INSTRUCTOR’S MANUAL
TO ACCOMPANY
DAVID M. KROENKE AND DAVID J. AUER

Database Processing
Fundamentals, Design, and Implementation
12th Edition

CHAPTER TWO
INTRODUCTION TO STRUCTURE QUERY LANGUAGE

[image:]
Prepared By
David J. Auer
Western Washington University

[image:]

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

·
CHAPTER OBJECTIVES
To understand the use of extracted data sets
To understand the use of ad-hoc queries
To understand the history and significance of Structured Query Language (SQL)
To understand the basic SQL SELECT/FROM/WHERE framework as the basis for database queries
To be able to write queries in SQL to retrieve data from a single table
To be able to write queries in SQL to use the SQL SELECT, FROM, WHERE, ORDER BY, GROUP BY, and HAVING clauses
To be able to write queries in SQL to use SQL DISTINCT, AND, OR, NOT, BETWEEN, LIKE, and IN keywords
To be able to use the SQL built-in functions of SUM, COUNT, MIN, MAX, and AVG with and without the use of a GROUP BY clause
To be able to write queries in SQL to retrieve data from a single table but restricting the data based upon data in another table (subquery)
To be able to write queries in SQL to retrieve data from multiple tables using an SQL JOIN
[bookmark: _GoBack]ERRATA
· Page 84 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The introductory text between Review Questions 2.16 and 2.17 should refer to Review Question 2.39 instead of Review Question 2.40:
Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:
· Page 96 – [19-JUL-11 – Corrected in DBP e12 International Edition, Chapter 2 PowerPoint Slideshow, and the Instructor’s Manual for Chapter 2] — Figure 2-40 is mislabeled for Martha’s Dry Cleaning (MDC) instead of Morgan Importing (MI). The figure title should read:
The MI Database
· Page 97 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The introductory text before Project Question A should refer to the MI data instead of the MDC data:
Write SQL statements and show the results based on the MI data for each of the following:
· Page 97 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The next to the last introductory text line before Figure 2-40 contains a misplaced hyphen (-) in the word Alter-natively. It should read:
Alternatively, SQL scripts for creating the MI-CH02 database in SQL Server, Oracle Data-

TEACHING SUGGESTIONS
Database files to illustrate the examples in the chapter and solution database files for your use are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The best way for students to understand SQL is by using it. Have your students work through the Review Questions, Project Questions and the Marcia’s Dry Cleaning and Morgan Importing Project Questions in an actual database. Students can create databases in Microsoft Access with basic tables, relationships and data from the material in the book. SQL scripts for Microsoft SQ Server, Oracle Database and MySQL versions of Cape Codd, WPC, MDC and MI are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Microsoft Access database files for Cape Codd and the NASDAQ data (NDX.accdb), together with SQL scripts for Microsoft SQ Server, Oracle Database and MySQL versions of Cape Codd, MDC and MI are available for student use in the Student Resources on the text’s Web site (www.pearsonhighered.com/kroenke).
The SQL processors in the various DBMSs are very fussy about character sets used for SQL statements. They want to see plain ASCII text, not fancy fonts. This is particularly true of the single quotation (') used to designate character strings, but I’ve also had problems with the minus sign. If your students are having problems getting a “properly structured SQL statement” to run, look closely for this type of problem.
There is a useful teaching technique which will allow you to demonstrate the SQL queries in the text using Microsoft SQL Server if you have it available.
Open the Microsoft SQL Server Management Studio, and create a new SQL Server database named Cape-Codd.
In the Microsoft SQL Server Management Studio, use the SQL statements in the *.sql text file DBP-e12-MSSQL-Cape-Codd-Create-Tables.sql to create the RETAIL_ORDER, ORDER_ITEM and SKU_DATA tables [the WAREHOUSE and INVENTORY tables, used in the Review Questions, are also created].
In the Microsoft SQL Server Management Studio, use the SQL statements *.sql text file DBP-e12-MSSQL-Cape-Dodd-Insert-Data.sql to populate the RETAIL_ORDER, ORDER_ITEM and SKU_DATA tables [the WAREHOUSE and INVENTORY tables, used in the Review Questions, are also populated].
In the Microsoft SQL Server Management Studio, open the *.sql text file DBP-e12-MSSQL-Cape-Codd-Query-Set-CH02.sql. This file contains all the queries shown in the Chapter Two text.
Highlight the query you want to run and Execute Query button to display the results of the query. An example of this is shown in the following screenshot.
All of the *.sql text files needed to do this are available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Microsoft Access 2010 does not support all SQL-92 (and newer) constructs. While this chapter still considers Microsoft Access as the DBMS most likely to be used by students at this point in the course, there are some Review Questions and Project Questions that use the ORDER BY clause with aliased computed columns that will not run in Access (see Review Questions 2.42 – 2.44 and Project Questions 2.63.e – 2.63.g). The correct solutions for these questions were obtained using Microsoft SQL Server 2008 R2. The Microsoft Access results without the ORDER BY clause are also shown, so you can assign these problems without the ORDER BY part of the questions.
Microsoft Access 2010 does not support SQL wildcard characters (see Review Questions 2.36 – 2.38), although it does have equivalent wildcard characters as described in the chapter. The correct solutions for these questions were obtained using Microsoft SQL Server 2008 R2.
For those students who are used to procedural languages, they may have some initial difficulty with a language the does set processing like SQL. These students are accustomed to processing rows (records) rather than sets. It is time well spent to make sure they understand that SQL processes tables at a time, not rows at a time.
Students may have some trouble understanding the GROUP BY clause. If you can explain it in terms of traditional control break logic (sort rows on a key then process the rows until the value of the key changes) they will have less trouble. This also explains why the GROUP BY clause will present the rows sorted even though you do not use an ORDER BY clause.
At this point, students familiar with Microsoft Access will wonder why they are learning SQL. They have made queries in Microsoft Access using Microsoft Access's version of Query-By-Example (QBE), and therefore never had to understand the SQL. In many cases, they will not know that Microsoft Access generates SQL code when you create a query in design view. It is worth letting them know this is done and even showing them the SQL created for and underlying a Microsoft Access query.
It is also important for students to understand that, in many cases, the Query-By-Example forms such as Microsoft Access’ design view can be very inefficient. Also, the QBE forms are not available from within an application program such as Java or C, and so SQL must be written.
It has been our experience that a review of a Cartesian Product from an algebra class is time well spent. Show students what will happen if a WHERE statement is left off of a join. The following example will work. Assume you create four tables with five columns each and 100 rows each. How many columns and rows will be displayed by the statement:
	SELECT * FROM TABLE1, TABLE2, TABLE3, TABLE4;
The result is 20 columns (not bad) but 100,000,000 rows (100 * 100 = 10,000, 10,000 * 100 = 1,00,000, 1,000,000 * 100 = 100,000,000). This happens because the JOIN is not qualified. If they understand Cartesian products then they will understand how to fix a JOIN where the results are much too large.
Note that in the Marcia's Dry Cleaning project, where in previous editions we have used tables named ORDER and ORDER_ITEM, we have changed these table names to INVOICE and INVOICE_ITEM. We did this because ORDER is an SQL reserved word (part of ORDER BY). Therefore, when the table name ORDER is used as part of a query, it may need to be ("must be" in Access 2010) enclosed in delimiters as [ORDER] if the query is going to run correctly. The topic of reserved words and delimiters is discussed in more detail in Chapters 6 and 7. However, now is a good time to introduce it to your students.

ANSWERS TO REVIEW QUESTIONS
What is a business intelligence (BI) system?
A business intelligence (BI) system, is a system used to support management decisions by producing information for assessment, analysis, planning and control.
What is an ad-hoc query?
An ad-hoc query is a query created by the user as needed, rather than a query programmed into an application.
What does SQL stand for, and what is SQL?
SQL stands for Structured Query Language. SQL is the universal query language for relational DBMS products.
What does SKU stand for, and what is an SKU?
SKU stands for stock keeping unit. An SKU is a an identifier used to label and distinguish each item sold by a business.
Summarize how data were altered and filtered in creating the Cape Codd data extraction.
Data from the Cape Codd operational retail sales database were used to create a retail sales extraction database with three tables: RETAIL_ORDER, ORDER_ITEM and SKU_DATA.
The RETAIL_ORDER table uses only a few of the columns in the operational database. The structure of the table is:
RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 	OrderTotal)
For this table, the original column OrderDate (in the data format MM/DD/YYYY [04/26/2010]) was converted into the columns OrderMonth (in a Character(12) format so that each month is spelled out [April]) and OrderYear (in an Integer format with each year appearing as a four-digit year [2010]).
We also note that the OrderTotal column includes tax, shipping and other charges that do not appear in the data extract. Thus, it does not equal the sum of the related ExtendedPrice column in the ORDER_ITEM table discussed below.
The ORDER_ITEM table uses an extract of the items purchased for each order. The structure of the table is:
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
For this table, there is one row for each SKU associated with a given OrderNumber, representing one row for each type of item purchased in a specific order.
The SKU_DATA table uses an extract of the item identifying and describing data in the complete operational table. The structure of the table is:
SKU_DATA (SKU, SKU_Description, Department, Buyer)
For this table, there is one row to describe each SKU, representing one particular item that is sold by Cape Codd.
Explain, in general terms, the relationships of the RETAIL_ORDER, ORDER_ITEM, and SKU_DATA tables.
In general, each sale in RETAIL_ORDER relates to one or more rows in ORDER_ITEM that detail the items sold in the specific order. Each row in ORDER_ITEM is associated with a specific SKU in the SKU_DATA table. Thus one SKU may be associated once with each specific order number, but may also be associated with many different order numbers (as long as it appears only once in each order).
Using the Microsoft Access Relationship window, the relationships (including the additional relationships with the INVENTORY and WAREHOUSE tables described after Review Question 2.15) are shown in Figure 2-23 and look like this:
[image:]
Figure 2-23 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables
In traditional database terms (which will be discussed in Chapter 6) OrderNumber and SKU in ORDER_ITEM are foreign keys that provide the links to the RETAIL_ORDER and SKU_DATA tables respectively. Using an underline to show primary keys and italics to show foreign keys, the tables and their relationships are shown as:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 	OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
Summarize the background of SQL.
SQL was developed by IBM in the late 1970s, and in 1992 it was endorsed as a national standard by the American National Standards Institute (ANSI). That version is called SQL-92. There is a later version called SQL3 that has some object-oriented concepts, but SQL3 has not received much commercial attention.
What is SQL-92? How does it relate to the SQL statements in this chapter?
SQL-92 is the version of SQL endorsed as a national standard by the American National Standards Institute (ANSI) in 1992. It is the version of SQL supported by most commonly used database management systems. The SQL statements in the chapter are based on SQL-92 and the SQL standards that followed and modified it.
What features have been added to SQL in versions subsequent to the SQL-92?
Versions of SQL subsequent to SQL-92 have extended features or added new features to SQL, the most important of which, for our purposes, is support for Extensible Markup Language (XML).
Why is SQL described as a data sublanguage?
A data sublanguage consists only of language statements for defining and processing a database. To obtain a full programming language, SQL statements must be embedded in scripting languages such as VBScript or in programming languages such as Java or C#.
What does DML stand for? What are DML statements?
DML stands for data manipulation language. DML statements are used for querying and modifying data.
What does DDL stand for? What are DDL statements?
DDL stands for data definition language. DDL statements are used for creating tables, relationships and other database querying and modifying data.

What is the SQL SELECT/FROM/WHERE framework?
The SQL SELECT/FROM/WHERE framework is the basis for queries in SQL. In this framework:
· The SQL SELECT clause specifies which columns are to be listed in the query results.
· The SQL FROM clause specifies which tables are to be used in the query.
· The SQL WHERE clause specifies which rows are to be listed in the query results.
Explain how Microsoft Access uses SQL.
Microsoft Access uses SQL, but generally hides the SQL from the user. For example, Microsoft Access automatically generates SQL and sends it to the Microsoft Access’s internal Access Database Engine (ADE, which is a variant of the Microsoft Jet engine) every time you run a query, process a form or create a report. To go beyond elementary database processing, you need to know how to use SQL in Microsoft Access.
Explain how enterprise-class DBMS products use SQL.
Enterprise-class DBMS products, which include Microsoft SQL Server, Oracle Corporation’s Oracle Database and MySQL, and IBM’s DB2, require you to know and use SQL. All data manipulation is expressed in SQL in these products.

