOMER;

Note there are two customers both named Betsy Miller.
[image:]

/* *** SQL-Query-MDC-A-INVOICE *** */

SELECT 	*
FROM 		INVOICE;

[image:]

/* *** SQL-Query-MDC-A-INVOICE-ITEM *** */

SELECT 	*
FROM 		INVOICE_ITEM;

[image:]
1.
List the LastName, FirstName, and Phone of all customers.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-B *** */

SELECT 	Phone, LastName
FROM 		CUSTOMER;

[image:]
1. List the LastName, FirstName, and Phone for all customers with a FirstName of “Nikki”.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-C *** */

SELECT 	Phone, LastName
FROM 		CUSTOMER
WHERE		FirstName = 'Nikki';

[image:]
1.
List the LastName, FirstName, Phone, DateIn, and DateOut of all orders in excess of 100.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-D *** */

SELECT 	Phone, DateIn, DateOut
FROM 		CUSTOMER, INVOICE
WHERE		TotalAmount >100
	AND	CUSTOMER.CustomerID = INVOICE.CustomerNumber;

[image:]
1. List the LastName, FirstName, and Phone of all customers whose first name starts with 'B'.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MDC-E *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		FirstName LIKE 'B%';

/* *** SQL-Query-MDC-E-Access *** */

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:
/* *** SQL-Query-MDC-E-Access *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		FirstName LIKE 'B*';

[image:]
1. List the LastName, FirstName, and Phone of all customers whose last name includes the characters, 'cat'.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MDC-F *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		LastName LIKE '%cat%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:
/* *** SQL-Query-MDC-F-Access *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		LastName LIKE '*cat*';

[image:]
1. List the LastName, FirstName, and Phone for all customers whose second and third characters of phone number is 23.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that since the phone numbers in this database include the area code, we are really finding phone numbers with ‘23’ as the second and third numbers in the area code. We could, off course, write statements to find ‘23’ in the prefix or in the 4-digit sequence portion of the phone number.
The correct SQL-92 statement, which uses the wildcards % and _, is:
/* *** SQL-Query-MDC-G *** */

SELECT 	Phone, FirstName, LastName
FROM 		CUSTOMER
WHERE		Phone LIKE '_23%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL statement:
/* *** SQL-Query-MDC-G-Access *** */

SELECT 	Phone, FirstName, LastName
FROM 		CUSTOMER
WHERE		Phone LIKE '?23*';

[image:]
1. Determine the maximum and minimum TotalAmounts.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-H *** */

SELECT 	MAX (TotalAmt) AS MaxTotalAmount,
			MIN (TotalAmt) AS MinTotalAmount
FROM 		INVOICE;

[image:]

1. Determine the average TotalAmount.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that since ORDER is an SQL reserved word, it must be enclosed in delimiters (square brackets []).
/* *** SQL-Query-MDC-I *** */

SELECT 	AVG (TotalAmt) AS AvgTotalAmount
FROM 		[ORDER];

[image:]
1. Count the number of customers.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-J *** */

SELECT 	Count (*)AS NumberOfCustomers
FROM 		CUSTOMER;

[image:]

1. Group customers by LastName and then by FirstName.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-K *** */

SELECT 	LastName, FirstName
FROM 		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]
1. Count the number of customers having each combination of LastName and FirstName.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-L *** */

SELECT 	LastName, FirstName,
			COUNT (*) AS Last_First_Combination_Count
FROM 		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]

1. Show the FirstName and LastName of all customers who have had an order with TotalAmount greater than $100.00. Use a subquery. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-M *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER
WHERE		CustomerID IN
			(SELECT CustomerNumber
			FROM INVOICE
			WHERE TotalAmount > 100)
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the LastName, FirstName and Phone of all customers who have had an order with TotalAmount greater than 100. Use a join, but do not use JOIN ON syntax. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-N *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER, INVOICE
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	TotalAmount > 100
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the LastName, FirstName and Phone of all customers who have had an order with TotalAmount greater than 100. Use a join using JOIN ON syntax. Present the results sorted by LastName in ascending order and then FirstName in descending order.
/* *** SQL-Query-MDC-O *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone,
		 	INVOICE.TotalAmount
FROM 		CUSTOMER JOIN INVOICE
	 ON 	CUSTOMER.CustomerID = INVOICE.CustomerNumber
WHERE 	INVOICE.TotalAmount>100;

Note that for Microsoft Access, we must use the INNER JOIN syntax:
/* *** SQL-Query-MDC-O *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone,
		 	INVOICE.TotalAmount
FROM 		CUSTOMER INNER JOIN INVOICE
	 ON 	CUSTOMER.CustomerID = INVOICE.CustomerNumber
WHERE 	INVOICE.TotalAmount>100;

[image:]
1. Show the LastName, FirstName and Phone of all customers who have had an order with an Item named “Dress Shirt”. Use a subquery. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-P *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER
WHERE		CustomerID IN
			(SELECT	CustomerNumber
			FROM 		INVOICE
			WHERE 	InvoiceNumber IN
						(SELECT InvoiceNumber
						FROM INVOICE_ITEM
						WHERE Item = 'Dress Shirt'))
ORDER BY	LastName, FirstName DESC;

[image:]

1. Show the LastName, FirstName and Phone of all customers who have had an order with an Item named “Dress Shirt”. Use a join, but do not use JOIN ON syntax. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-Q-Access *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER, INVOICE, INVOICE_ITEM
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
	AND	INVOICE_ITEM.Item = 'Dress Shirt'
ORDER BY	LastName, FirstName DESC;

[image:]

1. Show the LastName, FirstName and Phone of all customers who have had an order with an Item named “Dress Shirt”. Use a join using JOIN ON syntax. Present the results sorted by LastName in ascending order and then FirstName in descending order.

/* *** SQL-Query-MDC-R *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName,
			CUSTOMER.Phone
FROM 		CUSTOMER JOIN INVOICE
		ON	CUSTOMER.CustomerID = INVOICE.CustomerNumber)
			JOIN INVOICE_ITEM
				ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE 	INVOICE_ITEM.Item='Dress Shirt';

Note that for Microsoft Access, we must use the INNER JOIN syntax:
/* *** SQL-Query-MDC-R-Access *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName,
			CUSTOMER.Phone
FROM 		(CUSTOMER INNER JOIN INVOICE
		ON	 CUSTOMER.CustomerID = INVOICE.CustomerNumber)
			 INNER JOIN INVOICE_ITEM
				ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE 	(((INVOICE_ITEM.Item)='Dress Shirt'));

[image:]
1. Show the LastName, FirstName, Phone and Total Amount of all customers who have had an order with an Item named “Dress Shirt”. Use a combination of a join with a subquery. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Since we want to display data in fields from two tables, these tables must be combined with a join. Data in a table without displayed fields can still be brought into the query with a subquery. Therefore, we will join CUSTOMER and INVOICE, while using a subquery with INVOICE_ITEM.
/* *** SQL-Query-MDC-s *** */

SELECT 	FirstName, LastName, TotalAmount
FROM 		CUSTOMER, INVOICE
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	INVOICE.InvoiceNumber IN
						(SELECT InvoiceNumber
						 FROM INVOICE_ITEM
						 WHERE Item = 'Dress Shirt')
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the LastName, FirstName, Phone and Total Amount of all customers who have had an order with an Item named “Dress Shirt”. Also show the LastName, FirstName and Phone of all other customers. Present results sorted by LastName in ascending order and then FirstName in descending order.
/* *** SQL-Query-MDC- *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone
FROM 		CUSTOMER LEFT JOIN INVOICE
	 ON	CUSTOMER.CustomerID = INVOICE.CustomerNumber
			LEFT JOIN INVOICE_ITEM
				ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE 	INVOICE_ITEM.Item='Dress Shirt';

Note that for Microsoft Access, we must use the OUTER JOIN syntax:
/* *** SQL-Query-MDC-T-Access *** */

SELECT 	CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone
FROM 		(CUSTOMER LEFT OUTER JOIN INVOICE
	 ON	 CUSTOMER.CustomerID = INVOICE.CustomerNumber)
			 LEFT OUTER JOIN INVOICE_ITEM
				ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE 	(((INVOICE_ITEM.Item)='Dress Shirt'));

[image:]

ANSWERS TO THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS
The Queen Anne Curiosity Shop is an upscale home furnishings store in a well-to-do urban neighborhood. It sells both antiques and current-production household items that complement or are useful with the antiques. For example, the store sells antique dining room tables and new tablecloths. The antiques are purchased from both individuals and wholesalers, and the new items are purchased from distributors. The store’s customers include individuals, owners of bed-and-breakfast operations, and local interior designers who work with both individuals and small businesses. The antiques are unique, though some multiple items, such as dining room chairs, may be available as a set (sets are never broken). The new items are not unique, and an item may be reordered if it is out of stock. New items are also available in various sizes and colors (for example, a particular style of tablecloth may be available in several sizes and in a variety of colors).
Assume that The Queen Anne Curiosity Shop designs a database with the following tables:
CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Email)
ITEM (ItemID, ItemDescription, CompanyName, PurchaseDate, ItemCost,
ItemPrice)
SALE (SaleID, CustomerID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:
CustomerID in SALE must exist in CustomerID in CUSTOMER
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM
Assume that CustomerID of CUSTOMER, ItemID of ITEM, SaleID of SALE, and SaleItemID of SALE_ITEM are all surrogate keys with values as follows:
CustomerID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1
The database that The Queen Anne Curiosity Shop has created is named QACS, and the four tables in the QACS database schema are shown in Figure 2-41.

[image:]
Figure 2-41 – The QACS Database
The column characteristics for the tables are shown in Figures 2-42, 2-43, 2-44, and 2-45. The relationships CUSTOMER-to-SALE and ITEM-to-SALE_ITEM should enforce referential integrity, but not cascade updates nor deletions, while the relationship between SALE and SALE_ITEM should enforce referential integrity and cascade both updates and deletions. The data for these tables are shown in Figures 2-46, 2-47, 2-48, and 2-49.
[image:]
Figure 2-42 - Column Characteristics for the QACS Database CUSTOMER Table
[image:]
Figure 2-43 - Column Characteristics for the QACS Database SALE Table
[image:]
Figure 2-44 - Column Characteristics for the QACS Database SALE_ITEM Table
[image:]
Figure 2-45 - Column Characteristics for the QACS Database ITEM Table
[image:]
Figure 2-46 – Sample Data for the QACS Database CUSTOMER Table
[image:]
Figure 2-47 - Sample Data for the QACS Database SALE Table
[image:]
Figure 2-48 - Sample Data for the QACS Database SALE_ITEM Table
[image:]
Figure 2-49 - Sample Data for the QACS Database ITEM Table
We recommend that you create a Microsoft Access 2013 database named QACS-CH02.accdb using the database schema, column characteristics, and data shown above and then use this database to test your solutions to the questions in this section. Alternatively, SQL scripts for creating the QACS-CH02 database in Microsoft SQL Server, Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.
Write SQL statements and show the results based on the QACS data for each of the following:
A. Show all data in each of the tables.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-A-CUSTOMER *** */

SELECT 	*
FROM 		CUSTOMER;

[image:]

/* *** SQL-Query-QACS-A-SALE *** */

SELECT 	*
FROM 		SALE;

[image:]
/* *** SQL-Query-QACS-A-SALE-ITEM *** */

SELECT 	*
FROM 		SALE_ITEM;

[image:]
/* *** SQL-Query-QACS-A-ITEM *** */

SELECT 	*
FROM 		ITEM;

[image:]

B. List the LastName, FirstName, and Phone of all customers.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-B *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER;

[image:]
C. List the LastName, FirstName, and Phone for all customers with a FirstName of 'John'.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-C *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		FirstName = 'John';

[image:]

D. List the LastName, FirstName, and Phone of all customers with a last name of 'Anderson'.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-D *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		LastName = 'Anderson';

[image:]
E. List the LastName, FirstName, and Phone of all customers whose first name starts
with 'D'.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
For SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-QACS-E *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		FirstName LIKE 'D%';

For Microsoft Access:
/* *** SQL-Query-QACS-E *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		FirstName LIKE 'D*';

[image:]
F. List the LastName, FirstName, and Phone of all customers whose last name includes the characters 'ne'.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
For SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-QACS-F *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		LastName LIKE '%ne%';

For Microsoft Access:
/* *** SQL-Query-QACS-F *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		LastName LIKE '*ne*';

[image:]
G. List the LastName, FirstName, and Phone for all customers whose second and third numbers (from the right) of their phone number are 56.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
For SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-QACS-G *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		Phone LIKE '%56_';

For Microsoft Access:
/* *** SQL-Query-QACS-G *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		Phone LIKE '*56?';

[image:]
H. Determine the maximum and minimum sales Total.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-H *** */

SELECT		MAX (Total) as MaximumTotalSales,
		MIN (Total) as MinimumTotalSales
FROM		SALE;

[image:]
I. Determine the average sales Total.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-I *** */

SELECT		AVG (Total) as AverageTotalSales
FROM		SALE;

[image:]

J. Count the number of customers.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-J *** */

SELECT		COUNT (*) AS NumberOfCustomers
FROM		CUSTOMER;

[image:]
K. Group customers by LastName and then by FirstName.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-K *** */

SELECT		LastName, FirstName
FROM		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]

L. Count the number of customers having each combination of LastName and FirstName.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-L *** */

SELECT		LastName, FirstName, COUNT (*) AS NumberOfCustomers
FROM		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]
M. Show the LastName, FirstName, and Phone of all customers who have had an order with Total greater than $100.00. Use a subquery. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-M *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		CustomerID IN
			(SELECT CustomerID
			 FROM SALE
			 WHERE Total > 100)
ORDER BY	LastName, FirstName DESC;

[image:]
N. Show the LastName, FirstName, and Phone of all customers who have had an order with Total greater than $100.00. Use a join, but do not use JOIN ON syntax. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-E *** */

SELECT 	LastName, FirstName, Phone
FROM		CUSTOMER, SALE
WHERE		CUSTOMER.CustomerID = SALE.CustomerID
	AND		Total > 100;

/* For each CUSTOMER only once: */

SELECT		DISTINCT LastName, FirstName, Phone
FROM		CUSTOMER, SALE
WHERE		CUSTOMER.CustomerID = SALE.CustomerID
	AND		Total > 100;

[image:]
O. Show the LastName, FirstName, and Phone of all customers who have had an order with Total greater than $100.00. Use a join using JOIN ON syntax. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-O *** */

SELECT 	LastName, FirstName, Phone
FROM		CUSTOMER JOIN SALE
	ON		CUSTOMER.CustomerID = SALE.CustomerID
WHERE		Total > 100;

/* For each CUSTOMER only once: */

SELECT		DISTINCT LastName, FirstName, Phone
FROM		CUSTOMER JOIN SALE
	ON		CUSTOMER.CustomerID = SALE.CustomerID
WHERE		Total > 100;

Note that for Microsoft Access, we must use the INNER JOIN syntax:
SELECT		DISTINCT LastName, FirstName, Phone
FROM		CUSTOMER INNER JOIN SALE
	ON		CUSTOMER.CustomerID = SALE.CustomerID
WHERE		Total > 100;

[image:]