The Cape Codd Outdoor Sports sale extraction database has been modified to include two additional tables, the INVENTORY table and the WAREHOUSE table. The table schemas for these tables, together with the SKU table, are as follows:
RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager, Squarefeet)
INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand, QuantityOnOrder)
The five tables in the revised Cape Codd database schema are shown in Figure 2-23. The column characteristics for the WAREHOUSE table are shown in Figure 2-24, and the column characteristics for the INVENTORY table are shown in Figure 2-25. The data for the WAREHOUSE table are shown in Figure 2-26, and the data for the INVENTORY table are shown in Figure 2-27.
[image:]

Figure 2-23 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables

[image:]

Figure 2-24 - Column Characteristics for the WAREHOUSE Table

[image:]

Figure 2-25 - Column Characteristics for the INVENTORY Table

[image:]

Figure 2-26 - Cape Codd Outdoor Sports WAREHOUSE Data
[image:]

Figure 2-27 - Cape Codd Outdoor Sports INVENTORY Data
If at all possible, you should run your SQL solutions to the following questions against an actual database. A Microsoft Access database named Cape-Codd.accdb is available on our Web site (www.pearsonhighered.com/kroenke) that contains all the tables and data for the Cape Codd Outdoor Sports sales data extract database. Also available on our Web site are SQL scripts for creating and populating the tables for the Cape Codd database in SQL Server, Oracle Database, and MySQL.
NOTE: All answers below show the correct SQL statement, as well as SQL statements modified for Microsoft Access 2010 when needed. Whenever possible, all results were obtained by running the SQL statements in Microsoft Access 2010, and the corresponding screen shots of the results are shown below. As explained in the text, some queries cannot be run in Microsoft Access 2010, and for those queries the correct result was obtained using Microsoft SQL Server 2008 R2. The SQL statements shown should run with little, if any, modification needed for Oracle Database 11g and MySQL 5.5.
Solutions to Project Questions 2.16 – 2.53 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
If your students are using a DBMS other than Microsoft Access, the SQL code to create and populate the Cape Codd database is available in the *.sql script files for SQL Server 2008 R2, Oracle Database 11g, and MySQL 5.5 in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
There is an intentional flaw in the design of the INVENTORY table used in these exercises. This flaw was purposely included in the INVENTORY tables so that you can answer some of the following questions using only that table. Compare the SKU and INVENTORY tables, and determine what design flaw is included in INVENTORY. Specifically, why did we include it?
The flaw is the inclusion of the SKU_Description attribute in the INVENTORY table. This attribute duplicates the SKU_Description attribute and data in the SKU_DATA table, where the attribute rightfully belongs. By duplicating SKU_Description in the INVENTORY table, we can ask you to list the SKU and its associated description in a single table query against the INVENTORY table. Otherwise, a two table query would be required. If these tables were in a production database, we would eliminate the INVENTORY.SKU_Description column.

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:
Write an SQL statement to display SKU and SKU_Description.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description
FROM 		INVENTORY;

[image:]

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:
SELECT 	UNIQUE SKU, SKU_Description
FROM 		INVENTORY;

[image:]

Write an SQL statement to display SKU_Description and SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU_Description, SKU
FROM 		INVENTORY;

[image:]

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:
SELECT 	UNIQUE SKU_Description, SKU
FROM 		INVENTORY;

[image:]
Write an SQL statement to display WarehouseID.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	WarehouseID
FROM 		INVENTORY;

[image:]
Write an SQL statement to display unique WarehouseIDs.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT	DISTINCT WarehouseID
FROM 		INVENTORY;

[image:]
Write an SQL statement to display all of the columns without using the SQL asterisk (*) wildcard character.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	WarehouseID, SKU, SKU_Description,
			QuantityOnHand, QuantityOnOrder
FROM 		INVENTORY;

[image:]

Write an SQL statement to display all of the columns using the SQL asterisk (*) wildcard character.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	*
FROM 		INVENTORY;

[image:]

Write an SQL statement to display all data on products having a QuantityOnHand greater than 0.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	*
FROM 		INVENTORY
WHERE		QuantityOnHand >0;

[image:]

Write an SQL statement to display the SKU and SKU_Description for products having QuantityOnHand equal to 0.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description
FROM 		INVENTORY
WHERE		QuantityOnHand =0;

[image:]

Write an SQL statement to display the SKU, SKU_Description, and Warehouse for products having QuantityOnHand equal to 0. Sort the results in ascending order by Warehouse.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description, WarehouseID
FROM 		INVENTORY
WHERE		QuantityOnHand =0
ORDER BY	WarehouseID;

[image:]
Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for products having QuantityOnHand greater than 0. Sort the results in descending order by WarehouseID and ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand > 0
ORDER BY		WarehouseID DESC, SKU;

[image:]

Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0. Sort the results in descending order by WarehouseID and in ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand = 0
	AND		QuantityOnOrder > 0
ORDER BY		WarehouseID DESC, SKU;

[image:]
Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort the results in descending order by WarehouseID and in ascending order by SKU.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID
FROM 			INVENTORY
WHERE			QuantityOnHand = 0
	OR			QuantityOnOrder = 0
ORDER BY		WarehouseID DESC, SKU;

[image:]
Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than 10. Do not use the BETWEEN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM 			INVENTORY
WHERE			QuantityOnHand > 1
	AND		QuantityOnhand < 10;

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than 10. Use the BETWEEN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM 			INVENTORY
WHERE			QuantityOnHand BETWEEN 2 AND 9;

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having an SKU description starting with ‘Half-dome’.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE 'Half-dome%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE 'Half-dome*';

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having a description that includes the word 'Climb'.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '%Climb%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '*Climb*';

[image:]

Write an SQL statement to show a unique SKU and SKU_Description for all products having a ‘d’ in the third position from the left in SKU_Description.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ from the SQL standard.
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '__d%';

For Microsoft Access:
SELECT 	DISTINCT SKU, SKU_Description
FROM 		INVENTORY
WHERE		SKU_Description LIKE '??d*';

[image:]

Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-Hand column. Include meaningful column names in the result.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	COUNT(QuantityOnHand) AS NumberOfRows,
			SUM(QuantityOnHand) AS TotalQuantityOnHand,
			AVG(QuantityOnHand) AS AverageQuantityOnHand,
			MAX(QuantityOnHand) AS MaximumQuantityOnHand,
			MIN(QuantityOnHand) AS MinimumQuantityOnHand
FROM 		INVENTORY;

[image:]

Explain the difference between the SQL built-in functions COUNT and SUM.
COUNT counts the number of rows or records in a table, while SUM adds up the data values in the specified column.
Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand, grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results in descending order of TotalItemsOnHand.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID
ORDER BY 	TotalItemsOnHand DESC;

The correct results, obtained from SQL Server 2008 / 2008 R2, are:
[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID
ORDER BY 	SUM(QuantityOnHand) DESC;

[image:]

Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand, grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from the sum, and name the sum TotalItemsOnHandLT3 and display the results in descending order of TotalItemsOnHandLT3.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
ORDER BY		TotalItemsOnHandLT3 DESC;

[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
ORDER BY		SUM(QuantityOnHand) DESC;

[image:]
Write an SQL statement to display the WarehouseID and the sum of QuantityOn-Hand grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from the sum, and name the sum TotalItemsOnHandLT3. Show Warehouse ID only for warehouses having fewer than 2 SKUs in their TotalItemsOnHandLT3 and display the results in descending order of TotalItemsOnHandLT3.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
HAVING		COUNT(*) < 2
ORDER BY		TotalItemsOnHandLT3 DESC;

[image:]
For Microsoft Access:
Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an aliased computed result. To correct this, we use an SQL statement with the un-aliased computation:
SELECT 		WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM 			INVENTORY
WHERE			QuantityOnHand < 3
GROUP BY		WarehouseID
HAVING		COUNT(*) < 2
ORDER BY		SUM(QuantityOnHand) DESC;

[image:]
In your answer to Review Question 2.38, was the WHERE or HAVING applied first? Why?
The WHERE clause is always applied before the HAVING clause. Otherwise there would be ambiguity in the SQL statement and the results would differ according to which clause was applied first.

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:
Write an SQL statement to display the SKU, SKU_Description, and WarehouseID, WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or Chicago warehouse. Do not use the IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	(WarehouseCity = 'Atlanta'
			 OR	WarehouseCity = 'Bangor'
	 OR	WarehouseCity = 'Chicago')

[image:]
Write an SQL statement to display the SKU, SKU_Description, and WarehouseID, WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or Chicago warehouse. Use the IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity IN ('Atlanta', 'Bangor' ,'Chicago');

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or Chicago warehouse. Do not use the NOT IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
NOTE: The symbol for “not equal to” is < >. Since we want the query output for warehouses that are not Atlanta or Bangor or Chicago as a set, we must ask for warehouses that are not in the group (Atlanta and Bangor and Chicago). This means we use AND in the WHERE clause – if we used OR in the WHERE clause, we would end up with ALL warehouses being in the query output. This happens because each OR eliminates only one warehouse, but that warehouse still qualifies for inclusion in the other OR statements. To demonstrate this, substitute OR for each AND in the SQL statement below.
SELECT 	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity <> 'Atlanta'
	AND	WarehouseCity <> 'Bangor'	
	AND	WarehouseCity <> 'Chicago';

[image:]

Write an SQL statement to display the SKU, SKU_Description, WarehouseID, WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or Chicago warehouse. Use the NOT IN keyword.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT	SKU, SKU_Description,
			WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND	WarehouseCity NOT IN ('Atlanta', 'Bangor' ,'Chicago');

[image:]

Write an SQL statement to produce a single column called ItemLocation that combines the SKU_Description, the phrase “is in a warehouse in”, and WarehouseCity. Do not be concerned with removing leading or trailing blanks.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that the SQL syntax will vary depending upon the DBMS – see the discussion in Chapter 2.
SELECT 	SKU_Description+' is in a warehouse in '
			+WarehouseCity AS ITEM_Location
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID;

[image:]

Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	SKU, SKU_Description, WarehouseID
FROM 		INVENTORY
WHERE		WarehouseID IN
			(SELECT		WarehouseID
			 FROM		WAREHOUSE
			 WHERE		Manager = 'Lucille Smith');

[image:]
Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items stored in a warehouse managed by ‘Lucille Smith’. Use a join.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM 		INVENTORY, WAREHOUSE
WHERE		INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
	AND		Manager = 'Lucille Smith';

[image:]
Write an SQL statement to show the WarehouseID and average QuantityOnHand of all items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		WarehouseID,
				AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 			INVENTORY
WHERE			WarehouseID IN
				(SELECT 	WarehouseID
				 FROM		WAREHOUSE
				 WHERE	Manager = 'Lucille Smith')
GROUP BY		WarehouseID;

[image:]
Write an SQL statement to show the WarehouseID and average QuantityOnHand of all items stored in a warehouse managed by ‘Lucille Smith’. Use a join.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		INVENTORY.WarehouseID,
				AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM 			INVENTORY, WAREHOUSE
WHERE			INVENTORY.WarehouseID = WAREHOUSE.WarehouseID
	AND		Manager = 'Lucille Smith'
GROUP BY		INVENTORY.Warehouse.ID;

Note the use of the complete references to INVENTORY.Warehouse – the query will NOT work without them.
[image:]

Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder and sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name the sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand as TotalItemsOnHand.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 		WarehouseID,
				SUM(QuantityOnOrder) AS TotalItemsOnOrder,
				SUM(QuantityOnHand) AS TotalItemsOnHand
FROM 			INVENTORY
GROUP BY		WarehouseID, QuantityOnHand;
[image:]

Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState, Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of ‘Lucille Smith’. Use a join.
SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
SELECT 	W.WarehouseID, WarehouseCity,
			WarehouseState, Manager,
			SKU, SKU_Description, QuantityOnHand
FROM 		INVENTORY AS I, WAREHOUSE AS W
WHERE		I.WarehouseID=W.WarehouseID
	AND	Manager = 'Lucille Smith';

[image:]
Note the use of the complete references to INVENTORY.WarehouseID (aliased as I.Warehouse) and WAREHOUSE.WarehouseID (aliased as W.WarehouseID) – the query will NOT work without them.
Explain why you cannot use a subquery in your answer to question 2.50.
In a query that contains a subquery, only data from fields in the table used in the top-level query can be included in the SELECT statement. If data from fields from other tables are also needed, a join must be used. In question 2.51 we needed to display WAREHOUSE.Manager but INVENTORY would have been the table in the top-level query. Therefore, we had to use a join.
Explain how subqueries and joins differ.
(1) In a query that contains a subquery, only data from fields in the table used in the top-level query can be included in the SELECT statement. If data from fields from other tables are also needed, a join must be used. See the answer to question 2.51.
(2) The subqueries in this chapter are non-correlated subqueries, which have an equivalent join structure. In Chapter 8, correlated subqueries will be discussed, and correlated subqueries do not have an equivalent join structure – you must use subqueries.