P. Show the LastName, FirstName, and Phone of all customers who who have bought an Item named 'Desk Lamp'. Use a subquery. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-E *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER
WHERE		CustomerID IN
			(SELECT 	CustomerID
			 FROM 		SALE
			 WHERE		SaleID IN
						(SELECT	SaleID
						 FROM		SALE_ITEM
						 WHERE		ItemID IN
									(SELECT	ItemID
									 FROM		ITEM
									 WHERE		ItemDescription = 'Desk Lamp')));

[image:]

Q. Show the LastName, FirstName, and Phone of all customers who have bought an Item named 'Desk Lamp'. Use a join, but do not use JOIN ON syntax. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-E *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER AS C,
			SALE AS S,
			SALE_ITEM AS SI,
			ITEM AS I
WHERE		C.CustomerID = S.CustomerID
	AND		S.SaleID = SI.SaleID
	AND		SI.ItemID = I.ItemID
	AND		ItemDescription = 'Desk Lamp';

[image:]
R. Show the LastName, FirstName, and Phone of all customers who have bought an Item named 'Desk Lamp'. Use a join using JOIN ON syntax. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-R *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER AS C JOIN SALE AS S
	ON		C.CustomerID = S.CustomerID
			JOIN	SALE_ITEM AS SI
				ON	S.SaleID = SI.SaleID
					JOIN	ITEM AS I
						ON	SI.ItemID = I.ItemID
WHERE		ItemDescription = 'Desk Lamp';

Note that for Microsoft Access, we must use the INNER JOIN syntax with grouping of the INNER JOINS:
SELECT		LastName, FirstName, Phone
FROM		CUSTOMER AS C INNER JOIN SALE AS S
	ON		((C.CustomerID = S.CustomerID
			INNER JOIN		SALE_ITEM AS SI)
				ON			S.SaleID = SI.SaleID)
					INNER JOIN		ITEM AS I
						ON			SI.ItemID = I.ItemID
WHERE		ItemDescription = 'Desk Lamp';

[image:]
S. Show the LastName, FirstName, and Phone of all customers who have bought an Item named 'Desk Lamp'. Use a combination of a join and a subquery. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-S *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER AS C,
			SALE AS S
WHERE		C.CustomerID = S.CustomerID
	AND		SaleID IN
						(SELECT	SaleID
						 FROM		SALE_ITEM
						 WHERE		ItemID IN
									(SELECT	ItemID
									 FROM		ITEM
									 WHERE		ItemDescription = 'Desk Lamp'));

[image:]

T. Show the LastName, FirstName, and Phone of all customers who have bought an Item named 'Desk Lamp'. Use a combination of a join and a subquery that is different from the combination used for question S. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access database DBP-e13-IM-CH02-QACS.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-QACS-S *** */

SELECT		LastName, FirstName, Phone
FROM		CUSTOMER AS C,
			SALE AS S,
			SALE_ITEM AS SI
WHERE		C.CustomerID = S.CustomerID
	AND		S.SaleID = SI.SaleID
	AND		ItemID IN
				(SELECT		ItemID
				 FROM		ITEM AS I
				 WHERE		ItemDescription = 'Desk Lamp');

[image:]

ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS
James Morgan owns and operates Morgan Importing, which purchases antiques and home furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and then sells these items in the United States. James tracks the Asian purchases and subsequent shipments of these items to Los Angeles by using a database to keep a list of items purchased, shipments of the purchased items, and the items in each shipment. His database includes the following tables:
ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmount, ExchangeRate)
SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, DepartureDate, ArrivalDate, InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)
In the database schema above, the primary keys are underlined and the foreign keys are shown in italics. The database that James has created is named MI, and the three tables in the MI database schema are shown in Figure 2-50.
[image:]
Figure 2-50 – The MI Database
The column characteristics for the tables are shown in Figures 2-51, 2-52, and 2-53. The data for the tables are shown in Figures 2-44, 2-45, and 2-46. The relationship between ITEM and SHIPMENT_ITEM should enforce referential integrity, and although it should cascade updates, it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT_ITEM should enforce referential integrity and cascade both updates and deletions.
We recommend that you create a Microsoft Access 2013 database named MI-Ch02.accdb using the database schema, column characteristics, and data shown above, and then use this database to test your solutions to the questions in this section. Alternatively, SQL scripts for creating the MI-CH02 database in SQL Server, Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.
[image:]
Figure 2-51 - Column Characteristics for the MI Database ITEM Table
[image:]
Figure 2-52 - Column Characteristics for the MI Database SHIPMENT Table
[image:]
Figure 2-53 - Column Characteristics for the MI Database SHIPMENT_ITEM Table
[image:]
Figure 2-54 - Sample Data for the MI Database ITEM Table
[image:]
Figure 2-55 - Sample Data for the MI Database SHIPMENT Table

[image:]
Figure 2-56 - Sample Data for the MI Database SHIPMENT_ITEM Table
Write SQL statements and show the results based on the MI data for each of the following:
A. Show all data in each of the tables.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-A-ITEM *** */

SELECT 	*
FROM 		ITEM;

[image:]

/* *** SQL-Query-MI-A-SHIPMENT *** */

SELECT 	*
FROM 		SHIPMENT;

[image:]

/* *** SQL-Query-MI-A-SHIPMENT-ITEM *** */

SELECT 	*
FROM 		SHIPMENT_ITEM;

[image:]

B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-B *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT;

[image:]
C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments with an insured value greater than $10,000.00.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-C *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		InsuredValue > 10000;

[image:]

D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers whose name starts with “AB”.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MI-D *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		Shipper LIKE 'AB%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:
/* *** SQL-Query-MI-D-Access *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		Shipper LIKE 'AB*';

[image:]

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all shipments that departed in December.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MI-E *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '12%';

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:
/* *** SQL-Query-MI-E-Access *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '12*';

[image:]
F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all shipments that departed on the tenth day of any month.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcards % and _, is:
/* *** SQL-Query-MI-F *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '___10%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL statement:
/* *** SQL-Query-MI-F-Access-A *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '???10*';

Further, Microsoft Access does NOT show the leading zero in MM, so we must add a compound WHERE clause to get months without the leading zeros:
/* *** SQL-Query-MI-F-Access-B *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '???10*'
	OR		DepartureDate LIKE '??10*';

[image:]
G. Determine the maximum and minimum InsuredValue.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-G *** */

SELECT 	MAX (InsuredValue) AS MaxInsuredValue,
			MIN (InsuredValue) AS MinInsuredValue,
FROM 		SHIPMENT;

[image:]

H. Determine the average InsuredValue.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-H *** */

SELECT 	AVG (InsuredValue) AS AvgInsuredValue
FROM 		SHIPMENT;

[image:]
I. Count the number of shipments.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-I *** */

SELECT 	COUNT (*) AS NumberOfShipments
FROM 		SHIPMENT;

[image:]
J. Show ItemID, Description, Store, and a calculated column named StdCurrencyAmount that is equal to LocalCurrencyAmt times the ExchangeRate for all rows of ITEM.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-J *** */

SELECT 	Item, Store,
			LocalCurrencyAmt * ExchangeRate AS StdCurrencyAmount
FROM 		ITEM;

[image:]
K. Group item purchases by City and Store.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-K *** */

SELECT 		City, Store
FROM 			ITEM
GROUP BY		City, Store;

[image:]
L. Count the number of purchases having each combination of City and Store.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-L *** */

SELECT 		City, Store
				COUNT (*) AS City_Store_Combination_Count
FROM 			ITEM
GROUP BY		City, Store;

[image:]
M. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have an item with a value of 1000 or more. Use a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-M *** */

SELECT 	ShipperName, DepartureDate
FROM 		SHIPMENT
WHERE		ShipmentID IN
			(SELECT	ShipmentID
			 FROM 	SHIPMENT_ITEM
			 WHERE	Value = 1000
				 OR	Value > 1000)
ORDER BY ShipperName, DepartureDate DESC;

[image:]
N. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have an item with a value of 1000 or more. Use a join. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
This question is a little more complicated than it appears. Note how the following three queries determine that there are actually only two shipments that meet the criteria.
/* *** SQL-Query-MI-N-A *** */

SELECT 		ShipperName, DepartureDate
FROM 			SHIPMENT, SHIPMENT_ITEM
WHERE			SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND		(Value = 1000 OR Value > 1000)
ORDER BY 	ShipperName, DepartureDate DESC;

[image:]

We’ll add some more details to confirm the fact that the three lines for International are actually only one shipment. Note that we can use the greater than or equal to operator >= to simplify the WHERE clause:
/* *** SQL-Query-MI-N-B *** */

SELECT 	SHIPMENT.ShipmentID, ShipmentItemID, Description,
			ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM, ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	SHIPMENT_ITEM.ItemID = ITEM.ItemID
	AND	Value >= 1000
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
Now that we can see that all three lines for International are for ShipmentID 4, we’ll get the proper results from the revised query by adding the DISTINCT keyword:
/* *** SQL-Query-MI-N-C *** */

SELECT 	DISTINCT ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	Value >= 1000
ORDER BY ShipperName, DepartureDate DESC;

[image:]
O. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have an item that was purchased in Singapore. Use a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-O *** */

SELECT 	ShipperName, DepartureDate
FROM 		SHIPMENT
WHERE		ShipmentID IN
			(SELECT	ShipmentID
			 FROM 	SHIPMENT_ITEM
			 WHERE	ItemID IN
						(SELECT	ItemID
						 FROM		ITEM
						 WHERE	City = 'Singapore'))
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
P. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have an item that was purchased in Singapore. Use a join, but do not use JOIN ON syntax. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
As in question N, we will have to use a DISTINCT keyword to get the appropriate answer.
/* *** SQL-Query-MI-P *** */

SELECT 	DISTINCT ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM, ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	SHIPMENT_ITEM.ItemID = ITEM.ItemID
	AND	City = 'Singapore'
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
Q. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have an item that was purchased in Singapore. Use a join using JOIN ON syntax. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-Q *** */

SELECT 	SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID, SHIPMENT.DepartureDate
FROM 		ITEM JOIN SHIPMENT INNER
	ON 	ITEM.ItemID = SHIPMENT_ITEM.ItemID
			JOIN SHIPMENT_ITEM
			ON 	SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID)
GROUP BY	SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID,
			SHIPMENT.DepartureDate, ITEM.City
HAVING 	ITEM.City='Singapore';

Note that for Microsoft Access, we must use the INNER JOIN syntax:
/* *** SQL-Query-MI-Q *** */

SELECT 	SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID, SHIPMENT.DepartureDate
FROM 		ITEM INNER JOIN (SHIPMENT INNER JOIN SHIPMENT_ITEM
	 ON 	SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID)
			ON ITEM.ItemID = SHIPMENT_ITEM.ItemID
GROUP BY SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID,
			 SHIPMENT.DepartureDate, ITEM.City
HAVING 	(((ITEM.City)='Singapore'));

[image:]

R. Show the ShipperName, ShipmentID, DepartureDate of shipment, and Value for items that were purchased in Singapore. Use a combination of a join and a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-R *** */

SELECT 	ShipperName, DepartureDate, Value
FROM 		SHIPMENT, SHIPMENT_ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	ItemID IN
			(SELECT 	ItemID
			 FROM		ITEM
			 WHERE	City = 'Singapore')
ORDER BY	ShipperName, DepartureDate DESC;

[image:]

S. Show the ShipperName, ShipmentID, DepartureDate of shipment, and Value for items that were purchased in Singapore. Also show ShipperName, ShipmentID, DepartureDate for all other shipments. Use a combination of a join and a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e13-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-S *** */

SELECT 	SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID,
			SHIPMENT.DepartureDate, SHIPMENT_ITEM.Value
FROM 		(ITEM RIGHT JOIN SHIPMENT_ITEM
	 ON 	 ITEM.ItemID = SHIPMENT_ITEM.ItemID)
			 RIGHT JOIN SHIPMENT
			 ON SHIPMENT_ITEM.ShipmentID = SHIPMENT.ShipmentID
WHERE 	(((ITEM.City)='Singapore')
	 AND 	((SHIPMENT.ShipmentID)=[SHIPMENT_ITEM].[ShipmentID])
	 AND 	((SHIPMENT_ITEM.[ItemID]) IN
					(SELECT 	ItemID
					 FROM 		ITEM
					 WHERE 	City = 'Singapore')))
ORDER BY SHIPMENT.ShipperName, SHIPMENT.DepartureDate DESC;

[image:]
image51.png
PROJECT

Column Name Type Key Required Remarks.
ProjectiD Number PrimaryKey | Yes Long Integer
Name Text (50) No Yes

Department Text (35) ForeignKey | Yes

MaxHours Number No Yes Double
StartDate Date No No

EndDate Date No No

image52.png
projectol
. Name
Department
MaxHours
StartDate
EndDate
al

General [Lookup|

x

" eaname] oawyee

Number
Short Text
Short Text
Number

Date/Time
Date/Time

Field Properties

Description (Optional)

Field Size
Format
Decimal Places
Input Mask.
Caption
Default Value
Validation Rule
Validation Text
Required
Indexed

Text Align

Long Integer

Auto

Yes
Yes (No Duplicates]
General

Afield name can be up to 64 characters long,
including spaces. Press F1 for help on field

image53.png
DEPARTMENT

7 Departmentame
BudgetCode
OfficeNumber
Phone.

Table/Query: Related Table/Query:

PROJECT

T projectiD
Name
Department
MaxHours
StartDate
EndDate

EMPLOYEE

7 EmployeeNumber
FirstName.
LastName
Department
Phone.

Email

Departmentev| Department

Enforce Referentil Integrity
Cascade Update Related Fields
[cascade Delete Related Records:

Relatonship Type: One-To-Many

image54.png
ProjectiD Name Department | MaxHours | StartDate | EndDate
1000 2013 Q3 Product Plan Marketing 135.00 10-MAY-13 | 15-JUN-13
1100 2013 Q3 Portfolio Analysis | Finance 120.00 07-JUL-13 | 25-JUL-13
1200 2013 Q3 Tax Preparation | Accounting 145.00 10-AUG-13 | 15-0CT-13
1300 2013 Q4 Product Plan Marketing 150.00 10-AUG-13 | 15-SEP-13
1400 2013 Q4 Portfolio Analysis | Finance. 140.00 05-0CT-13

image55.png
= PROJECT

*

Record: 14

x
Name - [Department - | MaxHours - | StariDate - | EndDate -

ITI% 2013 Q2 Product Plan Marketing 135.00 5/10/2013 6/15/2013 |
1100 2013 Q3 Portfolio Analysis Finance. 12000 7/5/2013 7/25/2013)
1200 2013 Q3 Tax Preparation Accounting 14500 8/10/2013 10/15/2013]
1300 2013 Q4 ProductPlan Marketing 15000 8/10/2013 /15/2013]
1400 2013 Q4 Portfolio Analysis _ Finance 140.00 10/5/2013

Tofs | v Search < D

image56.png
ASSIGNMENT

Column Name Type Key Required Remarks

ProjectiD Number Primary Key, | Yes Long Integer
Foreign Key

EmployeeNumber Number Primary Key, | Yes Long Integer
Foreign Key

HoursWorked Number No No Double

image57.png
= \

x

— DataType

Tojccio) Number
%

EmployeeNumber Number
GeneralLookup|

Field Properties

Description (Optional)

HoursWorked Number
Field Size Long Integer

Format
Decimal Places Auto
Input Mask.

Caption

Default Value

Validation Rule

Validation Text

Required Yes
Indexed No
Text Align General

Afield name can be up to 64 characters long,
including spaces. Press F1 for help on field

image58.png
PROJECT

T projectiD
DEPARTMENT Name

¥ DepartmentName | o ——————————1 Department ASSIGNMENT

BudgetCode MaxHours T projectiD

OfficeNumber StartDate 22{| 9 Employechiumber

by EndDate HoursWorked

EMPLOYEE

7 EmployeeNumber | |-
Firsthame
Lssthiame
Department
Pnone
emai

Table/Query: Related Table/Query:

EmployeeNunv| EmployeeNumbe A

Enforce Referentil Integrity
[cascade Update Related Fields.
[cascade Delete Related Records:

Relatonship Type: One-To-Many

image59.png
PROJECT

T projectiD
DEPARTMENT Name

¥ DepartmentName | o ——————————1 Department ASSIGNMENT

BudgetCode MaxHours

OfficeNumber StartDate
EndDate

T projectiD
@ EmployeeNumber

Phone. HoursWorked

EMPLOYEE

N/

7 EmployeeNumber
FirstName.
LastName
Department
Phone.

Email

‘Table/Query: Related Table/Query:
mos vissower v

ProjectiD [v[Projecin |~

Relatonship Type: One-To-Many

image60.png
ProjectlD | EmployeeNumber | HoursWorked
1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1100 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 6 275

image61.png
3 ASSIGNMENT
1000 s 75.00)
1000 10 55.00)
1100 1 2.00
1100 4 a0.00)
1100 s 45.00)
1200 2 20.00)
1200 4 45.00)
1200 s 40.00)
1300 1 35.00)
1300 s 80.00)
1300 10 50.00)
1400 4 1500
1400 s 1000
1400 s 2750

*

e T I

image62.png
= sat-query- x
* Projectin - | Name ~bepartment - | MaxHours | Startbate ~| Endbate -
T 2013 Q3 Product Plan Marketing 135.00 5/10/2013 6/15/2013
1100 2013 Q3 Portfolio Analysis Finance. 12000 7/5/2013 7/25/2013
1200 2013 Q3 Tax Preparation Accounting 14500 8/10/2013 10/15/2013
1300 2013 Q4 ProductPlan Marketing 15000 8/10/2013 9/15/2013

1400 2013 Q4 Portfolio Analysis _ Finance 14000 10/5/2013
*

Record: W< [1of5 | » ¥ b Search

image63.png
*

Name. StartDate EndDate

1100 2013 3 Portfolio Analysis 7/s/2013 7/25/2013
1200 2013 Q3 Tax Preparation 8/10/2013 10/15/2013
1300 2013 Q4 Product Plan 8/10/2013 9/15/2013
1400 2013 Q4 Portfolio Analysis 10/5/2013

Record: W {[1of5] » W] B

[Searcn |

image64.png
" projectn_< Name Department - | Maxtours +| Startate ~| Endbate
1100 2013 Q3 Portfolio Analysis _ Finance 120.00 7/5/2013 7/25/2013]

Recoras 4 ([orz] > | Weiio riter [[searen

image65.png
3 sat-query-02-D
| projectiv -
I 200

Name. Department +

MaxHours

StartDate

EndDate

Record: W< [TorT

T o005 | e o Filter |[search

image66.png
1100
1400
1000

1000

*

EmployeeNumber - | LastName

1 Jacobs
1 Jacobs
1 Jacobs
2 Jackson
4 Caruthers
4 Caruthers
4 Caruthers
5 Jones
5 Jones
6 Abernathy.
6 Abernathy
8 Jackson
8 Jackson

10 Numoto

10 Numoto

(New)

FirstName
Mary
Mary
Mary
Rosalie
Tom
Tom
Tom
Heather
Heather
Mary
Mary
Tom
Tom
Ken
Ken

Phone
360-285-8110
360-285-8110
360-285-8110
360-285-8120
360-285-8310
360-285-8310
360-285-8310
360-285-8320
360-285-8320
360-285-8410
360-285-8410
360-287-8610
360-287-8610
360-287-8710
360-287-8710

Record W ([Tof15 | » ¥ bi [Search |

image67.png
3 sat-Query-

F

x

] I 2013 Q3 Product Plan
1000 2013 Q3 Product Plan

1000 2013 Q3 Product Plan

1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1300 2013 Q4 Product Plan

1300 2013 Q4 Product Plan

1300 2013 04 Product Plan

1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis

Py < projaname <

ProjectDepartment

Marketing
Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

Record: 4 < [1of15 | » M [Search

-] EmployeeNumber - | LastName

1 Jacobs
8 Jackson

10 Numoto
4 caruthers
6 Abernathy
1 Jacobs
2 Jackson
4 caruthers
5 Jones
1 Jacobs
8 Jackson

10 Numoto
4 caruthers
5 Jones
6 Abernathy

FirstName -
Mary
Tom
Ken
Tom
Mary
Mary
Rosalie
Tom
Heather
Mary
Tom
Ken
Tom
Heather
Mary

EmployeePhone
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8410
360-285-8110
360-285-8120
360-285-8310
360-285-8320
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8320
360-285-8410

image68.png
|3 saL-Query-02.6

| | I 2013 Q3 Product Plan
1000 2013 Q3 Product Plan

1000 2013 Q3 Product Plan

1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1300 2013 Q4 Product Plan

1300 2013 Q4 Product Plan

1300 2013 04 Product Plan

1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis

“piojin +| projaname -

ProjectDepartment
Marketing
Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

Record: 4 < [1of15 | » M [Search

-] DepartmentPhone

360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400
360-285-8300
360-285-8300
360-285-8300
360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400

-] EmployeeNumber - | LastName

10 Numoto
8 Jackson
1 Jacobs
1 Jacobs
6 Abernathy
4 Caruthers
5 Jones
4 caruthers
2 Jackson

10 Numoto
8 Jackson
1 Jacobs
6 Abernathy
5 Jones
4 Caruthers

FirstName
Ken
Tom
Mary
Mary
Mary
Tom
Heather
Tom
Rosalie
Ken
Tom
Mary
Mary
Heather
Tom

EmployeePhone
360-287-8710
360-287-8610
360-285-8110
360-285-8110
360-285-8410
360-285-8310
360-285-8320
360-285-8310
360-285-8120
360-287-8710
360-287-8610
360-285-8110
360-285-8410
360-285-8320
360-285-8310

image69.png
) saL-query-02H

- ProjectiD_-
i 1009

ProjectName

1000 2013 Q3 Product Plan
1000 2013 Q3 Product Plan
1300 2013 04 Product Plan
1300 2013 04 Product Plan
1300 2013 Q4 Product Plan

ProjectDepartment

Marketing
Marketing
Marketing
Marketing
Marketing

DepartmentPhone

360-287-8700
360-287-8700
360-287-8700
360-287-8700
360-287-8700

EmployeeNumber

LastName.

8 Jackson
1 Jacobs
10 Numoto
8 Jackson
1 Jacobs

rstName

Tom
Mary
Ken
Tom
Mary

EmployeePhone

360-287-8610
360-285-8110
360-287-8710
360-287-8610
360-285-8110

Record: H_{[1af6] v W5 | Behiofiter [oearch]

image70.png
e T R s

image71.png
e T IR e T

image72.png
Record: W <[iof1] o W0 |

image73.png
 sat-query-02-L

NumberofDepartmentProjects

- 1

Finance !

Marketing z
Record:

W fiofs | on Foor

image74.png
3 satauen-ozm\

*

Record: K

x

FirstName -
I mary
& Tom
10 ken
4Tom
6 mary
1 vary
2 Rosalie
4Tom
5 Heather
1 vary
8 Tom
10 Ken
4 Tom
5 Heather
6 mary
(New)

Tofts | » oo

LastName.
Jacobs
Jackson
Numoto
Caruthers
Abernathy
Jacobs
Jackson
Caruthers
Jones
Jacobs
Jackson
Numoto
Caruthers
Jones
Abernathy

Search

E.Department

Administration
Production
Marketing
Accounting
Finance

Administration
Administration
Accounting
Accounting
Administration
Production
Marketing
Accounting
Accounting
Finance

Phone.
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8410
360-285-8110
360-285-8120
360-285-8310
360-285-8320
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8320
360-285-8410

Email
Mary.Jacobs@WPC.com
Tomlackson@WPC.com
Ken.Mumoto@WPC.com
Tom.Caruthers@WPC.com
Mary.Abernathy@WPC.com
Mary.Jacobs@WPC.com
Rosalie.Jackson@WPC.com
Tom.Caruthers@WPC.com
Heather.Jones@WPC.com
Mary.Jacobs@WPC.com
TomJackson@WPC.com
Ken.Mumoto@WPC.com
Tom.Caruthers@WPC.com
Heather.Jones@WPC.com
Mary.Abernathy@WPC.com

1000
1000

~TAProjectiD - | A.EmployeeNumber -

1

10

AT

10

S

HoursWorked -

30.00
75.00
55.00
40.00
45.00
25.00
20,00
45.00
40.00
35.00
80.00
50.00
15.00
10.00
2750

P.ProjectiD - Name. <

1000 2013 03 Product Plan
1000 2013 Q3 Product Plan

1000 2013 Q3 Product Plan

1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1300 2013 Q4 Product Plan

1300 2013 Q4 Product Plan

1300 2013 04 Product Plan

1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis

P.Departme -
Marketing
Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

MaxHours -
135.00
135.00
135.00
120.00
120.00
120.00
145.00
145.00
145.00
150.00
150.00
150.00
140.00
140.00
140.00

StartDate -
5/10/2013
5/10/2013
5/10/2013

7/5/2013

7/5/2013

7/5/2013
8/10/2013
8/10/2013
8/10/2013
8/10/2013
8/10/2013
8/10/2013
10/5/2013
10/5/2013
10/5/2013

EndDate -
6/15/2013
6/15/2013
6/15/2013
7/25/2013
7/25/2013
7/25/2013

10/15/2013
10/15/2013
10/15/2013
9/15/2013
9/15/2013
9/15/2013

image75.png
FirstName - | lastName -| Department -| Phone - Email -] ProjectiD - | AEmployeeNumber - | HoursWorked -

Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com 1000 i 30.00
1 Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com 1100 1 25.00
1 Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com 1300 1 35.00
2 Rosalie Jackson Administration 360-285-8120 Rosalie.Jackson@WPC.com 1200 2 20.00
3 Richard Bandalone Legal 360-285-8210 Richard.Banalone@WPC.com

4Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com 1100 a 40.00
4Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com 1200 4 45.00
4Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com 1400 a 15.00
5 Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com 1200 s 40.00
5 Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com 1400 s 10.00
6 Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com 1100 5 45.00
6 Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com 1400 6 27.50
7 George smith Human Resources 360-285-8510 GeorgeSmith@WPC.com

8Tom Jackson Production 360-287-8610 Tomlackson@WPC.com 1000 8 75.00
8Tom Jackson Production 360-287-8610 Tomackson@WPC.com 1300 E 80.00
9 George Jones Production 360-287-8620 George.Jones@WPC.com

10 Ken Numoto Marketing 360-287-8710 Ken.Mumoto@WPC.com 1000 10 55.00
10 Ken Numoto Marketing 360-287-8710 Ken.Mumoto@WPC.com 1300 10 50.00
11 James Nestor Infosystems Jjames.Nestor@WPC.com

12 Rick Brown Infosystems 360-287-8820 Rick.Brown@WPC.com

* (New)

Record: W< [10f20 | » ¥ bt Search

image76.png
5 QBE-Queny-02-A'
PROJECT
@ projectin
Name
Department
MaxHours
StartDate
EndDate
Kim| O]
Field: |PROJECT.*
Table: |PROJECT
Sort:
Show: (m] a a a (m] C
Criteria:
Dl

image77.png
gam o]

image78.png
3 QBE-Query-02-C'\

PROJECT
@ projectiD
Name
Department
MaxHours
StartDate
EndDate
Field: |projectiD. Name Department MaxHours EndDate StartDate
Table: |PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT
Sort:
Show: [m]
Criteria: <#8/172013%

image79.png
3 QBE-Queny-02D'\

PROJECT
7 Projectio
Name
Department
Martours
StartDate
EndDate
Field: | projectip Name Department Martours StartDate EndDate E
Table: |PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT
Sort:
Show: C
Ciitera: 1s il
0]

image80.png
3 aBE-Query-02-£\

PROJECT

ASSIGNMENT

EMPLOVEE
¥ ProjectiD a 2| ? Projectin / ? EmployeeNumber
Name 9 Employeehumber Firsttiame
Department HoursWorked Lasthame
MaxHours Department.
StartDate Phone.
EndDate Email
Field: [projectD Employechiumber | Lasttiame Firsthame Phone.
Table: | PROJECT ASSIGNMENT EMPLOYEE EMPLOVEE EMPLOVEE
Sor:
Show:
Coteri:

image81.png
3 aBE-Query-02-F\

PROJECT

ASSIGNMENT EMPLOYEE
9 projectd : 9 projecid T Eoctumna
Name # EmployeeNumber FirstName
Depsrtment Hoursworked Lssthiame
Maxttours Depsrtment
Startoate Pnone
enapate emai
Fieit: [projectid Name Depsrtment Employeetiumber | Lstiiame Firsthame #none
Table: |PROJECT PROJECT PROJECT enpLOvEE enpLOvEE enpLovEE enpLovEE
Sort
Show:
Crters

image2.png
Comnect- 3 %) u T 2] § ’* =
' B STARSHPO22\S0LEXPRESS (5QL Sever 1103128 72 These are che icresoft squ server 2008 R2/2012 SQu code sclutions v
& (2 Databases T
System Databases
& (@ Cepe.Codd 7+ The SQL SELECT/FROM/WHERE Framework */
Database Diagrams
Tables USE Cape_Codd
e

Synonyms.
Programmability
Service Broker

/% DBP-e13 Chapterd2 SQL-Query-CHO2-01 %/

SELECT Department, Buyer
Storage FROM SKU_DATA;
Security
3 NDx /* DBP-e13 Chapter02 SQL-Query-CHo2-02 */
J oacs
3 ReportServerSSQLEXPRESS SELECT Buyer, Department

13 ReportServerSSQLEXPRESSTempDB =]
3 6
Securty
Server Objects
Replication
(23 Management

image82.png
x

 ProjectD 1 ProjectD [P
Name 9 Employeetiumber Firsthame.
Department = HoursWorked Lasttiame
MaxHours 2 Department
StartDate Phone
EndDate Email
DEPARTMENT
9 Departmentiiame
Budgetcode
OfficeNumber
Phone
Field: | projectip Project Name: Name _ ProjectDepartment: Department | DepartmentPhone: Phone | Employechiumber | LastName Firsthame EmployecPhone: Phone. E
Table: |PROJECT PROJECT PROJECT DEPARTMENT EMPLOYEE EMpLOYEE EMPLOYEE EMPLOYEE
Sort: |Ascending
Show:
Ciitera:

image83.png
3 QBEQuery-02-G-AsStated

~ [Projectid -| ProjectName ~ [ProjectDepartment +| DepartmentPhone EmployeeNumber ~| LastName rstName EmployeePhone
o0}
n 1100 2013 Q3 Portfolio Analysis Finance. 360-285-8400 6 Abernathy Mary 360-285-8410
1200 2013 Q3 Tax Preparation Accounting 360-285-8300 5 Jones Heather 360-285-8320
1200 2013 Q3 Tax Preparation Accounting 360-285-8300 4 Caruthers Tom 360-285-8310
1300 2013 Q4 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1400 2013 Q4 Portfolio Analysis Finance. 360-285-8400 6 Abernathy Mary. 360-285-8410

Record 4_{[1at6] W0 | % Fean]

image84.png
31 aBE-Query-02-G-NoDeptPhone \

PROJECT

@ projectin
Name
Department

MaxHours
StartDate
EndDate

ASSIGNMENT

Field:
Table:
Sort:
Show:
Criteria:

@ projectiD
@ EmployeeNumber
HoursWorked

EMPLOYEE

@ EmployeeNumber
FirstName.
LastName
Department
Phone.