ANSWERS TO PROJECT QUESTIONS
For this set of project questions, we will continue creating a Microsoft Access database for the Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle, Washington, WPC has grown into an internationally recognized organization. The company is located in two buildings. One building houses the Administration, Accounting, Finance, and Human Resources departments, and the second houses the Production, Marketing, and Information Systems departments. The company database contains data about company employees, departments, company projects, company assets such as computer equipment, and other aspects of company operations.
In the following project questions, we have already created the WPC.accdb database with the following two tables (see Chapter 1 Project Questions):
DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
Now we will add in the following two tables:
PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)
The four tables in the revised WPC database schema are shown in Figure 2-28. The column characteristics for the PROJECT table are shown in Figure 2-29, and the column characteristics for the ASSIGNMENT table are shown in Figure 2-31. Data for the PROJECT table are shown in Figure 2-30, and the data for the ASSSIGNMENT table are shown in Figure 2-32.
[image:]
Figure 2-28 – The WPC Database with the PROJECT and ASSIGNMENT Tables
Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using the column characteristics, create the PROJECT table in the WPC.accdb database.
SQL Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-29 - Column Characteristics for the PROJECT Table
[image:]
Create the relationship and referential integrity constraint between PROJECT and DEPARTMENT. Enable enforcing of referential integrity and cascading of data updates, but do not enable cascading of data from deleted records.
SQL Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-30 shows the data for the WPC PROJECT table. Using the Datasheet view, enter the data shown in Figure 2-27 into your PROJECT table.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-30 - Sample Data for the PROJECT Table
[image:]
Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT table. Using the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-31 - Column Characteristics for the ASSIGNMENT Table
[image:]

Create the relationship and referential integrity constraint between ASSIGNMENT and EMPLOYEE. Enable enforcing of referential integrity, but do not enable either cascading updates or the cascading of data from deleted records.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]

Create the relationship and referential integrity constraint between ASSIGNMENT and PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do not enable cascading updates.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]

Figure 2-32 shows the data for the WPC ASSIGNMENT table. Using the Datasheet view, enter the data shown in Figure 2-32 into your ASSIGNMENT table.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
[image:]
Figure 2-32 - Sample Data for the PROJECT Table
[image:]

In Project Question 2.55, the table data was entered after referential integrity constraints were created in Project Question 2.54. In Project Question 2.59, the table data was entered after referential integrity constraints were created in Project Questions 2.57 and 2.58. Why was the data entered after the referential integrity constraints were created instead of before the constraints were created?
Both the PROJECT and ASSIGNMENT tables have foreign keys. PROJECT.Department is the foreign key in PROJECT, and both ASSIGNMENT.ProjectID and ASSIGNMENT.EmployeeNumber are foreign keys in ASSIGNMENT, If data was entered into these columns before the referential integrity constraints were established, it would be possible to enter foreign key data that had no corresponding primary key data. Thus, we establish the referential integrity constraints so that the DBMS will not allow inconsistent data to be entered into the foreign key columns.
Using Access SQL, create and run queries to answer the following questions. Save each query using the query name format SQL-Query-02-##, where the ## sign is replaced by the letter designator of the question. For example, the first query will be saved as SQL-Query-02-A.Write SQL queries to produce the following results:
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
A. What projects are in the PROJECT table? Show all information for each project.
/***** Question A - SQL-Query-02-A ************************/

SELECT * FROM PROJECT;

[image:]

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the PROJECT table?
/***** Question B - SQL-Query-02-B ************************/

SELECT		ProjectID, Name, StartDate, EndDate
FROM		PROJECT;

[image:]
C. What projects in the PROJECT table started before August 1, 2010? Show all the information for each project.
Note that the answer is an empty set – there are no PROJECTs that were started before August 1, 2010. This answer may surprise students, but it is the correct and intended answer. Point out in class that sometimes the results of a query will be an empty set. Then ask your class to rerun the query with the dates August 1, 2011 and August 1, 2012 and compare the results of the three queries.
/***** Question C - SQL-Query-02-C ************************/

SELECT		*
FROM		PROJECT
WHERE		StartDate < #01-AUG-10#;

[image:]
D. What projects in the PROJECT table have not been completed? Show all the information for each project.
/***** Question D - SQL-Query-02-D ************************/

SELECT		*
FROM		PROJECT
WHERE		EndDate IS NULL;

[image:]
E. Who are the employees assigned to each project? Show ProjectID, Employee-Number, LastName, FirstName, and Phone.
/***** Question E - SQL-Query-02-E ************************/

SELECT		ProjectID, E.EmployeeNumber, LastName, FirstName, Phone
FROM		ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
			ON A.EmployeeNumber=E.EmployeeNumber;

[image:]

F. Who are the employees assigned to each project? Show the ProjectID, Name, and Department. Show EmployeeNumber, LastName, FirstName, and Phone.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone)
/***** Question F - SQL-Query-02-F ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			P.Department AS ProjectDepartment,
			E.EmployeeNumber, LastName, FirstName,
			Phone AS EmployeePhone
FROM		(ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID;

[image:]

G. Who are the employees assigned to each project? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone.
/***** Question G - SQL-Query-02-G ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
ORDER BY	P.ProjectID;

[image:]

H. Who are the employees assigned to projects run by the marketing department? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone.
/***** Question H - SQL-Query-02-H ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
WHERE		DepartmentName='Marketing'
ORDER BY	P.ProjectID;

[image:]
I. How many projects are being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias NumberOfMarketingProjects.
/***** Question I - SQL-Query-02-I ************************/

SELECT		COUNT(*) AS NumberOfMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]

J. What is the total MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias TotalMaxHoursForMarketingProjects.
/***** Question J - SQL-Query-02-J ************************/

SELECT		SUM(MaxHours) AS TotalMaxHoursForMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]
K. What is the average MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
Note the use of the alias AverageMaxHoursForMarketingProjects.
/***** Question K - SQL-Query-02-K ************************/

SELECT		AVG(MaxHours) AS AverageMaxHoursForMarketingProjects
FROM		PROJECT
WHERE		Department='Marketing';

[image:]
L. How many projects are being run by each department? Be sure to display each DepartmentName and to assign an appropriate column name to the computed results.
Note the use of the alias NumberOfDepartmentProjects.

/***** Question L - SQL-Query-02-L ************************/

SELECT		Department, COUNT(*) AS NumberOfDepartmentProjects
FROM		PROJECT
GROUP BY	Department;

[image:]
Using Access QBE, create and run new queries to answer the questions in exercise 2.61. Save each query using the query name format QBE-Query-02-##, where the ## sign is replaced by the letter designator of the question. For example, the first query will be saved as QBE-Query-02-A.
Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
The results of each query will be identical to the corresponding SQL query in the previous Project Question. Here we will show the QBE design of the query.
1. What projects are in the PROJECT table? Show all information for each project.
[image:]
N. What are the ProjectID, Name, StartDate, and EndDate values of projects in the PROJECT table?
[image:]

O. What projects in the PROJECT table started before August 1, 2008? Show all the information for each project.
[image:]
P. What projects in the PROJECT table have not been completed? Show all the information for each project.
[image:]

Q. Who are the employees assigned to each project? Show ProjectID, Employee-Number, LastName, FirstName, and Phone.
[image:]
R. Who are the employees assigned to each project? Show the ProjectID, Name, and Department. Show EmployeeNumber, LastName, FirstName, and Phone.
[image:]

S. Who are the employees assigned to each project? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
This question is more complicated than it seems. It also raises the important question of why students need to know SQL, and provides one answer: QBE equivalents may not always work, or at least they don’t work as intended. You should use this question as the basis for a discussion of this issue.
We have already run this query as an SQL query, and gotten the correct results. That SQL Query (from RQ 2.61-G) is
/***** Question G - SQL-Query-02-G ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
ORDER BY	P.ProjectID;

The results, which are correct, of this query are:
[image:]
If we build the obvious corresponding QBE query we get (note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):
[image:]
This QBE query shows the solution to the question as stated, but it will not run correctly due to how Microsoft Access interprets the JOIN...ON commands in the QBE query it itself created! The QBE query results are:
[image:]
Compare these results with those shown for SQL-Query-2-G above, and you will see the difference and these results are clearly wrong. Looking at the data itself and thinking about what the query results should be also make it obvious that there is a problem here.
For reference, here is the SQL code that Microsoft Access created from the QBE query:
SELECT		PROJECT.ProjectID, PROJECT.Name AS [Project Name],
PROJECT.Department, DEPARTMENT.Phone AS DepartmentPhone, EMPLOYEE.EmployeeNumber, EMPLOYEE.LastName, EMPLOYEE.FirstName, EMPLOYEE.Phone AS EmployeePhone
FROM 		((DEPARTMENT INNER JOIN PROJECT ON
					DEPARTMENT.DepartmentName = PROJECT.Department)
					INNER JOIN EMPLOYEE ON
					DEPARTMENT.DepartmentName = EMPLOYEE.Department)
					INNER JOIN ASSIGNMENT ON
						(PROJECT.ProjectID = ASSIGNMENT.ProjectID)
						 AND
						(EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)
ORDER BY 	PROJECT.ProjectID;

What can we do? There are two work arounds.
First, create the query without Department Phone. This is the only column needed from the DEPARTMENT table, which can thus be eliminated from the query. The QBE query is ((note the use of the aliases ProjectName, ProjectDepartment and EmployeePhone):
[image:]
The results will be correct, but without the DepartmentPhone column. The results are:
[image:]
Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you can illustrate building a set of queries, where each one uses the previous query and adds one additional table. This is possible because Microsoft Access allows saved queries to be used as the equivalent of a table in a query. By adding in one table at a time, you can control the JOIN...ON statement sequence, and obtain the correct answer.
This is a much better solution, because the end result is exactly what we want, rather than a truncated version of it.
You should use this solution in class to illustrate how to use Microsoft Access query objects as pseudo tables in queries, and point out that they can also be used in forms and reports.
The steps below show how to create the needed sequence of QBE queries:
(1) Create a query that joins PROJECT and ASSIGMENT, and name it QBE-Query-02-G-PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query. Also note the use of the two aliases ProjectName and ProjectDepartment:
[image:]
(2) Create a query that joins QBE-Query-02-G-PA and DEPARTMENT, and name it QBE-Query-02-G-PAD. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-G-PA. Also note the use of the alias DepartmentPhone:
[image:]

(3) Create a query that joins QBE-Query-02-G-PAD and EMPLOYEE, and name it QBE-Query-02-G-PADE. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-G-PAD. Also note the use of the alias EmployeePhone:
[image:]
The query results are now correct:
[image:]

T. Who are the employees assigned to projects run by the marketing department? Show ProjectID, Name, Department, and Department Phone. Show EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in ascending order.
This question is identical to question G except for the restriction to marketing department projects. And, again, this question is more complicated than it seems. It also raises the important question of why students need to know SQL, and provides one answer: QBE equivalents may not always work, or at least they don’t work as intended. You should use this question as the basis for a discussion of this issue.
We have already run this query as an SQL query, and gotten the correct results. That SQL Query (from RQ 2.61-H) is
/***** Question H - SQL-Query-02-H ************************/

SELECT		P.ProjectID, Name AS ProjectName,
			D.DepartmentName AS ProjectDepartment,
			D.Phone AS DepartmentPhone,
			E.EmployeeNumber, LastName, FirstName,
			E.Phone AS EmployeePhone
FROM		((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
				ON A.EmployeeNumber=E.EmployeeNumber)
			INNER JOIN PROJECT AS P
				ON A.ProjectID=P.ProjectID)
			INNER JOIN DEPARTMENT AS D
				ON P.Department=D.DepartmentName
WHERE		DepartmentName='Marketing'
ORDER BY	P.ProjectID;

The results, which are correct, of this query are:
[image:]
If we build the obvious corresponding QBE query we get (note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):
[image:]
The results are:
[image:]
Compare these results with those shown for SQL-Query-02-H above, and you will see the difference.
For reference, here is the SQL code that Microsoft Access created from the QBE query:
SELECT 	PROJECT.ProjectID, PROJECT.Name AS [Project Name],
			PROJECT.Department AS ProjectDepartment,
			DEPARTMENT.Phone AS DepartmentPhone, EMPLOYEE.EmployeeNumber,
			EMPLOYEE.LastName, EMPLOYEE.FirstName,
			EMPLOYEE.Phone AS EmployeePhone
FROM		((DEPARTMENT INNER JOIN PROJECT ON
				DEPARTMENT.DepartmentName = PROJECT.Department)
				INNER JOIN EMPLOYEE ON
					DEPARTMENT.DepartmentName = EMPLOYEE.Department)
				INNER JOIN ASSIGNMENT ON
					(PROJECT.ProjectID = ASSIGNMENT.ProjectID)
					 AND
					(EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)
WHERE 		(((PROJECT.Department)="Marketing"))
ORDER BY 	PROJECT.ProjectID;