Email

ProjectiD
PROJECT
Ascendin

Projectiiame: Name

ProjectDepartment: Department EmployeeNumber

EMPLOVEE

FirstName
EMPLOVEE

EmployecPhone: Phone.
EMPLOVEE

image85.png
|31 QBE-Query-02-G-NoDeptPhone

o I T
| | I 2013 Q3 Product Plan
1000 2013 Q3 Product Plan
1000 2013 Q3 Product Plan
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1300 2013 Q4 Product Plan
1300 2013 Q4 Product Plan
1300 2013 04 Product Plan
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
*

~ [ProjectDepartment -

Marketing
Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

Record: 4 < [1of15 | » M b [Search

EmployeeNumber - | LastName.

10 Numoto
8 Jackson
1 Jacobs
1 Jacobs
6 Abernathy
4 Caruthers
5 Jones
4 Caruthers
2 Jackson

10 Numoto
8 Jackson
1 Jacobs
6 Abernathy
5 Jones
4 Caruthers

(New)

FirstName
Ken
Tom
Mary
Mary
Mary
Tom
Heather
Tom
Rosalie
Ken
Tom
Mary
Mary
Heather
Tom

EmployeePhone
360-287-8710
360-287-8610
360-285-8110
360-285-8110
360-285-8410
360-285-8310
360-285-8320
360-285-8310
360-285-8120
360-287-8710
360-287-8610
360-285-8110
360-285-8410
360-285-8320
360-285-8310

image86.png
1 QBE-Query-02.G-PA
PROJECT ASSIGNMENT
@ ProjectiD = = | ? projectin
Name 9 Employeetiumber
Department Hoursworked
MaHours
StartDate
EnaDate
Field: [projectD Projectiame: Name | ProjectDepartment: Department Employeeliumber
Table: | PROJECT PROJECT PROJECT ASSIGHMENT
Sort: | ascendint
Show: u} u} u}
Coteri:
Dl

image87.png
5 QBE-Query-02-G-PAD \

‘QBE-Query-02-G-PA DEPARTMENT
Projectip @ DepartmentName
Projectiiame / BudgetCode
ProjectDepartment OfficeNumber
Employechumber Phone
Field: |projectiD. Projectiiame ProjectDepartment | DepartmentPhone: Phone | Employechumber
Table: | QBE-Query-02-G-PA | QBE.Query-02-G-PA | QBE-Query-02-G-PA | DEPARTMENT QBE-Query-02.6.PA
Sort:
Show:
Criteria:

image88.png
51 QBE-Query-02-G-PADE \

‘QBE-Query-02-G-PAD EMPLOYEE
Projectin @ EmployeeNumber
Projectiiame FirstName.
ProjectDepartment LastName
Departmentphone Department
Employechumber Phone
Email
Field: |projectiD. Projectiiame ProjectDepartment | DepartmentPhone | EmployeeNumber | LastName FirstName EmployecPhone
Table: | QBE-Query-02-G-PAD | QBE-Query-02-G-PAD | QBE-Query-02-G-PAD QBE-Query-02-G-PAD QBE-Query-02-G-PAD EMPLOYEE EMPLOYEE EMPLOVEE
Sort:
Show:
Criteria:

image89.png
5 QBE-Query-02-G-PADE \

x

| | I 2013 Q3 Product Plan
1000 2013 Q3 Product Plan
1000 2013 Q3 Product Plan
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1100 2013 Q3 Portfolio Analysis
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1200 2013 3 Tax Preparation
1300 2013 Q4 Product Plan
1300 2013 Q4 Product Plan
1300 2013 04 Product Plan
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
1400 2013 4 Portfolio Analysis
*

Pl < proaname -

ProjectDepartment - | DepartmentPhone -

Marketing
Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

Record: 4 < [1of15 | » M b [Search

360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400
360-285-8300
360-285-8300
360-285-8300
360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400

EmployeeNumber | LastName

1 Jacobs
8 Jackson

10 Numoto
4 caruthers
6 Abernathy
1 Jacobs
2 Jackson
4 caruthers
5 Jones
1 Jacobs
8 Jackson

10 Numoto
4 caruthers
5 Jones
6 Abernathy

FirstName -
Mary
Tom
Ken
Tom
Mary
Mary
Rosalie
Tom
Heather
Mary
Tom
Ken
Tom
Heather
Mary

EmployeePhone
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8410
360-285-8110
360-285-8120
360-285-8310
360-285-8320
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8320
360-285-8410

image90.png
AsStated

x
@ EmployeeNumber | |-
Firsttiame
Lasthame
= epartment
DEPARTMENT e ASSIGNMENT
- . Email -
9 Departmenttiame 2| g projectn
BudgetCode. 22| 7 employeetiumber
Offcetiumber
Hoursworked
Py PROJECT
@ ProjectiD =
Name
= Department.
MaHours
StartDate
EnaDate
Field: [projectD Project Name: Name ProjectDepartment: Department | DepartmentPhone: Phone | Employeeliumber | Lastame Firstiiame Employeethone: Phone E
Table: | PROJECT PROJECT PROJECT DEPARTMENT EMPLOYEE EMPLOVEE EMPLOVEE EMPLOVEE
Sort: | ascending
Show:
Coteri: “Marketing”
D

image91.png
- [Projectbepartment - | Departmentphone | EmployeeNumber - | LastName

rstName - | EmployeePhone.

[1300 2013 Q4 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710

Record: W_A[Tofz] 0 000 | Behioriter |[search]

image3.png
A/ Figure 2-24

The Cape Codd Database
with the WAREHOUSE and
INVENTORY Tables

RETAI ORDER

T ordettumber
Storetiumber

oRDER TEM

 ordetiumber
30

The INVENTORY
table

The WAREHOUSE
table

Stonze iy
ordettant pice
orsenesr [E——
supata
LV L
St pesenoton
Deparment
Buer
INVENTORY WAREHOUSE
T Werchouseid e L[F warenoused
7w = arsnauscry
K Descrption Warehousestote
Quentitortind Monsger
Quemonorse Squrersst

image92.png
1 QBE-Query-02-H-NoDeptPhone \

PROJECT ASSIGNMENT EMPLOVEE
Projectin = = | ? Projectin e @ EmployeeNumber
Name 9 Employeetiumber Firsthame
Department Hoursworked Lasthame
MaHours Department
StartDate Phone
EnaDate email
Field: | QIR Projecfiame: Name ProjectDepartment: Department | Employeehiumber | Lastfiame Firsthame Employeethone: Phone
Table: | PROJECT PROJECT PROJECT EMPLOYEE EMPLOYEE EMPLOVEE EMPLOVEE
Sort: | ascending
Show:
Coteri: “Marketing”
Dl

image93.png
| QBE-Query-02-H-NoDeptPhone x

~ Projectin - ProjectName - | ProjectDepartment ~ | EmployeeNumber ~ | LastName -~ | FirstName EmployeePhone

frood

1000 2013 Q3 Product Plan Marketing 8 Jackson Tom 360-287-8610
1000 2013 Q3 Product Plan Marketing 1 Jacobs Mary 360-285-8110
1300 2013 04 Product Plan Marketing 10 Numoto Ken 360-287-8710
1300 2013 Q4 Product Plan Marketing 8 Jackson Tom 360-287-8610
1300 2013 04 Product Plan Marketing 1 Jacobs Mary 360-285-8110

* (New)

Record: W< [1of6] » o] Bl

[Searcn]

image94.png
PROJECT ASSIGNMENT
@ ProjectiD = = | ? projectin
Name 9 Employeetiumber
Department Hoursworked
MaHours
StartDate
EnaDate
Field: [projectD Projectame: Name | ProjectDepartment: Department | Employeeliumber
Table: | PROJECT PROJECT PROJECT ASSIGHMENT
Sort: | ascendint
Show:
Coteri: “Marketing”

image95.png
3 QBE-Query-02-H-PAD

Field:
Table:
Sort:
Show:
Criteria:

QBE-Query-02-H-PA

DEPARTMENT

Projectin
Projectiiame
ProjectDepartment
Employechumber

/

@ Departmentame
BudgetCode
OfficeNumber
Phone

ProjectiD Projectiiame
QBE-Query-02.H.PA_| QBE Query-02-H-PA

ProjectDepartment DepartmentPhone: Phone
QBE-Query-02-H-PA_| DEPARTMENT

Employechumber
QBE-Query-02-H.PA

image96.png
) QBE-Query-02-

‘QBE-Query-02-H-PAD EMPLOVEE
Projectip 9 Employeehumber
Projectiame Firsthame
ProjectDepartment Lasthame
Departmentehone Department
Employechiumber Phone
email
Field: | ORI Projectiiame ProjectDepartment | DepartmentPhone _ Employeeumber _ Lastiame Firsthame EmployecPhone: Phone. E
Table: | QBE.Queny-02-H-PAD| QBE-Query-02-H-PAD, QBE.Queny-02-H.PAD QEE-Query-02-H-PAD QBE-Quen-02-H.PAD EMPLOYEE EMPLOVEE EMPLOVEE
Sor:
Show:
Coteri:

image97.png
2 Bk Query-2-H-PADE x

" ProjectiD -| ProjectName ProjectDepartment - | DepartmentPhone EmployeeNumber LastName rstName EmployeePhone
fiood
1000 2013 03 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1000 2013 03 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1300 2013 Q4 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110
1300 2013 Q4 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1300 2013 Q4 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710

*

Record: W_A[Tof6] b o o] Bl fiter |[search]

image98.png
1 QBE-Query-021\

x

PROJECT

@ projectin
Name
Department
MaxHours
StartDate
EndDate

Field:
Table:
Total:
Sort:
Show:
Criteria:

NumberOfMarketingProjects: ProjectiD
PROJECT
Count

Department
PROJECT

Group 8y

O

“Marketing”

image99.png
5 QBE-Queny-02-1\

PROJECT

@ projectin
Name
Department
MaxHours
StartDate
EndDate

K1}
Field: | MaxHoursForMarketingProjects: Maxtours |y | Department
Table: |PROJECT PROJECT
Total: | Sum Group 8y
Sort:
Show: m]
Ciitera: “Marketing”

image100.png
PROJECT

@ projectin
Name
Department
MaxHours
StartDate
EndDate

Field:
Table:
Total:
Sort:
Show:
Criteria:

AverageHoursForMarketingProjects: MaxHours
PROJECT
avg

Department
PROJECT
Group 8y

O

“Marketing”

image101.png
5 aBE-Queny-02-1\

x

PROIECT
9 projectn
Name
Department
Maxttours
Startoate
enapate
Field: Department || NumberOfDepartmentProjects: ProjectD
Table: |ROJECT PROJECT
Totat: | Group By Count
Sort
Show:
Crters

image4.png
WAREHOUSE

Column Name Type Key Required Remarks
WarehouselD Integer Primary Key Yes Surrogate Key
WarehouseCity Text (30) Yes

WarehouseState Text (2) Yes

Manager Text (35) No No

SquareFeet Integer No No

image102.png
E A P
@ EmployeeNumber # Projectin = | projectin
Frtiiame Employeeumber Name
Lasthame. HoursWorked Department.
Department MaHours
Phone StartDate
email EndDate
Field: [Ex A P
Table: |£ » 3
Sor:
Show: u} O u}
Coteri:
Dl

image103.png
5 QBEQuery-02-N'\

EMPLOVEE ASSIGNMENT
@ EmployeeNumber | |- @ projectiD
Firsthame sy EmployeeNumber o] o
Lasthame Hoursworked
Department LeftColam Name
Phone |Employeeiumber =)
email 1 Orly incude rows where the foned fei from both tables are equal.
@2: Include ALL records from EMPLOYEE' and only those records from
ASSIGNMENT where the janed fields are ecual.
(O3: Include ALL records from 'ASSIGNMENT and only those records from
EMPLOYE where the oned il are cqual.

[T DIl
Fieis: [evpLovee.” ASSIGNMENT - E
Table: |EMPLOYEE ASSIGNMENT

Sor:
Show: (m] (m] (m] (m] C
Coteri:

image104.png
24.55

Record: 4« [10920 | » M bt [Search

image105.png
= sal-Query-2-63-8 x
MaxFridayChangeClose | AverageFridayChangeClose

Record H_A[Tof 1] 00| BehoFilter |[search]

image106.png
Record: 14

|3 saL-Query-2-63-C\

1of20

AverageChangeClose -

0.639841269841275
0.0720158102766874
0.117351778656135
0.167272727272733
0.368452380952389
-0.184229249011848
1.03023715415022
0.230944881889775
0.301146245059303
-1.55670634920634
0.682380952380964.
0.965078740157492
0.669841897233221
3.35388888888891
7.42785714285718
-5.42115079365074
-3.08226612902223
-2.37071999999998
1.91884920634923
8.75666666666666

» o0 [Search

image5.png
INVENTORY

Column Name Type Key Required Remarks

WarehouselD Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU_Description Text (35) No Yes

QuantityOnHand Integer No No

QuantityOnOrder Integer No No

image107.png
x

-] AverageChangeClose - |~

1985 December 0.593809523809532
1985 November 1058
1985 October 0.303636363636368
1986 April 0.550000000000009
1986 August 0.666190476190457
1986 December -0.594090909090896
1986 February 0.789473684210538
1986 January oosTRTTR
1986 July -162818181818181
1986 June -0.0519047619047553
1986 March 0.843500000000003
1986 May 0.785714285714291
1986 November 0.364210526315796
1986 October 0.60739130434783
1986 September -1.35285714285714
1987 April -0.115238095238088
1987 August 1.25952380952383
1987 December 1.73863636363637
1987 February 16921052631579
1987 January 2.40666666666663
1987 July 0.646363636363638

Record: 4« (107220 | » W [Search

image108.png
5 QBE-Query-2-63-D-TMonthNumber

2 February
3 March

4 april

5 May

6 June

7 uly

8 August

9 september
10 October
11 November
12 December

a4 < [Tof12 | » Mo

[search |

image109.png
x
| TYear .| TMonth - | AveragefridayChangeClose - |~

R October 0.303636363636368.
1985 November 1058
1985 December 0.593809523809532
1986 January 0.0s1272727272732
1986 February 0.789473684210538
1986 March 0.843500000000003
1986 April 0.550000000000009
1986 vay 0.785714285714291
1986 June -0.0519047619047553
1986 July -162818181818181
1986 August 0.666190476190487
1986 September -1.35285714285714
1986 October 0.60739130434783
1986 November 0.364210526315796
1986 December -0.594090309090896
1987 January 2.40666666666668
1987 February 1692105263157
1987 March 0.299090309090916
1987 April -0.115238095235088
1987 vay 0.33400000000002
1987 June 0.0427272727272778
1987 July 0.646363636362638
1987 August 1.25952380952383
1987 September -0.387619047619033 -

Record: < [101220] » M search

image110.png
= x
I"fYear 7| Tauarer -] TWonth -] AverageChangeCiose - <

koo 1 February 3485
1999 4 December 33.6872727272728
2000 3 August 20.3582608695652
2000 2une 19.9868181818182
1999 4 November 15.6795238095239
1999 1 January 15.3252631578948,
2001 2 April 14,095
198 4 December 12.6386363636364
2001 1 January 11.9666666666667
2001 4 November 11.0128571428572
1999 4 October 10.9304761904763
1998 3 September 5.76857142857144
1999 2une S.41227272727276
2004 1 January 8.75666666666556
2001 4 October 8.53956521739133
1999 1 March 7.87434782608696
1998 4 November 7.87200000000003
2002 4 October 6.82695652173916
1997 3uly. 6.80590909090912
1998 2June 6.60318181818183
1998 1 February 6.47368421052633
2002 4 November 6.32800000000003
1999 3 August 5.72454545450546
2000 1 March 5.69130434782619

Record: W< [Tof220] » M Search

image111.png
tear | Touarter ~| TWonth

2001
Record: 14

1 of 220

»

[l

2 April
1 January
2 May
4 October
4 December
1 January
4 November
1 March
1 January
2June
3uly
1 February
3 september
2 April
1 February
1 March
3 August
3 september
2 May
4 December
4 November
1 February
2 April
3 uly

[Search

DifchangeClose

667.34
61252
552.88
51897
48778
43314
42336
42313
40618
40258
326091
326059
22542
2809
255.95
24247
23101
224.96
22004
2136
205.26
199.38
196.55
190.98 '~

image112.png
x
iear 7| AveragaChangeCiose - |
= 8.75666666666665
1959 7a2785714285718,
1958 3.35308888088851,
2003 1.51854920634523
1991 1.03023715415022
19% 036s07874015749
1955 0.682380952380964
1997 0.c69841897233221
1985 0.69841269841275
1989 0.368452350952389
1993 0.301146245059303
1992 0230548515897
1988 0167272727073
1987 o1173s1778656135
1986 0.070158102766874
i Ferer

image6.png
WarehouselD | WarehouseCity | WarehouseState | Manager SquareFeet
100 Atlanta GA Dave Jones 125,000
200 Chicago L Lucille Smith 100,000
300 Bangor MA Bart Evans 150,000
400 Seattle WA Dale Rogers 130,000

image113.png
F sa
Wb/ Jancary /2004

8/ January /2004

7/ sanuary /2004

6/ January /2004

5/ January /2004

2/ sanuary /2004

31/ December /2003
30/ December /2003
29/ December /2003
26/ December /2003
24/ December /2003
23/ December /2003
22/ December /2003
19/ December /2003
18/ December /2003
17/ December /2003
16/ December /2003
15/ December /2003

Record: < [107 4611 | » M bt [search

wery-

image114.png
| sat-queny-2-64-A"

iierth - Toayofiant -

January
January
January
December
December
December
December
December
December

Record: 4« [10f 2506

» o

82004
72008
62004
5 2004
29 2003
26 2003
23 2003
22 2003
18 2003
16 2003

Tvear

[Search

ChangeClose -
16.3900000000001
13
4.68000000000006
33.01
26.5100000000002
0.670000000000073
16.45
5.53999999999996
31.3099999999999
6.46000000000004

image115.png
|3 saL-query2648

ierth - Toayoftant -

January
December
December
December
December
December
December
December
December

Record: 4« 1072099

» o

92004
22004
312003
30 2003
24 2003
19 2003
17 2003
15 2003
92003
52003

Tvear

[Search

ChangeClose -
-10.1900000000001
-4.35000000000014
-2.08999999999992
-0.3599999999999
-4.98000000000002
-5.13999999999987
-2.27999999999997
2045
-34.3899999999999
-25.47

image116.png
= sat-Query-2-64-C x

| AvpositiveChange |
fi5.5756334676779

Record: 4« [1of1 " [search

image117.png
Fof1 »” [Search

image118.png
= sal-Query-2-64E x

AvgVolumeOnPositiveChange
i55s756383675770 1417011173184

Fof1 »” [Search

image119.png
| saL-queny-264F x
‘AvgVolumeOnPositiveChange
_| fis.3304310321114 6742500.66698428

Fof1 »” [Search

image120.png
The CUSTOMER
table

| CUSTOMER

¥ CustomeriD
FirstName
LastName
Phone oo

Email

The INVOICE
table

= -

INVOICE
7 InvoiceNumber | (==
CustomerNumber _\
Dateln =
DateOut
TotalAmount /

The INVOICE_ITEM
table

INVOICE_ITEM

¥ InvoiceNumber
¥ ttemNumber
Item
Quantity
UnitPrice

image7.png
WarehouselD | SKU | SKU_Description ‘QuantityOnHand | QuantityonOrder
100 100100 | St Scuba Tank, Yollow. 250 o
20 100100 | 5. Scuba Tank, Yalow 0 E
0 100100__| St Scuba Tk, Yalow 0 o
) 100100 | 5. Scuba Tank, Yalow 20 o
0 700200 | S Scuba Tark, Magaria 20 E
20 700200 | S Scuba Tark, Magaria s 7
£ 700200 | S Scuba Tark, Magaria 100 0
0 100200 | St Scuba Tark, Magaria 250 o
0 701100 | Diva Mask,Small Glear o E)
20 701100 __| Dive Mask, Small Glear 0 50
0 701100 | Diva Mask, Srall Gear 0 0
0 701100 __| Dive Mask, Small Glear 50 o
0 101200 | Diva Mask Mod Gloar 0 0
20 101200 | Diva Mask. Mod Gloar E =0
0 701200 | Diva Mask Med Gloar 3 0
0 701200 | Diva Mask Mod Gloar E) =0
0 201000 | FatrDoma Tent. 2 0
20 201000 | HalrDoma Tent 0 E)
£ 201000 | valooma Tert =0 o
0 201000 | HatrDoma Tent o =0
0 202000 | Fal-Doma Ter Vesttuie 0 =0
20 202000 | Hal-Doma Tert Vesttuie T E)
0 202000 | Fal-Doma Ter Vesttuie 0 o
) 202000 | Hal-Doma Tert Vesttuie o 20
0 301000 | Light Fly Gimbing Hamess a0 =0
20 301000 | Light Fly Giimbing Hamess 0 E)
£ 301000 | Light Fly Gimbing Hamess o =0
0 301000 | Light Fly Gimbing Hamess o =0
0 302000 | Locking Garabiner, Oval =) o
20 302000 | Locking Garabiner, Oval 50 o
£ 302000 | Locking Garabiner, Oval £ E)
a0 302000 | Locking Garabiner, Oval o 000

image121.png
CUSTOMER

Column Name Type Key Required Remarks
CustomerlD AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes

LastName Text (25) No Yes

Phone Text (12) No No

Email Text (100) No No

image122.png
INVOICE

Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key | Yes Long Integer
CustomerNumber Number ForeignKey | Yes Long Integer

Dateln Date No Yes

DateOut Date No No

TotalAmount Currency No No Two Decimal Places

image123.png
INVOICE_ITEM

Column Name Type Key Required Remarks

InvoiceNumber Number Primary Key, | Yes Long Integer
Foreign Key

ItemNumber Number Primary Key Yes Long Integer

ltem Text (50) No Yes

Quantity Number No Yes Long Integer

UnitPrice Currency No Yes Two Decimal Places

image124.png
CustomerID | FirstName LastName Phone Email
1 Nikki Kaccaton 723-543-1233 Nikki.Kaccaton @somewhere.com
2 Brenda Catnazaro 723-543-2344 Brenda.Catnazaro @ somewhere.com
3 Bruce LeCat 723-543-3455 Bruce.LeCat@somewhere.com
4 Betsy Miller 725-654-3211 Betsy.Miller@ somewhere.com
5 George Miller 725-654-4322 George.Miller@somewhere.com
6 Kathy Miller 723-514-9877 Kathy.Miller@somewhere.com
7 Betsy Miller 723-514-8766 Betsy.Miller@elsewhere.com

image125.png
InvoiceNumber | CustomerNumber Dateln DateOut TotalAmount
2013001 1 04-Oct-13 | 06-Oct-13 $158.50
2013002 2 04-Oct-13 | 06-Oct-13 $25.00
2013003 1 06-Oct-13 | 08-Oct-13 $49.00
2013004 4 06-Oct-13 | 08-Oct-13 $17.50
2013005 6 07-Oct-13 | 11-Oct-13 $12.00
2013006 3 11-Oct13 | 13-Oct-13 $152.50
2013007 3 11-Oct-13 | 13-Oct-13 $7.00
2013008 7 12-Oct-13 | 14-Oct-13 $140.50
2013009 5 12-Oct-13 | 14-Oct-13 $27.00

image126.png
InvoicoNumber | HomNumbor Hom Quantity | Unitprice
2013001 1 Blousa 2 350
2013001 2 Dress Shint 5 5250
2013001 a Fomal Gown 2| stom
2013001 4 Stacks Mens o 5500
2013001 5 Stacks:Womers | 10 5600
2013001 6 Sutens 1 5000
2013002 1 Dress shint 0 5250
2013008 1 Stacks Mens s 5500
2013008 2 Stacks Womers | 4 5600
2013004 1 Dress Shint 7 5250
201305 1 Blausa 2 250
2013005 2 Dress shint 2 5250
2013008 1 Blausa 5 250
2013008 2 Dress shint 0 5250
2013008 a Stacks Mens o 5500
2013008 4 Stacks-Womens | 10 5800
2013007 1 Blausa 2 s350
2013008 1 Blousa 3 5350
2013008 2 Dress shint B 5250
2013008 a Stacks Mens o 5500
2013008 4 Stacks-Womens | 10 5600
2013000 1 Sutens 3 5900

image127.png
7 SQL-Query-MDC-A-CUSTOMER \

Customerip | FirstName -] LastName ~

B Nikki
2 Brenda
3 Bruce
4 Betsy
5 George.
6 Kathy.

7 Betsy
*

Record: 4 <[10r7 | b b b

Kaceaton
Catnazaro
Lecat
Miller
Miller
Miller
Miller

[search

Phone
723-543-1233
723-543-2344
723-543-3455
725-654-3211
725-654-4322
723-514-9877
723-514-8766

Email
Nikki.Kaccaton@somewhere.com
Brenda.Catnazaro@somewhere.com
Bruce.LeCat@somewhere.com
Betsy.Miller@somewhere.com
George.Miller@somewhere.com
Kathy. Miller@somewhere.com
Betsy.Miller@elsewhere.com

image128.png
x

*

Record:

oo

2013002
2013003
2013004
2013005
2013006
2013007
2013008
2013009

o

PRI PP

[Search

Datein -
10/4/2013
10/4/2013
10/6/2013
10/6/2013
10/7/2013

10/11/2013
10/11/2013
10/12/2013
10/12/2013

DateOut -
10/6/2013
10/6/2013
10/8/2013
10/8/2013

10/11/2013
10/13/2013
10/13/2013
10/14/2013
10/14/2013

TotalAmount -
$158.50

$25.00

$49.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

image129.png
*

Record: 14

hot22

INVOICE-TEM

o

x

ItemNumber

[search

= Item
1 Blouse.

2 Dress shirt

3 Formal Gown

4 Slacks-Mens

5 Slacks-Womens.
6 Suit-Mens

1 Dress shirt

1 Slacks-Mens

2 Slacks-Womens.
1 Dress shirt

1 Blouse.

2 Dress shirt

1 Blouse.

2 Dress shirt

3 Slacks-Mens

4 Slacks-Womens.
1 Blouse.

1 Blouse.

2 Dress shirt

3 Slacks-Mens.

4 Slacks-Womens.
1 suit-Mens

| Quantity

2
s
2
10
10

1
10

AN

10
10
10

o B wn

10

UnitPrice ~
$3.50
$2.50

$10.00
$5.00
$6.00
$9.00
$2.50
$5.00
$6.00
$2.50
$3.50
$2.50
$3.50
$2.50
$5.00
$6.00
$3.50
$3.50
$2.50
$5.00
$6.00
$9.00

image130.png
= sat-query-MDC-B)

_phone - LestName -

723-543-2344
723-543-3455
725-654-3211
725-654-4322
723-514-9877
723-514-8766

*

Record: 4« [1017

Kaceaton
Catnazaro
Lecat
Miller
Miller
Miller
Miller

> [search

image131.png
|3 sal-query-MDC-C

“oone | tastiame
EEREE cocton
.

Record: 4 < [Tof1 | » M b [Search

image132.png
| saL-quen-MpcD

|_phone -] pateln -
Bl 2:-54:-12:3) 10/a/2013
Tosaraass | 10/11/2013
T 10/12/2013

Recore

W [iof3 >

DateOut -
10/6/2013
10/13/2013
10/14/2013

[Search

image133.png
|5 sal-Query-MDCEAccess

phone | rstame
| EEEE e

723-543-3455 Bruce
725-654-3211 Betsy

723-514-8766 Betsy
*

Record: 4 < [1ofa | » M b [Search

image134.png
|5 sal-Query-MDCF-Access
pone | rstame
| EEEEE

723-543-2344 Brenda
723-543-3455 Bruce
*

Record: 4 <[10r3 | b b b [search

image135.png
SQL-Query-MDC-G-Access

" bhone - FistName <] LstNeme -« |

Kaccaton
723-543-2304 Brenda Catnazaro
723-543-3455 Bruce Lecat
723-514-9877 Kathy Miller
723-514-8766 Betsy Miller

*

Record: 4 < [1of5 | » M b [Search

image136.png

image137.png
3 saL-query-MDC\ x

Record: M <[1of1 | W |

image138.png
= saL-query-MDC-J

Record: W< [TorT

10 v [%ouorine [[search

image139.png
SQL-Query-MDC-K

Gastame | rstmame

featnazae LEEH
Kaccaton Nikki
Lecat Bruce
Miller Betsy.
Miller George
Miller Kathy

Record: 4 <106 | » M [Search

image140.png
|3 saL-query-mMoCL

x
e [i oo CoinE
| T srenda 1
Kaccaton Nikki 1
Lecat Bruce 1
Miller Betsy 2
Miller George 1
Miller Kathy 1

» o0

[Search

image141.png
| sat-quen-Mpcm

sthame | tastiame <

Record: 4 <[10r3 | b b b [search

image142.png
3 sa-Query-MDCN

sthame | tastame <
T

Bruce
Betsy. Mlller

kW [1of3 | > [Search

image143.png
= saL-Query-MDC-0 x

~stame + FirName <] Phome +| TowAmount -
| [T 723 5031233 sisa.50

LeCat Bruce 723-543-3455 $152.50
Miller Betsy 723-514-8766 $140.50
*
Record: 1 <[10f3 | » Wb Searcn

image144.png
3 saL-Query-MDCP x
isthame | tastame <
T o

Nikki Kaccaton
Bruce Lecat
Kathy Miller
Betsy Miller
Betsy. Miller

*

Record: 4 < [1of6 | » M b [Search

image145.png
SQL-Query-MDC-Q

Firstame - Lasthame -

TTEER cotnezero
Nikki Kaccaton
Bruce Lecat
Kathy Miller

Betsy Miller
Betsy. Miller

Record: 4 < [10f6

image146.png
3 sQL-Query-MDCR x

Lastame - FirstName | Phone ~
fcoccaton LT 7235431233

Catnazaro Brenda 723-543-2300
Miller Betsy 725-654-3211
Miller Kathy 723-514-9877
Lecat Bruce 723-543-3455