The problem we are encountering here is the same as described above in 2.62 G. Again, there are two work arounds. First, create the query without Department Phone. This is the only column needed from the DEPARTMENT table, which can thus be eliminated from the query. The QBE Query is (note the use of the aliases ProjectName, ProjectDepartment and EmployeePhone):
[image:]
The results will be correct, but without the DepartmentPhone column:
[image:]
Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you can illustrate building a set of queries, where each one uses the previous query and adds one additional table. This is possible because Microsoft Access allows saved queries to be used as the equivalent of a table in a query. By adding in one table at a time, you can control the JOIN...ON statement sequence, and obtain the correct answer.
This is a much better solution, because the end result is exactly what we want, rather than a truncated version of it.
You should use this solution in class to illustrate how to use Microsoft Access query objects as pseudo tables in queries, and point out that they can also be used in forms and reports.
The steps below show how to create the needed sequence of QBE queries:

(1) Create a query that joins PROJECT and ASSIGMENT, and name it QBE-Query-0H-G-PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query, and note the use of the aliases ProjectName and ProjectDepartment:
[image:]
(2) Create a query that joins QBE-Query-02-H-PA and DEPARTMENT, and name it QBE-Query-02-H-PAD. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-H-PA, and note the use of the alias DepartmentPhone:
[image:]

(3) Create a query that joins QBE-Query-02-H-PAD and EMPLOYEE, and name it QBE-Query-02-H-PADE. Note that you will have to manually link the DEPARTMENT primary key to the foreign key in QBE-Query-02-H-PAD, and note the use of the alias EmployeePhone:
[image:]
The query results are now correct:
[image:]

U. How many projects are being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]
V. What is the total MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]

W. What is the average MaxHours of projects being run by the marketing department? Be sure to assign an appropriate column name to the computed results.
[image:]
X. How many projects are being run by each department? Be sure to display each DepartmentName and to assign an appropriate column name to the computed results.
[image:]

The following questions refer to the NDX table of data as described starting on page 72. You can obtain a copy of this data in the Access database, DBPe11-NDX.accdb located on this text's Web site at www.pearsonhighered.com/kroenke.
Write SQL queries to produce the following results:
A. The ChangeClose on Fridays.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP e12-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-A *** */

SELECT 	ChangeClose
FROM 		NDX
WHERE		TDayOfWeeK = 'Friday';

[image:]
B.
The minimum, maximum, and average ChangeClose on Fridays.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-B *** */

SELECT 	MIN (ChangeClose) AS MinFridayChangeClose,
			MAX (ChangeClose) AS MaxFridayChangeClose,
			AVG (ChangeClose) AS AverageFridayChangeClose
FROM 		NDX
WHERE		TDayOfWeeK = 'Friday';

[image:]
C. The average ChangeClose grouped by TYear. Show TYear.
Since TYear is being displayed, it makes sense to sort the results by TYear although this is not explicitly stated in the question.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-C *** */

SELECT 		TYear, AVG (ChangeClose) AS AverageChangeClose
FROM 			NDX
GROUP BY		TYear
ORDER BY 	TYear;

[image:]
D. The average ChangeClose grouped by TYear and TMonth. Show TYear and TMonth.
Since TYear and TMonth are being displayed, it makes sense to sort the results by TYear and TMonth although this is not explicitly stated in the question.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-2-63-D-A *** */

SELECT 	TYear, TMonth,
			AVG (ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TMonth
ORDER BY TYear, TMonth;

[image:]

Unfortunately, the table NDX does not contain a numeric value of the month, so in order to sort the months correctly, we need a TMonthNumber which has a column containing a representative number for each month (January = 1, February = 2, etc.)
Although the SQL DDL and DML for doing this is not covered until Chapter 7, this is a good exercise in adding a column to an existing table, and you may want to show this to your students at this time.
We can create this column as follows (note that Microsoft Access can only run one SQL command at a time!):
/* *** SQL-ALTER-TABLE-2-63-D *** */

ALTER TABLE NDX
		ADD COLUMN TMonthNumber Int NULL;

/* *** SQL-UPDATES-2-63-D *** */

UPDATE NDX
		SET	TMonthNumber = 1
		WHERE	TMonth = 'January';

UPDATE NDX
		SET	TMonthNumber = 2
		WHERE	TMonth = 'February';

UPDATE NDX
		SET	TMonthNumber = 3
		WHERE	TMonth = 'March';

UPDATE NDX
		SET	TMonthNumber = 4
		WHERE	TMonth = 'April';

UPDATE NDX
		SET	TMonthNumber = 5
		WHERE	TMonth = 'May';

UPDATE NDX
		SET	TMonthNumber = 6
		WHERE	TMonth = 'June';

UPDATE NDX
		SET	TMonthNumber = 7
		WHERE	TMonth = 'July';

UPDATE NDX
		SET	TMonthNumber = 8
		WHERE	TMonth = 'August';

UPDATE NDX
		SET	TMonthNumber = 9
		WHERE	TMonth = 'September';

UPDATE NDX
		SET	TMonthNumber = 10
		WHERE	TMonth = 'October';

UPDATE NDX
		SET	TMonthNumber = 11
		WHERE	TMonth = 'November';

UPDATE NDX
		SET	TMonthNumber = 12
		WHERE	TMonth = 'December';

===

An SQL or QBE Query can be used to show the data in the table (use GROUP BY):
[image:]
Now that the NDX table includes this column, we can use it as follows to sort the data correctly:
/* *** SQL-Query-2-63-D-B *** */

SELECT 	TYear, TMonth,
			AVG (ChangeClose) AS AverageFridayChangeClose
FROM 		NDX
GROUP BY	TYear, TMonth, TMonthNumber
ORDER BY TYear, TMonthNumber;

[image:]
E. The average ChangeClose grouped by TYear, TQuarter, TMonth shown in descending order of the average (you will have to give a name to the average in order to sort by it). Show TYear, TQuarter, and TMonth. Note that months appear in alphabetical and not calendar order. Explain what you need to do to obtain months in calendar order.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-E *** */

SELECT 	TYear, TQuarter, TMonth,
			AVG(ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY AverageChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-E-Access *** */

SELECT 	TYear, TQuarter, TMonth,
			AVG(ChangeClose) AS AverageChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY AVG(ChangeClose) DESC;

The result is:
[image:]
In order to obtain the months in calendar order, we would have to use the TMonthNumber column we created in PQ 2.63-D with a numerical value for each month (1, 2, 3, …, 12) and sort by those values.
F.
 The difference between the maximum ChangeClose and the minimum ChangeClose grouped by TYear, TQuarter, TMonth shown in descending order of the difference (you will have to give a name to the difference in order to sort by it). Show TYear, TQuarter, and TMonth.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-F *** */

SELECT 	TYear, TQuarter, TMonth,
			(MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY DifChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-F-Access *** */

SELECT 	TYear, TQuarter, TMonth,
			(MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose
FROM 		NDX
GROUP BY	TYear, TQuarter, TMonth
ORDER BY (MAX(ChangeClose) – MIN(ChangeClose)) DESC;

The query result is:
[image:]
G. The average ChangeClose grouped by TYear shown in descending order of the average (you will have to give a name to the average in order to sort by it). Show only groups for which the average is positive.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
For Microsoft SQL Server, Oracle Database and MySQL:
/* *** SQL-Query-2-63-G *** */

SELECT 	 TYear,
			 AVG(ChangeClose) AS AverageChangeClose
FROM 		 NDX
GROUP BY TYear
HAVING 	 AVG(ChangeClose) > 0
ORDER BY AverageChangeClose DESC;

For Microsoft Access:
Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:
/* *** SQL-Query-2-63-G-Access *** */

SELECT 	 TYear,
			 AVG(ChangeClose) AS AverageChangeClose
FROM 		 NDX
GROUP BY TYear
HAVING 	 AVG(ChangeClose) > 0
ORDER BY AVG(ChangeClose) DESC;

The result is:
[image:]
H. Display a single field with the date in the form: day/month/year. Do not be concerned with trailing blanks.
Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site (www.pearsonhighered.com/kroenke).
The solution to this question requires the student to use the DBMS help function or other references to figure out a conversion function to convert the numerical day of the month to a character string that can be combined with other data already in character format. The original table NDX does not have a numeric value for month, so the names of the months will appear in the solution. If we want the numeric value of the month, we could use the modified NDX table, which has a numeric value TMonthNumber column. We would need to use the data type conversion on this field as well.
The SQL Statement using SQL Server 2008 R2 character string functions is:
/* *** SQL-Query-2-63-H *** */

SELECT 	 CAST (TDayOfMonth AS Char (2)) + ' / ' +
			 TMonth + ' / ' + TYear AS DisplayDate
FROM 		 NDX;

The SQL Statement (as created with Expression Builder) for Microsoft Access 2010 is:
/* *** SQL-Query-2-63-H-Access *** */

SELECT	[NDX]![TDayOfMonth]
			&'/'&[NDX]![TMonth]
			&'/'&[NDX]![TYear] AS DisplayDate
FROM 		NDX;

The Microsoft Access 2010 result is:
[image:]
It is possible that volume (the number of shares traded) has some correlation with the direction of the stock market. Use the SQL you have learned in this chapter to investigate that possibility. Develop at least five different SQL statements in your investigation.
If volume is correlated with the direction of the stock market, this means that there should be either:
(1) POSITIVE CORRELEATION: Higher volume when the market closes higher, or
(2) NEGATIVE CORRELATION: Higher volume when the market closes lower.
When does the market close higher? When NDX.ChangeClose is positive.
/* *** SQL-Query-2-64-A *** */

SELECT 	 TMonth, TDayOfMonth, TYear, ChangeClose
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]

When does the market close lower? When NDX.ChangeClose is negative.
/* *** SQL-Query-2-64-B *** */

SELECT 	 TMonth, TDayOfMonth, TYear, ChangeClose
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]

Now, what are the average positive and negative changes?
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]/* *** SQL-Query-2-64-C *** */

SELECT 	 AVG (ChangeClose) AS AvgPositiveChange
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]
/* *** SQL-Query-2-64-D *** */

SELECT 	 AVG (ChangeClose) AS AvgNegativeChange
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]
Now, what are the average volumes associated with the positive and negative changes?
/* *** SQL-Query-2-64-E *** */

SELECT 	 AVG (ChangeClose) AS AvgPositiveChange,
			 AVG (Volume) AS AvgVolumeOnPositiveChange
FROM 		 NDX
WHERE		 ChangeClose > 0;

[image:]
/* *** SQL-Query-2-64-F *** */

SELECT 	 AVG (ChangeClose) AS AvgNegativeChange,
			 AVG (Volume) AS AvgVolumeOnNegativeChange
FROM 		 NDX
WHERE		 ChangeClose < 0;

[image:]
So, when there is a positive, or upward, change in the market we have an average volume of 641417.1117318 shares traded, and when we have a negative, or downward, change in the market we have an average volume of 6742500.66698428 shares. These numbers do not look significantly different, we will conclude that there is no correlation between the direction of the market movement and the volume of shares traded (if we wanted to be more formal, we could use a statistical procedure and do a hypothesis test as to whether or not there is really a statistically significant difference between these two numbers).
	
Chapter Two – Introduction to Structured Query Language

Page 2-3
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

ANSWERS TO MARCIA’S DRY CLEANING PROJECT QUESTIONS
Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from the competition by providing superior customer service. She wants to keep track of each of her customers and their orders. Ultimately, she wants to notify them that their clothes are ready via e-mail. To provide this service, she has developed an initial database with several tables. Three of those tables are the following:
CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)
In the database schema above, the primary keys are underlined and the foreign keys are shown in italics. The database that Marcia has created is named MDC, and the three tables in the MDC database schema are shown in Figure 2-33.
[image:]
FIGURE 2-33 – The MDC Database
The column characteristics for the tables are shown in Figures 2-34, 2-35, and 2-36. The relationship between CUSTOMER and INVOICE should enforce referential integrity, but not cascade updates or deletions, while the relationship between INVOICE and INVOICE_ITEM should enforce referential integrity and cascade both updates and deletions. The data for these tables are shown in Figures 2-37, 2-38, and 2-39.
We recommend that you create a Microsoft Access 2010 database named MDC-CH02.accdb using the database schema, column characteristics, and data shown above, and then use this database to test your solutions to the questions in this section. Alternatively, SQL scripts for creating the MDC-CH02 database in SQL Server, Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke .

[image:]
Figure 2-34 - Column Characteristics for the CUSTOMER Table

[image:]
Figure 2-35 - Column Characteristics for the INVOICE Table
[image:]
Figure 2-36 - Column Characteristics for the INVOICE_ITEM Table
[image:]
Figure 2-37 - Sample Data for the CUSTOMER table
[image:]
Figure 2-38 - Sample Data for the ORDER table
[image:]
Figure 2-39 - Sample Data for the ORDER_ITEM table

Write SQL statements and show the results based on the MDC data for each of the following:
1. Show all data in each of the tables.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-A-CUSTOMER *** */

SELECT 	*
FROM 		CUSTOMER;

Note there are two customers both named Betsy Miller.
[image:]

/* *** SQL-Query-MDC-A-INVOICE *** */

SELECT 	*
FROM 		INVOICE;

[image:]

/* *** SQL-Query-MDC-A-INVOICE-ITEM *** */

SELECT 	*
FROM 		INVOICE_ITEM;

[image:]
1.
List the Phone and LastName of all customers.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-B *** */

SELECT 	Phone, LastName
FROM 		CUSTOMER;

[image:]
1. List the Phone and LastName for all customers with a FirstName of “Nikki”.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-C *** */

SELECT 	Phone, LastName
FROM 		CUSTOMER
WHERE		FirstName = 'Nikki';

[image:]
1.
List the Phone, DateIn, and DateOut of all orders in excess of 100.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-D *** */

SELECT 	Phone, DateIn, DateOut
FROM 		CUSTOMER, INVOICE
WHERE		TotalAmount >100
	AND	CUSTOMER.CustomerID = INVOICE.CustomerNumber;

[image:]
1. List the Phone and FirstName of all customers whose first name starts with 'B'.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MDC-E *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		FirstName LIKE 'B%';

/* *** SQL-Query-MDC-E-Access *** */

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:
/* *** SQL-Query-MDC-E-Access *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		FirstName LIKE 'B*';

[image:]
1. List the Phone and FirstName of all customers whose last name includes the characters, 'cat'.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MDC-F *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		LastName LIKE '%cat%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:
/* *** SQL-Query-MDC-F-Access *** */

SELECT 	Phone, FirstName
FROM 		CUSTOMER
WHERE		LastName LIKE '*cat*';

[image:]
1. List the Phone, FirstName, and LastName for all customers whose second and third characters of phone number is 23.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that since the phone numbers in this database include the area code, we are really finding phone numbers with ‘23’ as the second and third numbers in the area code. We could, off course, write statements to find ‘23’ in the prefix or in the 4-digit sequence portion of the phone number.
The correct SQL-92 statement, which uses the wildcards % and _, is:
/* *** SQL-Query-MDC-G *** */

SELECT 	Phone, FirstName, LastName
FROM 		CUSTOMER
WHERE		Phone LIKE '_23%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL statement:
/* *** SQL-Query-MDC-G-Access *** */

SELECT 	Phone, FirstName, LastName
FROM 		CUSTOMER
WHERE		Phone LIKE '?23*';

[image:]
1. Determine the maximum and minimum TotalAmounts.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-H *** */

SELECT 	MAX (TotalAmt) AS MaxTotalAmount,
			MIN (TotalAmt) AS MinTotalAmount
FROM 		INVOICE;

[image:]

1. Determine the average TotalAmount.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Note that since ORDER is an SQL reserved word, it must be enclosed in delimiters (square brackets []).
/* *** SQL-Query-MDC-I *** */

SELECT 	AVG (TotalAmt) AS AvgTotalAmount
FROM 		[ORDER];

[image:]
1. Count the number of customers.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-J *** */

SELECT 	Count (*)AS NumberOfCustomers
FROM 		CUSTOMER;

[image:]

1. Group customers by LastName and then by FirstName.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-K *** */

SELECT 	LastName, FirstName
FROM 		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]
1. Count the number of customers having each combination of LastName and FirstName.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-L *** */

SELECT 	LastName, FirstName,
			COUNT (*) AS Last_First_Combination_Count
FROM 		CUSTOMER
GROUP BY	LastName, FirstName;

[image:]

1. Show the FirstName and LastName of all customers who have had an order with TotalAmount greater than 100. Use a subquery. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-M *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER
WHERE		CustomerID IN
			(SELECT CustomerNumber
			FROM INVOICE
			WHERE TotalAmount > 100)
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the FirstName and LastName of all customers who have had an order with TotalAmount greater than 100. Use a join. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-N *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER, INVOICE
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	TotalAmount > 100
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the FirstName and LastName of all customers who have had an order with an Item named “Dress Shirt”. Use a subquery. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-O *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER
WHERE		CustomerID IN
			(SELECT	CustomerNumber
			FROM 		INVOICE
			WHERE 	InvoiceNumber IN
						(SELECT InvoiceNumber
						FROM INVOICE_ITEM
						WHERE Item = 'Dress Shirt'))
ORDER BY	LastName, FirstName DESC;

[image:]

1. Show the FirstName and LastName of all customers who have had an order with an Item named “Dress Shirt”. Use a join. Present the results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MDC-P *** */

SELECT 	FirstName, LastName
FROM 		CUSTOMER, INVOICE, INVOICE_ITEM
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
	AND	INVOICE_ITEM.Item = 'Dress Shirt'
ORDER BY	LastName, FirstName DESC;

[image:]
1. Show the FirstName, LastName and TotalAmount of all customers who have had an order with an Item named “Dress Shirt”. Use a join with a subquery. Present results sorted by LastName in ascending order and then FirstName in descending order.
Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
Since we want to display data in fields from two tables, these tables must be combined with a join. Data in a table without displayed fields can still be brought into the query with a subquery. Therefore, we will join CUSTOMER and INVOICE, while using a subquery with INVOICE_ITEM.
/* *** SQL-Query-MDC-Q *** */

SELECT 	FirstName, LastName, TotalAmount
FROM 		CUSTOMER, INVOICE
WHERE		CUSTOMER.CustomerID = INVOICE.CustomerNumber
	AND	INVOICE.InvoiceNumber IN
						(SELECT InvoiceNumber
						 FROM INVOICE_ITEM
						 WHERE Item = 'Dress Shirt')
ORDER BY	LastName, FirstName DESC;

[image:]

ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS
James Morgan owns and operates Morgan Importing, which purchases antiques and home furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and then sells these items in the United States. James tracks the Asian purchases and subsequent shipments of these items to Los Angeles by using a database to keep a list of items purchased, shipments of the purchased items, and the items in each shipment. His database includes the following tables:
ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmt, ExchangeRate)
SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, DepartureDate, ArrivalDate, InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)
In the database schema above, the primary keys are underlined and the foreign keys are shown in italics. The database that James has created is named MI, and the three tables in the MI database schema are shown in Figure 2-40.
[image:]
Figure 2-40 – The MI Database

The column characteristics for the tables are shown in Figures 2-41, 2-42, and 2-43. The data for the tables are shown in Figures 2-44, 2-45, and 2-46. The relationship between ITEM and SHIPMENT_ITEM should enforce referential integrity, and although it should cascade updates, it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT_ITEM should enforce referential integrity and cascade both updates and deletions.
We recommend that you create a Microsoft Access 2010 database named MI-Ch02.accdb using the database schema, column characteristics, and data shown above, and then use this database to test your solutions to the questions in this section. Alternatively, SQL scripts for creating the MI-CH02 database in SQL Server, Oracle Database, and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.
[image:]
Figure 2-41 - Column Characteristics for the ITEM Table
[image:]
Figure 2-42 - Column Characteristics for the SHIPMENT Table
[image:]
Figure 2-43 - Column Characteristics for the SHIPMENT_ITEM Table
[image:]
Figure 2-44 - Sample Data for the ITEM Table
[image:]
Figure 2-45 - Sample Data for the SHIPMENT Table

[image:]
Figure 2-46 - Sample Data for the SHIPMENT_ITEM Table
Write SQL statements and show the results based on the MI data for each of the following:
A. Show all data in each of the tables.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-A-ITEM *** */

SELECT 	*
FROM 		ITEM;

[image:]
/* *** SQL-Query-MI-A-SHIPMENT *** */

SELECT 	*
FROM 		SHIPMENT;

[image:]

/* *** SQL-Query-MI-A-SHIPMENT-ITEM *** */

SELECT 	*
FROM 		SHIPMENT_ITEM;

[image:]

B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-B *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT;

[image:]
C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments with an insured value greater than $10,000.00.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-C *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		InsuredValue > 10000;

[image:]
D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers whose name starts with “AB”.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MI-D *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		Shipper LIKE 'AB%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:
/* *** SQL-Query-MI-D-Access *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber
FROM 		SHIPMENT
WHERE		Shipper LIKE 'AB*';

[image:]

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all shipments that departed in December.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcard %, is:
/* *** SQL-Query-MI-E *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '12%';

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:
/* *** SQL-Query-MI-E-Access *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '12*';

[image:]
F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all shipments that departed on the 10th of any month.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
The correct SQL-92 statement, which uses the wildcards % and _, is:
/* *** SQL-Query-MI-F *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '___10%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL statement:
/* *** SQL-Query-MI-F-Access-A *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '???10*';

Further, Microsoft Access does NOT show the leading zero in MM, so we must add a compound WHERE clause to get months without the leading zeros:
/* *** SQL-Query-MI-F-Access-B *** */

SELECT 	ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM 		SHIPMENT
WHERE		DepartureDate LIKE '???10*'
	OR		DepartureDate LIKE '??10*';

[image:]
G. Determine the maximum and minimum InsuredValue.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-G *** */

SELECT 	MAX (InsuredValue) AS MaxInsuredValue,
			MIN (InsuredValue) AS MinInsuredValue,
FROM 		SHIPMENT;

[image:]

H. Determine the average InsuredValue.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-H *** */

SELECT 	AVG (InsuredValue) AS AvgInsuredValue
FROM 		SHIPMENT;

[image:]
I. Count the number of shipments.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-I *** */

SELECT 	COUNT (*) AS NumberOfShipments
FROM 		SHIPMENT;

[image:]
J. Show ItemID, Description, Store, and a calculated column named StdCurrencyAmount that is equal to LocalCurrencyAmt times the ExchangeRate for all rows of ITEM.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-J *** */

SELECT 	Item, Store,
			LocalCurrencyAmt * ExchangeRate AS StdCurrencyAmount
FROM 		ITEM;

[image:]
K. Group item purchases by City and Store.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-K *** */

SELECT 		City, Store
FROM 			ITEM
GROUP BY		City, Store;

[image:]
L. Count the number of purchases having each combination of City and Store.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-L *** */

SELECT 		City, Store
				COUNT (*) AS City_Store_Combination_Count
FROM 			ITEM
GROUP BY		City, Store;

[image:]
M. Show the ShipperName and DepartureDate of all shipments that have an item with a value of 1000 or more. Use a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-M *** */

SELECT 	ShipperName, DepartureDate
FROM 		SHIPMENT
WHERE		ShipmentID IN
			(SELECT	ShipmentID
			 FROM 	SHIPMENT_ITEM
			 WHERE	Value = 1000
				 OR	Value > 1000)
ORDER BY ShipperName, DepartureDate DESC;

[image:]
N. Show the ShipperName and DepartureDate of all shipments that have an item with a value of 1000 or more. Use a join. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
This question is a little more complicated than it appears. Note how the following three queries determine that there are actually only two shipments that meet the criteria.
/* *** SQL-Query-MI-N-A *** */

SELECT 		ShipperName, DepartureDate
FROM 			SHIPMENT, SHIPMENT_ITEM
WHERE			SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND		(Value = 1000 OR Value > 1000)
ORDER BY 	ShipperName, DepartureDate DESC;

[image:]

We'll add some more details to confirm the fact that the three lines for International are actually only one shipment. Note that we can use the greater than or equal to operator >= to simplify the WHERE clause:
/* *** SQL-Query-MI-N-B *** */

SELECT 	SHIPMENT.ShipmentID, ShipmentItemID, Description,
			ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM, ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	SHIPMENT_ITEM.ItemID = ITEM.ItemID
	AND	Value >= 1000
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
Now that we can see that all three lines for International are for ShipmentID 4, we’ll get the proper results from the revised query by adding the DISTINCT keyword:
/* *** SQL-Query-MI-N-C *** */

SELECT 	DISTINCT ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	Value >= 1000
ORDER BY ShipperName, DepartureDate DESC;

[image:]
O. Show the ShipperName and DepartureDate of all shipments that have an item that was purchased in Singapore. Use a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-O *** */

SELECT 	ShipperName, DepartureDate
FROM 		SHIPMENT
WHERE		ShipmentID IN
			(SELECT	ShipmentID
			 FROM 	SHIPMENT_ITEM
			 WHERE	ItemID IN
						(SELECT	ItemID
						 FROM		ITEM
						 WHERE	City = 'Singapore'))
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
P. Show the ShipperName and DepartureDate of all shipments that have an item that was purchased in Singapore. Use a join. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
As in question N, we will have to use a DISTINCT keyword to get the appropriate answer.
/* *** SQL-Query-MI-P *** */

SELECT 	DISTINCT ShipperName, DepartureDate
FROM 		SHIPMENT, SHIPMENT_ITEM, ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	SHIPMENT_ITEM.ItemID = ITEM.ItemID
	AND	City = 'Singapore'
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
Q. Show the ShipperName, DepartureDate of shipment, and Value for items that were purchased in Singapore. Use a combination of a join and a subquery. Present results sorted by ShipperName in ascending order and then DepartureDate in descending order.
Solutions to Morgan Importing questions are contained in the Microsoft Access database DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the text’s Web site (www.pearsonhighered.com/kroenke).
/* *** SQL-Query-MI-Q *** */

SELECT 	ShipperName, DepartureDate, Value
FROM 		SHIPMENT, SHIPMENT_ITEM
WHERE		SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
	AND	ItemID IN
			(SELECT 	ItemID
			 FROM		ITEM
			 WHERE	City = 'Singapore')
ORDER BY	ShipperName, DepartureDate DESC;

[image:]
image2.png
Editorial Director: Sally Yagan ‘Operations Specialst: Cathieen Fetersen

Editorin Chif Eic vendsen Crestve Dirctor: s B
Executive Editor b Horan St Art Direcor/ Superisor: et S
Editoia Projct Manager: ey Lotus Interior and Cover Designer: Karen Quigey
Editoria Asetant: e By Cove Phote Voo Shutenock.
VP Directorof Marketing Patrice Media ProjectManager: Lisa Rinaldi

Lumumba ores Media Project Manager. Edoria: Alon Longley
‘Senior Marketing Manager: Arce ebgren, Full-Srvice Poject Management: s Welsh/ ook Masters .
‘Senior Managing Editor: udy Lsle ‘Compasiton: Inega Sovare S
Producton Project Manager: Priner/Binder: . Donaalley\Wiard

Jecqelne A Martin ‘Cover Printer:Lehigh Phocnix Coor Hagestown.
‘Senior Opertions Supervisor:Arid Vi Text Font KepM_275LT573 NO 100F

Cracit snd scknowladgments ortowed rom other scesand eprocced. it permision, in
s txtbook appearonthe spproprise page wihintext.