Betsy 723-514-8766

Mofe | » Mo [Seard

image147.png
TotalAmount -
$25.00

$158.50

$152.50

$12.00

$140.50

$17.50

Record: 4 < [10t6 | » ¥ [search

image148.png
= sai-Quen-MpCT
FirstName -] Phone -

fcoccaton LT 7235431233

Catnazaro Brenda 723-543-2300
Miller Betsy 725-654-3211

Miller Kathy 723-514-9877
Lecat Bruce 723-543-3455
Betsy. 723-514-8766

> o [Searcr

image149.png
The ITEM table

CUSTOMER

The CUSTOMER table

The SALE table

7 Customer
Lasthame.
FirstName
Address

> city

State
zp
Phone
Email

The SALE_ITEM table

>
Em
2 temio
HemDesatption
Companiame
PurcnaseDate
temcost
ttemprice
SALE ITEM
S0
 Satctemi
ttem =
emprice

image150.png
CUSTOMER

Column Name Type Key Required Remarks
CustomerlD AutoNumber Primary Key Yes Surrogate Key
LastName Text (25) No Yes

FirstName Text (25) No Yes

Address Text (35) No No

City Text (35) No No

State Text (2) No No

ZIP Text (10) No No

Phone Text (12) No Yes

Email Text (100) No Yes

image151.png
SALE

Column Name Type Key Required Remarks
SalelD AutoNumber Primary Key Yes Surrogate Key
CustomerlD Number Foreign Key Yes Long Integer
SaleDate Date No Yes
SubTotal Number No No Cur_rency, z
decimal places
Tax Number No No Cur!'ency, z
decimal places
Total Number No No CEmey, 2

decimal places

image152.png
SALE_ITEM

Column Name Type Key Required Remarks

SalelD Number Primary Key, | Yes Long Integer
Foreign Key

SaleltemID Number Primary Key Yes Long Integer

ltemID Number Number Yes Long Integer

ltemPrice Number No No Qe

decimal places

image8.png
*

Record: 4

3 SQL-Query-CHO2-RQ-02-17

[USKUW] sk Desoiption -

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

ot32 | > e [search

image153.png
ITeM

Column Name Type Key Required Remarks

ltemID AutoNumber Primary Key Yes Surrogate Key

ltemDescription Text (255) No Yes

CompanyName Text (100) No Yes

PurchaseDate Date No Yes

IltemCost Number No Yes Cur_rency, z
decimal places

ItemPrice Number No Yes Clemey, 2

decimal places

image154.png
CustomerID | LastName | FirstName Address City State ZIP Phone Email
1 Shire Robert 6225 Evanston Ave N Seattle WA 98103 | 206-524-2433 | Rober.Shire@somewhere.com
2 Goodyear Katherine 7335 11th Ave NE Seattle WA 98105 | 206-524-3544 | Katherine.Goodyear@somewhere.com
3 Bancroft Chris 12605 NE 6th Street Bellevue WA 98005 | 425-635-9788 | Chris.Bancroft@somewhere.com
4 Griffith John 335 Aloha Street Seattle WA 98109 | 206-524-4655 | John.Griffith@somewhere.com
5 Tierney Doris 14510 NE 4th Street Bellevue WA 98005 | 425-635-8677 | Doris.Tierney @ somewhere.com
6 Anderson Donna 1410 Hillcrest Parkway | Mt. Vernon | WA 98273 | 360-538-7566 | Donna.Anderson@elsewhere.com
7 Svane Jack 3211 42nd Street Seattle WA 98115 | 206-524-5766 | Jack.Svane@somewhere.com
8 Walsh Denesha 6712 24th Avenue NE | Redmond WA 98053 | 425-635-7566 | Denesha.Walsh@somewhere.com
9 Enquist Craig 534 15th Street Bellingham | WA 98225 | 360-538-6455 | Craig.Enquist@elsewhere.com
10 Anderson Rose 6823 17th Ave NE Seattle WA 98105 | 206-524-6877 | Rose.Anderson@elsewhere.com

image155.png
SalelD CustomeriD SaleDate SubTotal Tax Total
1 1 12/14/2012 $3,500.00 $290.50 $3,790.50
2 2 12/15/2012 $1,000.00 $83.00 $1,083.00
3 3 12/15/2012 $50.00 $4.15 $54.15
4 4 12/23/2012 $45.00 $3.74 $48.74
5 1 1/5/2013 $250.00 $20.75 $270.75
6 5 1/10/2013 $750.00 $62.25 $812.25
7 6 1/12/2013 $250.00 $20.75 $270.75
8 2 1/15/2013 $3,000.00 $249.00 $3,249.00
g 5 1/25/2013 $350.00 $29.05 $379.05
10 7 2/4/2013 $14,250.00 $1,182.75 $15,482.75
1 8 2/4/2013 $250.00 $20.75 $270.75
12 5 2/7/2013 $50.00 $4.15 $54.15
13 g 2/7/2013 $4,500.00 $373.50 $4,873.50
14 10 2/11/2013 $3,675.00 $305.03 $3,980.03
15 2 2/11/2013 $800.00 $66.40 $866.40

image156.png
SalelD SaleltemID ltemID IltemPrice
1 1 1 $3,000.00
1 2 2 $500.00
2 1 3 $1,000.00
g 1 4 $50.00
4 1 5 $45.00
5 1 6 $250.00
6 1 7 $750.00
7 1 8 $250.00
8 1 9 $1,250.00
8 2 10 $1,750.00
9 1 1 $350.00
10 1 19 $5,000.00
10 2 21 $8,500.00
10 3 22 $750.00
1 1 17 $250.00
12 1 24 $50.00
13 1 20 $4,500.00
14 1 12 $3,200.00
14 2 14 $475.00
15 1 23 $800.00

image157.png
ItemiD ItemDescription CompanyName | PurchaseDate | ItemCost ItemPrice
1 Antique Desk European Specialties 11/7/2012 | $1,800.00 $3,000.00
2 Antique Desk Chalr | Andrew Lee 1111072012 $300.00 $500.00
3 Dining Table Linens | Linens and Things 1171472012 $600.00 $1,000.00
4 Candles Linens and Things 1171472012 $30.00 $50.00
5 Candies Linens and Things 1171472012 $27.00 $45.00
6 Desk Lamp Lamps and Lighting 1171472012 $150.00 $250.00
7 Dining Table Linens | Linens and Things 1171472012 $450.00 $750.00
8 Book Shelf Denise Harrlon 1172172012 $150.00 $250.00
9 Antique Chalr New York Brokerage 1172172012 $750.00 $1,250.00
10 Antique Chalr New York Brokerage 112212012 | $1,050.00 $1,750.00
1 Antique Candle Holder | European Specialties 11/28/2012 $210.00 $350.00
12 Antique Desk European Specialties 15/2013 | $1,920.00 $3,200.00
13 Antique Desk European Specialties 1/5/2013 | $2,100.00 $3,500.00
14 Antique Desk Chalr | Specialty Antiques 1/6/2013 $285.00 $475.00
15 Antique Desk Chalr | Specialty Antiques 1162013 $339.00 $565.00
16 Desk Lamp General Antiques 1/6/2013 $150.00 $250.00
17 Desk Lamp General Antiques 1/6/2013 $150.00 $250.00
18 Desk Lamp Lamps and Lighting 1/6/2013 $144.00 $240.00
19 Antique Dining Table | Denesha Waish 1/10/2013 | $3,000.00 $5,000.00
20 Antique Sideboard Chris Bancroft 11172013 | $2,700.00 $4,500.00
21 Dining Table Chairs | Specialty Antiques 1/11/2013 | $5,100.00 $8,500.00
22 Dining Table Linens | Linens and Things 11212013 $450.00 $750.00
23 Dining Table Linens | Linens and Things 11212013 $480.00 $800.00
24 Candies Linens and Things 11712013 $30.00 $50.00
25 Candies Linens and Things 11712013 $36.00 $60.00

image158.png
|5 sal-Quen-QACS-A-CUSTOMER

Customenip +| LastName -] FirstName | Address | City

| A shire
2 Goodyear
3 Bancroft
4 riffith
5 Tierney
6 Anderson
7 Svane
8 Walsh
5 Enquist
10 Anderson
* (New)

Record: 4 < [10110 | » M b

Robert

6225 Evanston. Seattle

Katherine 733511th Ave | Seattle

Chris
John
Doris
Donna
Jack
Denesha
craig
Rose

12605 NE 6th t Bellevue
335 Aloha stre¢ seattle
14510 NE 4th St Bellevue
1410 Hillcrest F M. Vernon
321142nd Stre, Seattle
6712 24th Aver Redmond
534 15th Street Bellingham
682317t Ave | Seattle

[Search

State.
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA

P

98103

98105

98109

98273

98115

98105

Phone
206-524-2433
206-524-3504
425-635-9788
206-524-4655
425-635-8677
360-538-7566
206-524-5766
425-635-7566
360-538-6455
206-524-6877

Email
Robert.Shire@somewhere.com
Katherine.Goodyear@somewhere.com
Chris.Bancroft@somewhere.com
John.Griffith@somewhere.com

Doris. Tierey@somewhere.com
Donna.Anderson@elsewhere.com
Jack.svane@somewhere.com
Denesha.Walsh@somewhere.com
Craig Enquist@elsewhere.com
Rose.Anderson@elsewhere.com

image159.png
mmqmuwal—I

AP NP A PR

5

1
2
13
1
15

* (New)

Record: < [10f15

CustomeriD ~

10

» o

SaleDate -
12/14/2012
12/15/2012
12/15/2012
12/23/2012

1/5/2013
1/10/2013
1/12/2013
1/15/2013
1/25/2013

2/4/2013

2/4/2013

2/7/2013

2/7/2013
2/11/2013
2/11/2013

Search

SubTotal
$3,500.00
$1,000.00

$50.00
$45.00
$250.00
$750.00
$250.00
$3,000.00
$350.00
$14,250.00
$250.00
$50.00
$4,500.00
$3,675.00
$800.00

Tax -

$290.50
$82.00
$4.15
274
$20.75
$62.25
$20.75
$249.00
$29.05
$1,182.75
$20.75
$415
$373.50
$305.03.
$66.40

Total -
$3,790.50
$1,083.00

$54.15
4874
$270.75.
$812.25
$270.75.
$3,249.00
$379.05.
$15,432.75
$270.75.
$54.15
$4,872.50
$3,980.03
$866.40

image160.png
F SQL-Query-QACS-A-SALE-TEM

Sl saenemn

Lo e s W e

10
10
10

BERE

1

[T PN PN P P N PR PN PSS R R PR P

PACNIEN PPN

10
1

2

EBRIR

ItemPrice

$500.00
$1,000.00
$50.00
$45.00
$250.00
$750.00
$250.00
$1,250.00
$1,750.00
$350.00
$5,000.00
$8,500.00
$750.00
$250.00
$50.00
$4,500.00
$3,200.00
$475.00
$800.00

Record: W< [10720 | » W vi| B

image9.png
Record: 14

SKU_Description
TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

hofs | > n [Search

image161.png
|57 saL-Quen-QACS 01-TEM |

x
iemib | itembescription -] CompanyName - Purchasebate - | ftemCost -] ftemprice -] Vendorid -
| 1l Antique Desk European Specialties 11/7/2012 $1,800.00 $3,000.00 E
2 Antique Desk Chair Andrew Lee 1/10/2012 $300.00 $500.00 4
3 Dining Table Linens Linens and Things 11/14/2012 $600.00 $1,000.00 1
4 candles Linens and Things 11/14/2012 $30.00 $50.00 1
5 Candles Linens and Things 11/14/2012 $27.00 $45.00 1
6 DeskLamp Lamps and Lighting 1/18/2012 $150.00 $250.00 3
7 Dining Table Linens Linens and Things 11/14/2012 $450.00 $750.00 1
8 Book Shelf Denise Harrison 11/21/2012 $150.00 $250.00 5
5 Antique Chair New York Brokerage /212012 $75000 $1,250.00 5
10 Antique Chair New York Brokerage 1/21/2012 $1,05000 $1,750.00 5
11 Antique Candle Holder European Specialties 11/28/2012 $210.00 $350.00 2|
12 Antique Desk European Specialties 1s/2013 $192000 $3,200.00 2
13 Antique Desk European Specialties 1s/2013 $210000 $3,500.00 2
14 Antique Desk Chair Specialty Antiques 1e/2013 $285.00 475.00 B
15 Antique Desk Chair Specialty Antiques 16/2013 $339. $565.00 B
16 Desk Lamp General Antiques 16/2013 $150.00 $250.00 10)
17 Desk Lamp General Antiques 16/2013 $150.00 $250.00 10)
18 Desk Lamp Lamps and Lighting 1/6/2013 $144.00 $240.00 3|
19 Antique Dining Table Denesha Walsh 1/10/2013 $3,000.00 $5,000.00 7|
20 Antique Sideboard Chris Bancroft 1/11/2013 $2,700.00 $4,500.00 3|
21 Dining Table Chairs ‘Specialty Antiques 1/11/2013 $5,100.00 $8,500.00 9|
22 Dining Table Linens Linens and Things 1/12/2013 $450.00 $750.00 1|
23 Dining Table Linens Linens and Things 1/12/2013 $480.00 $800.00 1|
24 Candles Linens and Things 1/17/2013 $30.00 $50.00 1
25 Candles Linens and Things 1/17/2013 $36.00 $60.00 1
* (New)

Record: 4 < [10125 | b ¥ b

[search

image162.png
3 5QL-Query-0ACS-B

*

Record: K< [Tof 10

| TS Rovert

Goodyear Katherine

Bancroft Chris
Griffith John
Tierney Doris
Anderson Donna
Svane Jack
Walsh Denesha
Enquist craig
Anderson Rose

o

Phone -
206-524-2433
206-524-3504
425-635-9788
206-524-4655
425-635-8677
360-538-7566
206-524-5766
425-635-7566
360-538-6455
206-524-6877

Search

image163.png
= sQL-Query-QACs-C

FirstName | Phone -

forinen 206-520-4655

*

Record: W< [Tof1 | » ¥ b Search

image164.png
3 5QL-Query-0ACS-D

FirstName | Phone -

onderson LS 360-538-7566

Anderson Rose 206-524-6877
*

Record: W< [1of2 | » M b Search

image165.png
5 SQL-Query-QACS-E

Anderson
walsh
*

Record: W

of3

FirstName -

Doris

Donna
Denesha

o

Phone -
4256358677
360-538-7566
425-635-7566

Search

image166.png
3 5QL-Query-QACS-F

FirstName | Phone -

Doris 56358677
Svane Jack. 206-524-5766
*

Record: W< [1of2 | » M b Search

image167.png
3 sal-quen-0ACs-G

FirstName -| Phone -

onderson LS 360-538-7566

Walsh Denesha 425-635-7566
*

Record: W< [1of2 | » M b Search

image168.png
MinimumTotalsales

Recora W [TorT 0 n0 | Bt [

image169.png
= sat-quen-aACs

Record: W [1of1 [Search

image170.png
Record: K R
| Record: W4 <[of 1 =
% o Filer |[Search

image10.png
3 SQL-Query-CHO2-RQ-02-18

std. Scuba Tank, Magenta
Dive Mask, Small Clear
Dive Mask, Med Clear
Half-dome Tent
Half-dome Tent Vestibule
Light Fly Climbing Harness
Locking Carabiner, Oval
std. Scuba Tank, Yellow
std. Scuba Tank, Magenta
Dive Mask, Small Clear
Dive Mask, Med Clear
Half-dome Tent
Half-dome Tent Vestibule
Light Fly Climbing Harness
Locking Carabiner, Oval
std. Scuba Tank, Yellow
std. Scuba Tank, Magenta
Dive Mask, Small Clear
Dive Mask, Med Clear
Half-dome Tent
Half-dome Tent Vestibule
Light Fly Climbing Harness
Locking Carabiner, Oval
std. Scuba Tank, Yellow
std. Scuba Tank, Magenta
Dive Mask, Small Clear
Dive Mask, Med Clear
Half-dome Tent
Half-dome Tent Vestibule
Light Fly Climbing Harness
Locking Carabiner, Oval

*

Record: 4 < (1032 | » M b

SKU
100100
100200
101100
101200
201000

301000

100100
100200
101100
101200
201000

301000

100100
100200
101100
101200
201000

301000
100100
100200
101100
101200
201000

301000

[Search

image171.png
1 sl-Query-QACS K\

FirstName -
TEEEN oonna
Anderson Rose
Bancroft chris
Enquist craig
Goodyear Katherine
Griffith John
shire Robert
svane Jack
Tierney Doris
Walsh Denesha

Record W (@ S

image172.png
5 saL-Query-QACS-L)

FirstName ~ | NumberofC ~

TEEEN oonna 1
Anderson Rose 1
Bancroft chris 1
Enquist craig 1
Goodyear Katherine 1
Griffith John 1
shire Robert 1
svane Jack 1
Tierney Doris 1
Walsh Denesha 1

Record: W< [10f10 | » Search

image173.png
3 saL-Query-QAcs M\

FirstName | Phone -

fanderson 198 206-520-6877

Anderson Donna 360-538-7566
Enquist craig 360-538-6455
Goodyear Katherine 206-524-3544
shire Robert 206-524-2433
svane Jack 206-524-5766
Tierney Doris 425-635-8677
Walsh Denesha 425-635-7566

*

Record: K< [Tofs | » v b Search

image174.png
3 saL-Query-QACSN

FirstName | Phone -

frcerson LS 360-538-7566

Anderson Rose 206-524-6877
Enquist craig 360-538-6455
Goodyear Katherine 206-524-3544
shire Robert 206-524-2433
svane Jack 206-524-5766
Tierney Doris 425-635-8677
Walsh Denesha 425-635-7566

Record: K <[Tofs | » W Search

image175.png
= saL-Query-QACS-0

FirstName -| Phone -

onderson LS 360-538-7566

Anderson Rose 206-524-6877
Enquist craig 360-538-6455
Goodyear Katherine 206-524-3544
shire Robert 206-524-2433
svane Jack 206-524-5766
Tierney Doris 425-635-8677
Walsh Denesha 425-635-7566

Record: W< [1of8 | » " Search

image11.png
SQL-Query-CH 18-DISTINCT

Dive Mask, Small Clear
Half-dome Tent
Half-dome Tent Vestibule
Light Fly Climbing Harness
Locking Carabiner, Oval
std. Scuba Tank, Magenta
std. Scuba Tank, Yellow

Record: 4 <1018 | » M

SKU

101200
101100
201000
202000
301000
302000
100200
100100

[Search

image176.png
= saL-Query-QACS-P

FirstName | Phone -

CUCENNN ovet 2055202433

Walsh Denesha 425-635-7566
*

Record: K <[Tof2 | » ¥ b Search

image177.png
= saL-Query-QACs-Q

LastName | FirstName | Phone ~
CUCENNN ovet 2055202433

Walsh Denesha 425-635-7566

Recore

W fiof2 > [Search

image178.png
3 5QL-Query-QACSR

FirstName | Phone -

TUCENNNN ovet 2055202433

Walsh Denesha 425-635-7566
*

Record: W< [1of2 | » M b Search

image179.png
3 5QL-Query-0ACSS

FirstName -| Phone -

CUCENNN ovet 2055202433

Walsh Denesha 425-635-7566

Record: K <[Tof2 | » W Search

image180.png
3 5QL-Query-0ACST

FirstName -| Phone -

TUCENNNN ovet 2055202433

Walsh Denesha 425-635-7566

Record: W <[1of2 | » Search

image181.png
The ITEM > ITEM SHIPMENT
table) ¥ Shipmentid

Description ShipperName

" ShipperinvoiceNumber

The SHIPMENT | —1T auantty DepartureDate
table cty AnivalDate

Date InsuredValue

LocalCurrengyamount
The SHIPMENT_ITEM S SHIPMENT_ITEM
table [Shipmentid =

7 shipmentitemiD.
temD

Value

image182.png
Imem

Column Name Type Key Required Remarks

ItemID AutoNumber Primary Key Yes Surrogate Key
Description Text (255) No Yes Long Integer
PurchaseDate Date No Yes

Store Text (50) No Yes

City Text (35) No Yes

Quantity Number No Yes Long Integer
LocalCurrencyAmount Number No Yes Decimal, 18 Auto
ExchangeRate Number No Yes Decimal, 12 Auto

image183.png
SHIPMENT

Column Name Type Key Required Remarks
ShipmentID AutoNumber Primary Key Yes Surrogate Key
ShipperName Text (35) No Yes

ShipperlnvoiceNumber Number No Yes Long Integer
DepartureDate Date No No

ArrivalDate Date No No

InsuredValue Currency No No Two Decimal Places

image184.png
SHIPMENT_ITEM

Column Name Type Key Required Remarks

ShipmentiD Number Primary Key, | Yes Long Integer
Foreign Key

ShipmentitemiD. Number Primary Key | Yes Long Integer

ItemiD Number ForeignKey | Yes Long Integer

Value Currency No Yes Two Decimal Places

image185.png
ltemID | Description PurchaseDate | Store City Quantity | LocalCurrencyAmount | ExchangeRate
1 QE Dining Set | 07-Apr-13 Eastern Manila 2 403405 0.01774
Treasures
2 Willow Serving | 15-Jul-13 Jade Singapore 75 102 0.5903
Dishes Antiques
3 Large Bureau | 17-Jul-13 Eastern Singapore 8 2000 0.5903
Sales
4 Brass Lamps | 20-Jul-13 Jade Singapore 40 50 0.5903

Antiques

image186.png
ShipmentID | ShipperName ShipperinvoiceNumber | DepartureDate | ArrivalDate | InsuredValue
1 ABC Trans-Oceanic 2008651 10-Dec-12 15-Mar-13 $15,000.00
2 ABC Trans-Oceanic 2009012 10-Jan-13 20-Mar-13 $12,000.00
3 Worldwide 49100300 05-May-13 17-Jun-13 $20,000.00
4 International 399400 02-Jun-13 17-Jul-13 $17,500.00
5 Worldwide 84899440 10-Jul-13 28-Jul-13 $25,000.00
6 International 488955 05-Aug-13 11-Sep-13 $18,000.00

image187.png
ShipmentID | ShipmentltemID ItemID Value
3 1 1 $15,000.00
4 1 4 $1,200.00
4 2 3 $9,500.00
4 3 2 $4,500.00

image188.png
| saL-quen-MIATEM
~ Uitemid ~| Description PurchaseDate Store.

2 Willow Serving Dishes 7/15/2013 Jade Antiques singapore. 7 102 0.5903
3 Large Bureau 7/17/2013 Eastern sales singapore. 5 2000 0.5%03
4 Brass Lamps 7/20/2013 Jade Antiques singapore. 0 50 0.5903

o o

*

Record: W_A[Tof4] 0 o o] Bl riter |[search]

image189.png
5 sQL-Query-MI-A-SHIPMENT x

~ shipmentip « perName. ShipperinvoiceNumber - | DepartureDate -| ArrivalDate - | InsuredValue
1
2 ABC Trans-Oceanic 2009012 1/10/2013 3/20/2013 $12,000.00
3 Worldwide 49100300 5/5/2013 6/17/2013 $20,000.00
4 International 399400 6/2/2013 7/17/2013 $17,500.00
5 Worldwide 84899440 7/10/2013 7/28/2013 $25,000.00
6 International 488955 8/5/2013 9/11/2013 $18,000.00

*

Record W _([1af6 | > Wi B - [Fean]

image12.png
BEEEEEE

1
8585858888888 8EEEREREE

= T I

image190.png
|5 saL-Queny-MI-A-SHIPMENT_ITEM

 Shipmentio +| Shipmentitemid ~| _itemiD Vaiue

4 1 4 $1,200.00
4 2 3 $9,500.00
4 3 2 $4,500.00

*

Record: W_A[Tof4] 0 o o] Bl riter |[search]

image191.png
ﬁ SQL-Query-MI-B.

~ 'shipmentiD | ‘ShipperinvoiceNumber
2 ABC Trans-Oceanic 2003012
3 Worldwide 49100300
4 International 399400
5 Worldwide 84899440
6 International 488955

Record W _{[1of6] v ¥] Bolioiter |[oearch]

image192.png
ShipperinvoiceNumber

~ 'shipmentiD - |
2 ABC Trans-Oceanic 2009012
3 Worldwide 49100300

4 International 3299400
5 Worldwide 84899440
6 International 488955

Record: W_A[Tofe] b » o] Bl iter |[search]

image193.png
1 5QL-Query-MID-Access.

2 ABC Trans-Oceanic

Record: W_A[Tofz] b 0 o5] Belio Filter | [Search

image194.png
= saL-Quen-MH-E-Access x

/Shipmentio'~| shipperName -] ShippernvoiceNumber -] Amvabate
o ABCTrans-Oceanic 2008651 3/15/2013
*

Record: K< [Tof1 | » ¥ b Search

image195.png
| sal-Quen-MI-F-Access B

x
~ 'ShipmentiD -| ShipperName ShipperinvoiceNumber ArrivalDate
2 ABC Trans-Oceanic 2009012 3/20/2013
5 Worldwide 84899440 7/28/2013
*

Record: W_A[Tof3] b o o] Bl fiter |[search]

image196.png
MininsuredValue. =

Record: 1< [Tof1

Tr v [Ben [[search |

image197.png
3 saL-query-M-H

i

Record W A[1of 1] ¥10 | Behia Filter | [Search

image198.png
= sal-query-MH
Z

Record: W< [Tor T

10 v [%ouorie [[search

image199.png
= sat-Quen-Mi-y

x

TIPS c:stcrn Treasures
Willow Serving Dishes. Jade Antiques.
Large Bureau Eastern Sales
Brass Lamps. Jade Antiques.

Mofa | » wore [Search

StdCurrencyAmount
7156.4047
60.2106
11506
29515

image13.png

image200.png
| saL-quen-mik

| R e
Singapore Eastern Sales
Singapore Jade Antiques.

Record: 4« [10f3 | » ¥ [search

image201.png
= sal-Queny-Mi-L

ey] Store ~T City_Store_Combination_Count
(PSP costern Treasures

Singapore Eastern Sales

Singapore Jade Antiques.

Recor

hof3 > m [Search

image202.png
 enime < Dsnewe -
fniernational] 6/2/2013

Worldwide 5/5/2013

Motz | » wore [Search

image203.png
= 5l-Query-MI-N-A'

International

International
Worldwide

Record: 4

e

v

W

DepartureDate

[search

6/2/2013
6/2/2013
6/2/2013
5/5/2013

image204.png
| saL-quen-MiN-E

" ShipmentiD + | shipmentitemid

PRFSPN

x
Description ShipperName - | DepartureDate -
2 Large Bureau International 6/2/2013
3 Willow Serving Dishes International 6/2/2013
1 GE Dining Set Worldwide 5/5/2013

Record: W_A[Tof4] 0 000 | Behioriter |[search]

image205.png
|3 saL-query-MIN-C

DepartureDate =

____ shipperName |
W cerntional | 6/2/2013

Worldwide 5/5/2013

Recore

W [iof2 > [Search

image206.png
| saL-quey-mi0

DepartureDate =

R —
| CT— a3
5

1ot > Mo [Search

image207.png
= sat-quen-MI-p

 eeiame 0 Dsauw
fniernational] 6/2/2013

Fof1 »” [Search

image208.png
3 sat-query-mMrQ x

ShipmentlD -| _ DepartureDate
frcermational | 4 6/2/2013

Fof1 »” [Search

image209.png
DepartureDate - Value =

6/2/2013 $1,200.00

International 6/2/2013 $9,500.00

International 6/2/2013 $4,500.00
Record: W <[10f3 | » 0 [Search

image210.png
3 saL-Quey-NiS

x

ShipmentlD - | DepartureDate -] Value -

frucermational | 4 6/2/2013 $1,20000
International 4 6/2/2013 $9,500.00
International 4 6/2/2013 $4,500.00

L [iots | b e [search

image14.png
x

sk - SKU_Description - | QuantityOnHand - | QuantityOnOrder -

B fLod) 100100 Std. Scuba Tank, Yellow 250)
100 100200 std. Scuba Tank, Magenta 200 20
100 101100 Dive Mask, Small Clear o 500
100 101200 Dive Mask, Med Clear 100 500
100 201000 Half-dome Tent 2 100
100 202000 Half-dome Tent Vestibule 10 250
100 301000 Light Fly Climbing Harness 300 250
100 302000 Locking Carabiner, Oval 1000 o
200 100100 Std. Scuba Tank, Yellow 100 50
200 100200 std. Scuba Tank, Magenta 75 7
200 101100 Dive Mask, Small Clear o 500
200 101200 Dive Mask, Med Clear 50 500
200 201000 Half-dome Tent 10 250
200 202000 Half-dome Tent Vestibule 1 250
200 301000 Light Fly Climbing Harness 250 250
200 302000 Locking Carabiner, Oval 1250 o
300 100100 Std. Scuba Tank, Yellow 100 o
300 100200 std. Scuba Tank, Magenta 100 100
300 101100 Dive Mask, Small Clear 300 200
300 101200 Dive Mask, Med Clear a7 o
300 201000 Half-dome Tent 250 o
300 202000 Half-dome Tent Vestibule 100 o
300 301000 Light Fly Climbing Harness o 250
300 302000 Locking Carabiner, Oval 500 500
400 100100 Std. Scuba Tank, Yellow 200 o
400 100200 std. Scuba Tank, Magenta 250 o
400 101100 Dive Mask, Small Clear 450 o
400 101200 Dive Mask, Med Clear 250 250
400 201000 Half-dome Tent o 250
400 202000 Half-dome Tent Vestibule o 200
400 301000 Light Fly Climbing Harness o 250
400 302000 Locking Carabiner, Oval o 1000