Mictosft and Windows” re rgstred trademaks fthe Micosoft Corporation i the US . and.
othercountie. Scxsenhots and fcons epind with penmision o the Microsoft Corporsion.
T ook s not sporsore o eorsd b o alfata withthe Micrusot Corporaton.

MySQL, the MySQL GU Tos” (MySCQL Query Brower”and MySQL Admiisirator), the MySQL.
Command Line et sn MySQL. Workoench s registec tracemarksofSun Micrsystems,
inc i the S s othe countie. Scrsnshos s cors repinad with permision of S

‘Microsystems,Inc.This ook s no sponsored o endrsed b o iilalod with Sun Microsystems.

Eclps an The Eclipse PHP Deelopment Toos(PDIT) Prject”arstrademarks o te Ecips Foun-
daton IncTh Ecps latior i copyight Ectpsecopyight holdrsadothrs, 20002107, Sre-
ot epeited under th erms of e Belpse Publc icense 1.0 avdlble at saweclpsoory gl
et vI0BimL. Tis bk s not sporsore o ecrse by o affated with e el Foundation Inc.

PH s copyrght Th PHP G 1990-2008, and s usd under th terms o the PHP Public Licnse
VA01 avalil i/ ket cense3_O1 . This book i ot sponsoredorandorse by o
iatad with The PHP Group.

Copyraht ©.2012, 210,206, 2001, 2000 by ParsonEducaton Ine. pbliing as Pretice Hall
Al gt esrve. Moot inth Uribd Sates of Americ. This publicaton i proectad by
‘Copyrahl, and prmission should beobaine from th publierpio 0 any prohiild rprodoc-
o, storagein erevlsystam, or transmision nany [or o by any means, leconic, mechari-
cal. photocopying recorting orikewise. To cbtain permissin(s) o use matail rom s work.
ploase subait writtn equest 0 Posrson Education I, Pemissions Departmen, One ke
Stret, Uppe Sadle i New esey 07453, or you oy ux yous request 0 201,236 3200

Many of the dsigntions by manfcturesand sl o distingih thei procts s csimd 55
trademarks Whare those dsignations appear i his bok. and (h publsher was awar ofa
trademark csim, thedesgnations have been printed n il cape r ll csps.

Library of Congres Cataloging in-Publicaton Data.
Koenke, David.
Database procesing fundamentals, desgn,and implementation £ 12./ David M. Kroenke,
David), A
pem.
Includos bifogrphical efeencesand ndex.
ISBN78.0.13.2570114 (nardorer-alk paper)
1 Databaso management. 1 Auex David]. 1L Tile
aursapsKze 2
57—
2om011001

image50.png
ProjectiD Name Department MaxHours | StartDate | EndDate
1000 2011 Q3 Product Plan Marketing 135.00 05/10/11 06/15/11
1100 2011 Q3 Portfolio Analysis | Finance 120.00 07/05/11 07/25/11
1200 2011 Q3 Tax Preparation | Accounting 145.00 08/10/11 10/25/11
1300 2011 Q4 Product Plan Marketing 150.00 08/10/11 09/15/11
1400 2011 Q4 Portfolio Analysis | Finance 140.00 10/05/11

image51.png
Name Department ~| MaxHours - StartDate - EndDate -

2011Q3ProductPlan Marketing 13500 5/10/2011 6/15/2011,
1100 2011 03 Portfolio Analysis _Finance 12000 7/5/2011 7/25/2011,
1200 2011 03 Tax Preparation Accounting 14500 8/10/2011 10/15/2011,
1300 2011 04 Product Plan Marketing 15000 8/10/2011 /15/2011,
1400 2011 Q4 Portfolio Analysis Finance 14000 10/5/2011

s I ™

image52.png
ASSIGNMENT

Column Name Type Key Required Remarks

ProjectiD Number Primary Key, | Yes Long Integer
Foreign Key

EmployeeNumber Number Primary Key, | Yes Long Integer
Foreign Key

HoursWorked Number No No Double

image53.png
Field Properties

‘General [Lookup|

Field Size

Long Integer

Format

Decimal Places

Auto

nput Mask:

Caption

Default Value

Validation Rule

Validation Text

Required

Yes

Indexed

Smart Tags

Text Align

General

Afield name can be up to 64 characters long,
including spaces. Press FL. for help on field

image54.png
PROJECT
7 Projectio
DEPARTMENT cof | Neme

7 Departmentame
BudgetCode
OfficeNumber

Department
Maxttours
Sroate 7 Projecd

iote 9 Employeehumber
Phone EndDats

HoursWorked

EMPLOYEE
7 EmployeeNumber
Firsthame.
LastName
Department
Phone.
Email

EmployeeNun~] EmployeeNumbe ~

Enforce Referentil Integrity
[T Cascade Update Related Fields
[T cascade Delete Related Records:

Relatonship Type: One-To-Many

image55.png
PROJECT
7 projectiD
DEPARTMENT o) Name

7 Departmentame
BudgetCode
OfficeNumber

Department
MaxHours ASSIGNMENT

StartDate 7 projectin
EndDate @ EmployeeNumber

Phone.

HoursWorked

EMPLOYEE
7 EmployeeNumber
Firsthame.
LastName
Department
Phone.
Email

ProjectD <] Projectip

Enforce Referentil Integrity
[T Cascade Update Related Fields
Cascade Delete Related Records.

Relatonship Type: One-To-Many

image56.png
ProjectiD | EmployeeNumber | HoursWorked
1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1100 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 6 275

image57.png
Record WAL o715 | 010 | o Fiter [[Search KD

image58.png
1100 2011 Q3 Portfolio Analysis
1200 2011 Q3 Tax Preparation
1300 2011 04 Product Plan

1400 2011 Q4 Portfolio Analysis

StartDate ~

Finance 7/5/2011
Accounting 14500 8/10/2011
Marketing 15000 8/10/2011
Finance 14000 10/5/2011

7/25/2011
10/15/2011
9/15/2011

Record: 14

Clofs

S 1078 | N No Filter [[search

image59.png
1100 2011 03 Portfolio Analysis 7/s/2011 7/25/2011

1200 2011 Q3 Tax Preparation 8/10/2011 10/15/2011
1300 2011 Q4 Product Plan 8/10/2011 9/15/2011
1400 2011 Q4 Portfolio Analysis 10/5/2011

T I e T

image60.png
ProjectiD Name - |Department - | MaxHours - | StartDate - EndDate -

*

Record: 0 A[Lof1 |) | WKNoFier | search I m [

image61.png
- | Department - StartDate + EndDate -

2011 Q4 Portfolio Analysis Finance 14000 10/5/2011

MaxHours -

T

image62.png
1100

1 Jacobs
1 Jacobs

2 Jackson

4 Caruthers
4 Caruthers
4 Caruthers
5 Jones

5 Jones
6 Abernathy.
6 Abernathy
8 Jackson
8 Jackson
10 Numoto
10 Numoto

(New)

Mary
Rosalie
Tom
Tom
Tom
Heather
Heather
Mary
Mary
Tom
Tom
Ken

Ken

360-285-8110
360-285-8120
360-285-8310
360-285-8310
360-285-8310
360-285-8320
360-285-8320
360-285-8410
360-285-8410
360-287-8610
360-287-8610
360-287-8710
360-287-8710

Record: 4« 10f15

ST P)

image63.png
- ProjectName | ProjectDepartment - | EmployeeNumber -

1000 2011 Q3 Product Plan

1000 2011 Q3 Product Plan
1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1300 2011 04 Product Plan

1300 2011 04 Product Plan

1300 2011 04 Product Plan

1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis

Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

8 Jackson
10 Numoto
4 caruthers
6 Abernathy
1 Jacobs
2 Jackson
4 caruthers
5 Jones
1 Jacobs
8 Jackson
10 Numoto
4 caruthers
5 Jones
6 Abernathy

Tom
Ken
Tom
Mary
Mary
Rosalie
Tom
Heather
Mary
Tom
Ken
Tom
Heather
Mary

Employeephone.

360-287-8610
360-287-8710
360-285-8310
360-285-8410
360-285-8110
360-285-8120
360-285-8310
360-285-8320
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8320
360-285-8410

Record W UL orts v A K Norer [[seoreh

image64.png
ProjectDepartment +

DepartmentPhone -

EmployeeNumber -

Employeephone

1000 2011 Q3 Product Plan
1000 2011 Q3 Product Plan

1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1300 2011 04 Product Plan

1300 2011 04 Product Plan

1300 2011 04 Product Plan

1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis

Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400
360-285-8300
360-285-8300
360-285-8300
360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400

8 Jackson
1 Jacobs
1 Jacobs
6 Abernathy
4 Caruthers
5 Jones
4 caruthers
2 Jackson

10 Numoto
8 Jackson
1 Jacobs
6 Abernathy
5 Jones
4 Caruthers

Tom
Mary
Mary
Mary
Tom
Heather
Tom
Rosalie
Ken
Tom
Mary
Mary
Heather
Tom

360-287-8610
360-285-8110
360-285-8110
360-285-8410
360-285-8310
360-285-8320
360-285-8310
360-285-8120
360-287-8710
360-287-8610
360-285-8110
360-285-8410
360-285-8320
360-285-8310

T IR e T

image65.png
ProjectName - | ProjectDepartment - DepartmentPhone - | EmployeeNumber - LastName - | FirstName - EmployeePhone -

2011 Q3 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1000 2011 Q3 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1000 2011 Q3 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110
1300 2011 04 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1300 2011 04 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1300 2011 04 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110
W ore T K Noiter | [searcn

image66.png
Record: 4 ¢ 1of1

S0 | No Filter [[search

image67.png
~ TotalMaxHoursForMarketingProjects -

e e T e

image68.png
~ AverageMaxHoursForMarketingProjects -

e e T e

image69.png
NumberOfDepartmentProjects

Finance
Marketing

Record: 4 ¢ 10f3

image70.png
Field: |PROJECT.*
Table: | PROJECT
Sort:

Show:

gam o]

image71.png
gam o]

image72.png
gam o]

image73.png
gam o]

image74.png
gam o]

image75.png
gam o]

image76.png
ASSIGNMENT

@ projectin

HoursWorked

DEPARTMENT

@ Departmentame
BudgetCode
OfficeNumber
Phone.

9 employeetumber |2 ———— |

EMPLOYEE

@ EmployeeNumber
Firsthame.
LastName
Department
Phone.

Email

<

Field: [ProjectiD Project Name: Name ProjectDepartment: Department [] DepartmentPhone: Phone | Employeehumber LastName Firsthame EmployecPhone: Phone
Table: | PROJECT PROJECT PROJECT DEPARTMENT EMPLOYEE EMpLOYEE EMPLOYEE EMPLOYEE

Sort: | Ascending

Show:
Critera:

image77.png
ProjectName - | ProjectDepartment - | DepartmentPhone - EmployeeNumber - | LastName - | FirstName - EmployeePhone -
2011 Q3 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1100 2011 3 Portfolio Analysis Finance 360-285-8400 6 Abernathy Mary 360-285-8410
1200 2011 Q3 Tax Preparation Accounting 360-285-8300 5 Jones Heather 360-285-8320
1200 2011 Q3 Tax Preparation Accounting 360-285-8300 4 caruthers Tom 360-285-8310
1300 2011 04 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1400 2011 04 Portfolio Analysis Finance 360-285-8400 6 Abernathy Mary 360-285-8410
W ore T K Noiter | [searcn

image78.png
ProjectiD
PROJECT
Ascending

<

ProjectName: Name ProjectDepartment: Department [EmployeeNumber
PROJECT PROJECT EMPLOYEE,

Lasthiame
EMPLOYEE

image79.png
me - mployecsnone
mm 2011 Q3 Product Plan Marketing 8 Jackson Tom 360-287-8610
1000 2011 3 Product Plan Marketing 1 Jacobs Mary 360-285-8110
1100 2011 Q3 Portfolio Analysis Finance 1 Jacobs Mary 360-285-8110
1100 2011 Q3 Portolio Analysis Finance 6 Abernathy Mary 360-285-8410
1100 2011 Q3 Portfolio Analysis Finance 4Caruthers Tom 360-285-8310
1200 2011 Q3 Tax Preparation Accounting 5 Jones Heather 360-285-8320
1200 2011 Q3 Tax Preparation Accounting 4Caruthers Tom 360-285-8310
1200 2011 Q3 Tax Preparation Accounting 2 Jackson Rosalie 360-285-8120
1300 2011 Q4 Product Plan Marketing 10 Numoto Ken 360-287-8710
1300 2011 Q4 Product Plan Marketing 8 Jackson Tom 360-287-8610
1300 2011 Q4 Product Plan Marketing 1 Jacobs Mary 360-285-8110
1400 2011 Q4 Portfolio Analysis Finance 6 Abernathy Mary 360-285-8410
1400 2011 Q4 Portfolio Analysis Finance 5 Jones Heather 360-285-8320
1400 2011 Q4 Portfolio Analysis Finance 4 Caruthers Tom 360-285-8310
(New)
s L e

image80.png
<

image81.png
QBE-Query-02-G-PA

ProjectiD
Projectame
ProjectDepartment

Field: | Projectin Projectiame. ProjectDepartment
Table: | QBE-Quey-02-G-PA | QBE-Query-02-G-PA | QBE-Quen-02-G-PA
Sort:
Show:

gam o]

image82.png
ProjectiD

QBE-Query-02-G-PAD| QBE-Query-02-G-PAD QBE-Query-02-G-PAD

<

Projectiame.

ProjectDepartment

‘QKMM‘ QBE-Quen-02-G-PAD

Lasthiame
EMPLOYEE

>

image83.png
mm 2011 Q3 Product Plan
1000 2011 Q3 Product Plan

1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1100 2011 Q3 Portfolio Analysis
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1200 2011 Q3 Tax Preparation
1300 2011 04 Product Plan

1300 2011 04 Product Plan

1300 2011 04 Product Plan

1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis
1400 2011 Q4 Portfolio Analysis

ProjectDepartment -

Marketing
Marketing
Finance
Finance
Finance
Accounting
Accounting
Accounting
Marketing
Marketing
Marketing
Finance
Finance
Finance

DepartmentPhone -

360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400
360-285-8300
360-285-8300
360-285-8300
360-287-8700
360-287-8700
360-287-8700
360-285-8400
360-285-8400
360-285-8400

EmployeeNumber -

8 Jackson
10 Numoto
4 caruthers
6 Abernathy
1 Jacobs
2 Jackson
4 caruthers
5 Jones
1 Jacobs
8 Jackson
10 Numoto
4 caruthers
5 Jones
6 Abernathy

Tom
Ken
Tom
Mary
Mary
Rosalie
Tom
Heather
Mary
Tom
Ken
Tom
Heather
Mary

EmployeePhone -

360-287-8610
360-287-8710
360-285-8310
360-285-8410
360-285-8110
360-285-8120
360-285-8310
360-285-8320
360-285-8110
360-287-8610
360-287-8710
360-285-8310
360-285-8320
360-285-8410

T I e T

image84.png
ProjectName - | ProjectDepartment - DepartmentPhone - | EmployeeNumber - LastName - | FirstName - EmployeePhone -

2011 Q3 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1000 2011 Q3 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1000 2011 Q3 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110
1300 2011 04 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1300 2011 04 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1300 2011 04 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110

W ore T K Noiter | [searcn

image85.png
ASSIGNMENT

EMPLOYEE

@ projectin
@ EmployeeNumber
HoursWorked

DEPARTMENT

@ Departmentame
BudgetCode
OfficeNumber
Phone.

@ EmployeeNumber
Firsthame.
LastName
Department
Phone.

Email

<

Field: [ProjectiD Project Name: Name. ProjeciDepartment: Department _ DepartmentPhone: Phone | EmployeeNumber | Lastiame Firsthame EmployecPhone: Phone
Table: | PROJECT PROJECT PROJECT DEPARTMENT EMPLOYEE EMpLOYEE EMPLOYEE EMPLOYEE

Sort: |Ascending

Show:
Critera: “Marketing”

image86.png
X

ProjectName - | ProjectDepartment - | DepartmentPhone - EmployeeNumber - | LastName - | FirstName - EmployeePhone -
2011 Q3 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1300 2011 04 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710

Record: 4 1012 | » M+ | ‘ NoFilter | Search

image87.png
m o

image88.png
1000 2011 Q3 Product Plan
1000 2011 Q3 Product Plan
1300 2011 04 Product Plan
1300 2011 04 Product Plan
1300 2011 04 Product Plan

ProjectDepartment

Marketing
Marketing
Marketing
Marketing
Marketing

EmployeeNumber -

8 Jackson
1 Jacobs
10 Numoto
8 Jackson
1 Jacobs
(New)

Tom
Mary
Ken
Tom
Mary

Employeephone

360-287-8610
360-285-8110
360-287-8710
360-287-8610
360-285-8110

e IR T

image89.png
<

image90.png
< >

image91.png
Field: | Projectin Projectiame. ProjectDepartment Lasthiame
Tole | G5 Quer-02:74D| GBE eny 21540 QBE-uery 031170 O3 Qo GEHL7AD GBE a2 4P40 EMPLOYEE
Sort:

Show:

gam o]

image92.png
EnployeeNumber - Enployecthone. -

1000 201103 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1000 2011 03 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710
1300 201104 Product Plan Marketing 360-287-8700 1 Jacobs Mary 360-285-8110
1300 201104 Product Plan Marketing 360-287-8700 8 Jackson Tom 360-287-8610
1300 201104 Product Plan Marketing 360-287-8700 10 Numoto Ken 360-287-8710

e IR T

image93.png
NumberOfMarketingProjects: ProjectiD
PROJECT
Count

<

>

image3.png
File Edit View Query Project Debug Tools
Dnewouery | Oy |2 8 & |0 |5 W G
22 43| copecosd <] 1 beate

Window Commurity Help

=181]

(=1

> B v i3 e E [| QN e

| DBP-€12-M55QL..03\Auer (56)) | <
’* * =
J+ Tness aze the Microsofs SQL Server 2008/2008 R2 SQL code solurions v A
- /

/% The SQL SELECT/FROM/WHERE Framework */
/% DBP-e12 Chapter0? SQL-Query-CHO2-01 */

sezzcT Department, Buyer
FROM SKU_DATA;

/% DBP-e12 Chapter0? SQL-Query-CHO2-02 */

R ————

image94.png
MaxtoursForMarketingProjects: Maxtours
PROJECT

<

PROJECT
Group 8y

image95.png
AverageHoursForMarketingProjects: MaxHours
PROJECT

<

image96.png
Field: [Department [<] NumberOfDepsrtmenterojects: rojectid =
Table: | PROJECT PROJECT B
Totat: | Group By Count
Sort
Shov: o

Crters

M
RAm 3]

image97.png
-4.35000000000014
0.670000000000073
-5.12999999999987
0.309999999999945.
2547
4140000000000
9.82999999999993
-32.3599999999999
-3.34999999999991
-0.99000000000001
-7.49999999999577
-32.6900000000001

-16.4400000000001

24.55
Record: 4« 101920 | » ¥ ¥ | ' NoFiter | Search

image98.png
X

MaxFridayChangeClose - | AverageFridayChangeClose -
ma 0.146021739130452

Record: 4+ 1of1 W0 | K No Filter | [Search

image99.png
AverageChangeClose

| |1986 0.0720158102766874
1987 0.117351778656135
| 1988 0.167272727272733
| 1989 0.368452380952389
| |1990 -0.184229249011848
1991 1.03023715415022
| |1992 0.230944881889775
| 1993 0.301146245059303
| |1994 -1.55670634920634
| 1995 0.682380952380964.
| |199 0.965078740157492
| 1997 0.669841897233221
| 1998 3.35388888888891
| 1999 7.42785714285718
| |2000 -5.42115079365074
| |2001 -3.08226612902223
| |2002 -2.37071999999998
| |2003 1.91884920634923
2004 8.75666666666666
Record: W < 10f20 | » M+ | ' o Filter | Search

image4.png
The INVENTORY
table

The WAREHOUSE
table

RETAIL_ORDER ORDER ITEM
¥ Orderumber 22 [V Ordertumber
StoreNumber 9 sw
Storezip Quantity
‘OrderMonth Price
Ordertear Etendedprice
Orderotal
SKU_DATA
INVENTORY WAREHOUSE
T Warchouseld = L. ¥ WarchouselD
9 sw WarehouseCity
SKU_Description Warehousestate
Quantityontand Manager
‘QuantityOnOrder SaquareFeet

image100.png
T™onth -

»

AverageChangeClose -

December 0.593809523809532 =
| [1985 November 1058
[|1985 October 0.303636363636368
| |1986 April 0.550000000000009
| |1986 August 0.666190476190487
| |1986 December -0.594090909090896
| |1986 February 0.789473684210538
| |1986 January 0.057272727272732
| |1986 July -1.62818181818181
| |1986 June 0519047619047553
| |1986 March 0.843500000000003
| |1986 May 0.785714285714291
| |1986 November 0.364210526315796
| |1986 October 0.60739130434783
| |1986 september -1.35285714285714
| |1987 April -0.115238095238088
| |1987 August 1.25952380952383
| |1987 December 1.73863636363637
| |1987 February 1.6921052631579
| |1987 January 2.40666666666668
1987 July 0.646363636363638 [+

Record: 4 < 101220 b M | W NoFilter | Search

image101.png
2 February
3 March

4 april

5 May

6 June

7 uly

8 August

9 september
10 October

11 November
12 December

Record: 14

C1of12

S 0| K No Filter [[search

image102.png
AveragefridayChangeClose - =

October 0.303636363636368
| [1985 November 1058
[|1985 December 0.593809523809532
| |1986 January 0.057272727272732
| |1986 February 0.789473684210538
| |1986 March 0.843500000000003
| |1986 April 0.550000000000009
| |1986 May 0.785714285714291
| |1986 June -0.0519047619047553
| |1986 July -1.62818181818181
| |1986 August 0.666190476190487
| |1986 september -1.35285714285714
| |1986 October 0.60739130434783
| |1986 November 0.364210526315796
| |1986 December -0.594090909090896
| |1987 January 2.40666666666668
| |1987 February 1.6921052631579
| |1987 March 0.299090909090916
| |1987 April -0.115238095238088
| |1987 May 0.39400000000002
| |1987 June 0.0427272727272778
| |1987 July 0.646363636363638
| |1987 August 1.25952380952383

1987 september -0.387619047619033 [+
Record: 4 < 101220 | » M | W NoFilter | Search

image103.png
AverageChangeClose -
(1999 4 December 33.6872727272728
[2000 3 August 20.3582608695652
[|2000 2 June 19.9868181818182
1999 4 November 15.6795238095239
| |1999 1 January 15.3252631578348
2001 2 April 14.095
[[1998 4 December 12.6386363636364
2001 1 January 11.9666666666667
2001 4 November 11.0128571428572
1999 4 October 10.9304761904763
[[1998 3 september 9.76857142857144
1999 2 June 9.41227272727276
| |2000 1 January 8.75666666666666
2001 4 October 8.53956521739133
| |1999 1 March 7.87434782608696
| |1998 4 November 7.87200000000003
| |2002 4 October 6.82695652173916
| |1997 3uly 6.80590909090912
[[1998 2June 6.60318181818183
| |1998 1 February 6.47368421052633
| |2002 4 November 6.32800000000003
1999 3 August 5.72454545454586
2000 1 March 5.69130434782619 [+
Record: 1 41101220 | > 43| ¥k No Filter | search I

image104.png
DifchangeClose

1 January
[2000 2 May 553.88
[|2000 4 October 518.97
[2000 4 December 487.78
[|2000 1 January 433.14
[2000 4 November 423.36
[|2000 1 March 313
| |199 1 January 406.18
[|2000 2June 402.58
[2000 3uly 360.91
[|2000 1 February 360.59
[2000 3 september 325.02
2001 2 April 280,96
2001 1 February 255.95
2001 1 March 24247
[2000 3 August 23101
| |1999 3 september 224.96
2001 2 May 2008
| |1999 4 December 2136
1999 4 November 205.26
| |1999 1 February 199.38
1999 2 April 196.55
2001 3uly 19098 [+

e e o 720 T B e iy

image105.png
AverageChangeClose -

1999 7.42785714285718
1998 3.35388888888891
2003 1.91884920634923
1991 1.03023715415022
199 0.965078740157492
1995 0.682380952380964.
1997 0.669841897233221
1985 0.639841269841275
1989 0.368452380952389
1993 0.301146245059303
1992 0.230944881889775
1988 0.167272727272733
1987 0.117351778656135
1986 0.0720158102766874.