*

Record: 4« [10f32 | » M b [Search

image15.png
| 3 sal-query-CHO2-RQ-02-22

x

*

Record: M

Tof32

100
100
100
100
100
100

g

858585858 8888 EEEEEE

» oo

= 'SKU_Description
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Search

- | QuantityonHand -
250
200

0
100
2
10
200
1000
100
7

°

a75

QuantityOnOrder ~
0

20

500

500

100

250

250

0

50

Bl

BEBEY 0880008800 385888

image16.png
x

sku - SKU_Description - | QuantityOnHand - | QuantityOnOrder -
B 100} 100100 Std. Scuba Tank, Yellow 250)
200 100100 Std. Scuba Tank, Yellow 100 50
300 100100 Std. Scuba Tank, Yellow 100 o
400 100100 Std. Scuba Tank, Yellow 200 o
100 100200 std. Scuba Tank, Magenta 200 20
200 100200 std. Scuba Tank, Magenta 75 7
300 100200 std. Scuba Tank, Magenta 100 100
400 100200 std. Scuba Tank, Magenta 250 o
300 101100 Dive Mask, Small Clear 300 200
400 101100 Dive Mask, Small Clear 450 o
100 101200 Dive Mask, Med Clear 100 500
200 101200 Dive Mask, Med Clear 50 500
300 101200 Dive Mask, Med Clear a75 o
400 101200 Dive Mask, Med Clear 250 250
100 201000 Half-dome Tent 2 100
200 201000 Half-dome Tent 10 250
300 201000 Half-dome Tent 250 o
100 202000 Half-dome Tent Vestibule 10 250
200 202000 Half-dome Tent Vestibule 1 250
300 202000 Half-dome Tent Vestibule 100 o
100 301000 Light Fly Climbing Harness 300 250
200 301000 Light Fly Climbing Harness 250 250
100 302000 Locking Carabiner, Oval 1000 o
200 302000 Locking Carabiner, Oval 1250 o
300 302000 Locking Carabiner, Oval 500 500

*

Record: 4 < [10f25 | » M b [Search

image17.png
3 saL-Query-CH(24 x

TUskU 5] sk Descption -
MFEIE Dive Mask, Small Clear
101100 Dive Mask, Small Clear
201000 Half-dome Tent
202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

*

Record: 4 <[10r7 | b ¥ b [search

image18.png
| saL-queny-cHo2 RQ-02.25'

USKU 0] skuDesoiption -

*

Record: 14

TN Dive Mask, Small Clear
101100 Dive Mask, Small Clear
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
301000 Light Fly Climbing Harness
202000 Half-dome Tent Vestibule
201000 Half-dome Tent

Mof7 | » W [Search

x

WarehouselD -

5555888

image19.png
*

Record: 4

S sal-Query-CHO2-RQ-02-26 \

x

[USKUW] sk Desiption -

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

ot2s | > e [search

WarehouselD -

FIHEIREIEE -

100
100
100
100
100
100
100

image20.png
3 sQL-Query-CH(27 x

USKWTTT| sku_Description + | Warehouseld
3R Half-dome Tent
202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
301000 Light Fly Climbing Harness
101100 Dive Mask, small Clear
101100 Dive Mask, Small Clear

5885558

*

Record: 4 <[10r7 | b ¥ b [search

image21.png
= saL-Query-CHO2-RQ-02:28

US| skubesciption -

N IR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
201000 Half-dome Tent
202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
101200 Dive Mask, Med Clear
201000 Half-dome Tent
202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
101100 Dive Mask, Small Clear
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
101100 Dive Mask, Small Clear
302000 Locking Carabiner, Oval

*

Record: 4« [10117 | b ¥ b [search

|

WarehouselD -

5B 8888855558588

55

image22.png
| saL-query-CHoz-RQ-02:29

TS o] scuDescption | Werehouseid <] Guatityonand
. mm
*

Record W A[Tof1] o] BehoFilter |[Search]

image23.png
| 5 saL-queny-CHoz-RQ-02-30

TS o] scuDescption | Werehouseid <] Guantityonand
. mm
*

Record W A[Tof1] o] BehoFilter |[Search]

image24.png
SKU_Description =

[202000 Half-dome Tent Vestibule

Record: W_4[Tofz] 00 | % | [Search

image25.png
s - scuDessmption -

Record W <[ioi1] no | %

image26.png
SKU_Description =

[100200 Std. Scuba Tank, Magenta

Record: W_4[Tofz] 00 | % | [Search

image27.png
| saL-query-CHO2 RQ-0234 x
Numberoffows ~| TotalQuantityonHand ~| AverageQuantityonHand - | Maximumauantityonand

Record W A[Tof 1] 00| BehoFilter |[Search]

image28.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

ORDER BY TotalltemsOnHand DESC;

<l

i

- x
/% DBE-e12 Chapter02 SQL-Query-Review-Question-2.36

sezecT WarehouseID, Si(QuantityOnHand) AS TotalltemsOnHand

FROM INVENTORY

GROUP BY WarehouseID @

Er|

WarehouselD _ TotaltemsOnHand

1 [1862
2 3 " 185
3 m 1736
4w 1150

image29.png
—

TotalitemsOnHand

200
100

1825
1862

ﬁ_mumuymnz—\moz

Record: 14

frota] v 0o | Weiio Filier [[Search

image30.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

GROUP BY WarenouseID
ORDER BY TotalltemsOnHandLT3 DESC;

< i

- x
/% DBP-el2 Chapter02 SQL-Query-Review-Question-2.37

sezecT WarehouseID, S (QuantityOnHand) AS TotalltemsOnHendLT3

FROM INVENTORY

WHERE QuantityonHand < 3 O

=3 Resuts [[Ty Messages|

WarchouselD _ TotaltemsOnHandLT3
2

EEEIE

1
[
[

image31.png
 saL-Query-CHO2-RQ-02-

" WarehouselD - | TotalitemsOnHandiTs -
0 1
a0

300 o

Record: W_A[Tof4 J0 000 | Behioriter |[search]

image32.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

- x
/% DBE-e12 Chaprero? SgL-guery-Review-guestion-2.38

SSIECT WarehouseID, S (Qusnvityonfiand) AS TovalltemsOnRandiTs

Fron IVENTORY

wazRe Quenticyoniand < 3

GROVE 5Y WarenouseId =
mYING comvT(r) < 2

ORDER BY TotalltemsOnHandLT3 DESC:

<l

i

Er|

WerchouselD _ TotaltemsOnHandLT3
HED io

image33.png
|5 sQL-Query-CHO2-RQ-02-38

7

TotalitemsOnHandLT3 ~

R o T

10 v [% ouorie [[search

image34.png
| saL-query-cHoz RQ-02-40'

x

[USKU 0] skuDesoiption -

Record: 14

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Mof2s | > n [Search

WarehouselD - | WarehouseCity - | Warehousestate -

100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor

GA
GA
GA
GA
GA
GA
GA

image35.png
Record: 14

3 saL-Query-CHO2-RQ-02-

[USKUW] sk Desoiption -

x

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 Std. Scuba Tank, Yellow
100200 td. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Mof2a |» m [Search

WarehouselD - | WarehouseCity - | Warehousestate -

100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor

GA
GA
GA
GA
GA
GA
GA

image36.png
| sal-query-CHo2-RQ-02-42 x

WUSKOIITT] skuDesciption ~| Warehouseid - | WarehouseGity +| Warehousestate -
| IR std. Scuba Tank, Yellow 400 seattle wa

100200 Std. Scuba Tank, Magenta 400 seattle wa

101100 Dive Mask, Small Clear 400 seattle wa

101200 Dive Mask, Med Clear 400 seattle wa

201000 Half-dome Tent 400 Seattle wa

202000 Half-dome Tent Vestibule 400 Seattle wa

301000 Light Fly Climbing Harness 400 Seattle wa

302000 Locking Carabiner, Oval 400 Seattle wa

Record: 4 < [1ot8 | » ¥ [search

image37.png
S saL-query-CHO2 RQ-02-43 \ x

DUSKOIITT] sKu Desciption -] Warehouseid - | WarehouseGity +| Warehousestate -
IR std. Scuba Tank, Yellow 400 Seattle WA
100200 Std. Scuba Tank, Magenta 400 seattle wa
101100 Dive Mask, Small Clear 400 seattle wa
101200 Dive Mask, Med Clear 400 seattle wa
201000 Half-dome Tent 400 Seattle wa
202000 Half-dome Tent Vestibule 400 Seattle wa
301000 Light Fly Climbing Harness 400 Seattle wa
302000 Locking Carabiner, Oval 400 Seattle wa

Record: 4 < [1ot8 | » ¥ [search

image38.png
3 SaL-Query-CHO2-RQ-02-44 x
L mMlwto
i
std. Scuba Tank, Magenta is in a warehouse in Atlanta
Dive Mask, Small Clear is in a warehouse in Atlanta
Dive Mask, Med Clear is in a warehouse in Atlanta
Half-dome Tent is in a warehouse in Atlanta
Half-dome Tent Vestibule is in a warehouse in Atlanta
Light Fly Climbing Harness is in a warehouse in Atlanta
Locking Carabiner, Oval is in a warehouse in Atlanta
std. Scuba Tank, Yellow is in a warehouse in Chicago
std. Scuba Tank, Magenta is in a warehouse in Chicago
Dive Mask, Small Clear is in a warehouse in Chicago
Dive Mask, Med Clear is in a warehouse in Chicago
Half-dome Tent is in a warehouse in Chicago
Half-dome Tent Vestibule is in a warehouse in Chicago
Light Fly Climbing Harness is in a warehouse in Chicago
Locking Carabiner, Oval is in a warehouse in Chicago
std. Scuba Tank, Yellow is in a warehouse in Bangor
std. Scuba Tank, Magenta is in a warehouse in Bangor
Dive Mask, Small Clear is in a warehouse in Bangor
Dive Mask, Med Clear is in a warehouse in Bangor
Half-dome Tent is in a warehouse in Bangor
Half-dome Tent Vestibule is in a warehouse in Bangor
Light Fly Climbing Harness is in a warehouse in Bangor
Locking Carabiner, Oval is in a warehouse in Bangor
std. Scuba Tank, Yellow is in a warehouse in Seattle
std. Scuba Tank, Magenta is in a warehouse in Seattle.
Dive Mask, Small Clear is in a warehouse in Seattle
Dive Mask, Med Clear is in a warehouse in Seattle.
Half-dome Tent is in a warehouse in Seattle
Half-dome Tent Vestibule is in a warehouse in Seattle
Light Fly Climbing Harness is in a warehouse in Seattle
Locking Carabiner, Oval is in a warehouse in Seattle

Record: H_<[1of32 | » " Search

image1.png

image39.png
 saL-Query-CHO2RQ-02-45

[USKUW] sk Desoiption -

*

Record: 14

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Mofs | » Mo [Search

image40.png
5 saL-Query-CHO2 RQ-02-46

[USKUW] sk Desoiption -

Record: 14

TR std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

hofs > n [Search

image41.png
/% D8P-e13 Chapterd2 SQL-Query-Review-Question-2.47

SELECT S, SKU_Description, WAREHOUSE.warchouseID
Fron INVENTORY 301 LAREHOUSE

ON INVENTORY.uarehouseTD-WAREHOUSE. WarehouseId
WHERE Manager - ‘Lucille Smith's|

SKU_Descrption
5. Seuba Tark, Yelow
" Std. Scuba Tank. Magerta
Dive Mask, Smal Gar
Dive Mask, Med Cear

Habdome Tert
Hadome Tt Vestbue
Light Py Cibing Homess.
Locking Carabiner, Oval

i

EEEEEEEE

image42.png
3 saL-Query-CHO2-RQ-02-47

[SKU 7] sku Desciption ~|WarehouselD -

TR std. Scuba Tank, Yellow 200
100200 Std. Scuba Tank, Magenta 200
101100 Dive Mask, Small Clear 200
101200 Dive Mask, Med Clear 200
201000 Half-dome Tent 200
202000 Half-dome Tent Vestibule 200
301000 Light Fly Climbing Harness 200
302000 Locking Carabiner, Oval 200

*

Record: 4 < [10f8 | » M b [Search

image43.png
7 sQL-Query-CH02-RQ-02-48'\

Z 5 AverageQuantityOnHand

Record: W_A[Tof1] 000 | Behioriter |[search]

image44.png
] sQL-Query-CH02-RQ-02-49'\

/5 AverageQuantityOnHand

Record W A[Tof 1] 00| BehoFilter |[search]

image45.png
/% D8P-e13 Chapterd SQL-Query-Review-Question-2.50 =/

seLecT INVENTORY . arehouseID, AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM INVENTORY JOIN WAREHOUSE
on INVENTORY . WarehouseID-WAREHOUSE . WarehouseID
WHERE Manager = 'Lucille Smith’
GROUP BY INVENTORY.WarehouseID;

image46.png
7 sQL-Query-CH02-RQ-0250'\

AverageQuantityOnHand

Record H_A[1at1] W5 | BehioFilter [[oearch]

image47.png
5 sQL-Query-CHO2-RQ-02-51

5 TotalitemsOnOrder - | TotalltemsOnHand

100
100
100
100
100
100
100

85888 EEEEEEEES

gB¥Eo 8.8 E

2
10
100
200
250
200
1000
0

1

10
50
7
100

Record: 4 {[1af26 | W0 | %

image48.png
3 saL-Query-CH02-RQ-02-52 x
~WarehouselD - WarehouseCi WarehouseState | Manager SKU 'SKU_Description QuantityOnHand

n 200 Chicago w Lucille Smith 100200 Std. Scuba Tank, Magenta 7

200 Chicago w Lucille Smith 101100 Dive Mask, Small Clear o

200 Chicago w Lucille Smith 101200 Dive Mask, Med Clear 50

200 Chicago w Lucille Smith 201000 Half-dome Tent 10

200 Chicago w Lucille Smith 202000 Half-dome Tent Vestibule 1

200 Chicago w Lucille Smith 301000 Light Fly Climbing Harness 250

200 Chicago w Lucille Smith 302000 Locking Carabiner, Oval 1250

Record: 4 _{[1oi8] > W) | %

image49.png
3 SQL-Query-CHO2-RQ-02-55

x

5‘“""“

100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
500 San Francisco

*

Record: W< [10f33 | » M b

WarehouseCity

- [WarehouseState -
GA
GA
GA
GA
GA
GA
GA

Search

Manager
Dave Jones
Dave Jones
Dave Jones
Dave Jones
Dave Jones
Dave Jones
Dave Jones
Dave Jones
Lucille Smith
Lucille Smith
Lucille Smith
Lucille Smith
Lucille Smith
Lucille Smith
Lucille Smith
Lucille Smith
Bart Evans
BartEvans
Bart Evans
BartEvans
Bart Evans
BartEvans
Bart Evans
BartEvans
Dale Rogers
Dale Rogers
Dale Rogers
Dale Rogers
Dale Rogers
Dale Rogers
Dale Rogers
Dale Rogers
Grace Jefferson

SKU

S 'SKU_Description
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

‘QuantityOnHand -
250
200

0
100
2

10
200
1000
100
7

°

a75

‘QuantityOnOrder -

0
20
500
500
100|
250
250
[
50,

El

SEBEY 0088008838588

image50.png
The PROJECT =1 PROJECT
table ¥ projectiv L
DEPARTMENT Name ASSIGNMENT
- B —DeEpanment C) TV Proje
The ASSIGNMENT — o SN[Yoean
table Officetiumber startDate Hoursworked
Pnone encoste

EMPLOYEE

¥ Employeehumber
Firsthame.
Lasthame.
Department
Phone.
Email