Record: 4 < 1015 | » M+ | ' No Filter | Searcn

image5.png
WAREHOUSE

Column Name Type Key Required Remarks
WarehouselD Integer Primary Key Yes Surrogate Key
WarehouseCity Text (30) Yes

WarehouseState Text (2) Yes

Manager Text (35) No No

SquareFeet Integer No No

image106.png
| 8/January /2004

| 7/1anuary /2008

| |6/January /2008

| |5/1anuary /2008

| 2/1anuary /2008

31/ December /2003
30/ December /2003
29/ December /2003
26/ December /2003
| 24/ December /2003
23/ December /2003
22/ December /2003
19/ December /2003
18/ December /2003
| |17/ December /2003
16/ December /2003
15/ December /2003

Record: 4« 1of4611 | » M b

& No Filter

Search

image107.png
ChangeClose -

16 2003
[Recora: < 1012506 | o1 v | o Fier | searen |

image108.png
December 15 2003
December 92003

52008
Records 1« Lor2099 > W v | lio Fiter | Searen |

image109.png
Record: 4« 1ofL W0 | K No Filter | [Search

image110.png
Record: 4« 1of1 G No Fiter | Search

image111.png
AvgVolumeOnPositiveChange
6414170.11173184

Record: 4« 1ofL R

image112.png
AvgVolumeOnPositiveChange -
6742500.66698428

Record: 4« 1ofL R

image6.png
INVENTORY

Column Name Type Key Required Remarks

WarehouselD Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU_Description Text (35) No Yes

QuantityOnHand Integer No No

QuantityOnOrder Integer No No

image113.png
The CUSTOMER
table

The INVOICE
table

The INVOICE_ITEM
table

Firsthame
LastName INVOICE
Sone ¥ InvoiceNumber
Email Customerhumber
Dateln
Dateout
TotalAmount

INVOICE_ITEM

¥ InvoiceNumber
9 RremNumber
Item

Quantity
Unitprice

image114.png
CUSTOMER

Column Name Type Key Required Remarks
CustomerlD AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes

LastName Text (25) No Yes

Phone Text (12) No No

Email Text (100) No No

image115.png
INVOICE

Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key Yes Long Integer
CustomerNumber Number Foreign Key Yes Long Integer

Dateln Date/Time No Yes

DateOut Date/Time No No

TotalAmount Currency No No Two Decimal Places

image116.png
INVOICE_ITEM

Column Name Type Key Required Remarks

InvoiceNumber Number Primary Key, | Yes Long Integer
Foreign Key

ItemNumber Number Primary Key Yes Long Integer

ltem Text (50) No Yes

Quantity Number No Yes Long Integer

UnitPrice Currency No Yes Two Decimal Places

image117.png
CustomerID | FirstName LastName Phone Email
1 Nikki Kaccaton 723-543-1233 Nikki.Kaccaton @somewhere.com
2 Brenda Catnazaro 723-543-2344 Brenda.Catnazaro @ somewhere.com
3 Bruce LeCat 723-543-3455 Bruce.LeCat@somewhere.com
4 Betsy Miller 725-654-3211 Betsy.Miller@ somewhere.com
5 George Miller 725-654-4322 George.Miller@somewhere.com
6 Kathy Miller 723-514-9877 Kathy.Miller@somewhere.com
7 Betsy Miller 723-514-8766 Betsy.Miller@elsewhere.com

image118.png
InvoiceNumber | CustomerNumber Dateln DateOut TotalAmount
2011001 1 04-Oct-11 06-Oct-11 $158.50
2011002 2 04-Oct-11 06-Oct-11 $25.00
2011003 1 06-Oct-11 08-Oct-11 $49.00
2011004 4 06-Oct-11 08-Oct-11 $17.50
2011005 6 07-Oct-11 11-Oct-11 $12.00
2011006 3 11-Oct-11 13-Oct-11 $152.50
2011007 3 11-Oct-11 13-Oct-11 $7.00
2011008 7 12-Oct-11 14-Oct-11 $140.50
2011009 5 12-Oct-11 14-Oct-11 $27.00

image119.png
InvoiceNumber | ItemNumber | item Quantity | UnitPrice
2011001 1 Blouse 2 $3.50
2011001 2 Dress Shirt 5 $2.50
2011001 3 Formal Gown 2 $10.00
2011001 4 Slacks-Mens 10 $5.00
2011001 5 Slacks-Womens 10 $6.00
2011001 6 Suit-Mens 1 $9.00
2011002 1 Dress Shirt 10 $2.50
2011003 1 Slacks-Mens 5 $5.00
2011003 2 Slacks-Womens 4 $6.00
2011004 1 Dress Shirt 7 $2.50
2011005 1 Blouse 2 $350
2011005, 2 Dress Shirt 2 $2.50
2011006 1 Blouse 5 $350
2011006 2 Dress Shirt 10 $2.50
2011006 3 Slacks-Mens 10 $5.00
2011006 4 Slacks-Womens 10 $6.00
2011007 1 Blouse 2 $350
2011008 1 Blouse 3 $3.50
2011008 2 Dress Shirt 12 $2.50
2011008 3 Slacks-Mens 8 $5.00
2011008 4 Slacks-Womens 10 $6.00
2011009 1 Suit-Mens 3 $0.00

image120.png
Brenda.Catnazaro@somewhere.com

3 Bruce Lecat 723-543-3455 Bruce.LeCat@somewhere.com
4 Betsy Miller 725-654-3211 _ Betsy.Miller@somewhere.com
5 George Miller 725-654-4322 George.Miller@somewhere.com
6 Kathy Miller 723-514-9877 Kathy.Miller@somewhere.com
7 Betsy Miller 723-514-8766 Betsy.Miller@elsewhere.com

T R R T

image7.png
WarehouselD | WarehouseCity | WarehouseState | Manager SquareFeet
100 Atlanta GA Dave Jones 125,000
200 Chicago L Lucille Smith 100,000
300 Bangor MA Bart Evans 150,000
400 Seattle WA Dale Rogers 130,000

image121.png
Towlamourt. -
. mm
2 10/4/2011 10/6/2011
2011003 1 10/6/2011 10/8/2011
2011004 a 10/6/2011 10/8/2011
2011005 6 10/7/2011 10/11/2011
2011006 3 10/11/2011 10/13/2011 $152.50
2011007 3 10/11/2011 10/13/2011 $7.00
2011008 7 10/12/2011 10/14/2011 $140.50
2011009 5 10/12/2011 10/14/2011 $27.00
Record WAL o5 ¥ 00 | N Fiter | [Search

image122.png
2011001
2011001
2011001
2011001
2011002
2011003
2011003
2011004
2011005
2011005
2011006
2011006
2011006
2011006
2011007
2011008
2011008
2011008
2011008
2011009

2 Dress shirt
3 Formal Gown

4 Slacks-Mens

5 Slacks-Womens.
6 Suit-Mens

1 Dress shirt

1 Slacks-Mens

2 Slacks-Womens.
1 Dress shirt

1 Blouse.

2 Dress shirt

1 Blouse.

2 Dress shirt

3 Slacks-Mens

4 Slacks-Womens.
1 Blouse.

1 Blouse.

2 Dress shirt

3 Slacks-Mens.

4 Slacks-Womens.
1 suit-Mens

AN

10
10
10

o B wn

10

UnitPrice +

$10.00
$5.00
$6.00
$9.00
$2.50
$5.00
$6.00
$2.50
$3.50
$2.50
$3.50
$2.50
$5.00
$6.00
$3.50
$3.50
$2.50
$5.00
$6.00
$9.00

Record: 14

1otz

S 1078 | K No Filter | [search

image123.png
T R R T

image124.png
*

LastName.

Record: 14

1ol

e

No Fiter

Search

image125.png
Datein - | DateOut -
10/4/2011 10/6/2011

723-543-3455 10/11/2011 10/13/2011
723-514-8766 10/12/2011 10/14/2011

Record: 4« 10f3 | » M+ | ' No Filter | Search

image126.png
723-543-3455 Bruce
725-654-3211 Betsy
723-514-8766 Betsy

T R R T,

image8.png
WarehouselD | SKU | SKU_Description ‘QuantityOnHand | QuantityonOrder
100 100100 | St Scuba Tank, Yollow. 250 o
20 100100 | 5. Scuba Tank, Yalow 0 E
0 100100__| St Scuba Tk, Yalow 0 o
) 100100 | 5. Scuba Tank, Yalow 20 o
0 700200 | S Scuba Tark, Magaria 20 E
20 700200 | S Scuba Tark, Magaria s 7
£ 700200 | S Scuba Tark, Magaria 100 0
0 100200 | St Scuba Tark, Magaria 250 o
0 701100 | Diva Mask,Small Glear o E)
20 701100 __| Dive Mask, Small Glear 0 50
0 701100 | Diva Mask, Srall Gear 0 0
0 701100 __| Dive Mask, Small Glear 50 o
0 101200 | Diva Mask Mod Gloar 0 0
20 101200 | Diva Mask. Mod Gloar E =0
0 701200 | Diva Mask Med Gloar 3 0
0 701200 | Diva Mask Mod Gloar E) =0
0 201000 | FatrDoma Tent. 2 0
20 201000 | HalrDoma Tent 0 E)
£ 201000 | valooma Tert =0 o
0 201000 | HatrDoma Tent o =0
0 202000 | Fal-Doma Ter Vesttuie 0 =0
20 202000 | Hal-Doma Tert Vesttuie T E)
0 202000 | Fal-Doma Ter Vesttuie 0 o
) 202000 | Hal-Doma Tert Vesttuie o 20
0 301000 | Light Fly Gimbing Hamess a0 =0
20 301000 | Light Fly Giimbing Hamess 0 E)
£ 301000 | Light Fly Gimbing Hamess o =0
0 301000 | Light Fly Gimbing Hamess o =0
0 302000 | Locking Garabiner, Oval =) o
20 302000 | Locking Garabiner, Oval 50 o
£ 302000 | Locking Garabiner, Oval £ E)
a0 302000 | Locking Garabiner, Oval o 000

image127.png
T I e T

image128.png
Betsy

T I e T

image129.png
MinTotalAmount -
$7.00

Record: 4 ¢ 1of1 Mo | W No Filter | [Search

image130.png
Record: 4 ¢ 1of1

S0 | No Filter | [search

image131.png
Record: 4 ¢ 1of1

S0 | No Filter | [search

image132.png
Nikki
Bruce
Betsy
George
Kathy

Record: 14

1ot

S 37| K No Filter [[search

image133.png
Last_First_Combination_Count

Bruce
Betsy
George
Kathy

ol (ol i

e I e

image134.png
[Recora W < ors | v i vi | et Fier [[Searen

image135.png
Bruce Lecat
Betsy. Miller

T R e T

image136.png
[Recora W <ot | v 1 vi | o Fier [[Searn

image137.png
Kaccaton
Lecat
Miller
Miller
Miller

Record: 14

1ot

S 37| K No Filter [[search

image138.png
Kaccaton
Lecat
Miller
Miller
Miller

TotalAmount -

$158.50
$152.50
$12.00
$140.50
$17.50

[Recores 1« ([Lof6

S K No e [[Seareh

image139.png
The ITEM

SHIPMENT

table ¥ ShipmentiD
Desar ShipperName
- DepartureDate
The SHIPMENT | & Foards
table Quantity InsuredValue
LocalCurrencyAmount

ExchangeRate

The SHIPMENT_ITEM

table I SHIPMENT_ITEM

¥ ShipmentiD

¥ ShipmentitemID
TtemiD
Value

image140.png
TEM

Column Name Type Key Required Remarks

ItemiD AutoNumber | PrimaryKey | Yes Surrogate Key
Description Text (255) No Yes Long Integer
PurchaseDate Date/Time No Yes

Store Text (50) No Yes

City Text (35) No Yes

Quantity Number No Yes Long Integer
LocalCurrencyAmount | Number No Yes Decimal, 18 Auto
ExchangeRate Number No Yes Decimal, 12 Auto

image141.png
SHIPMENT

Column Name Type Key Required Remarks
ShipmentiD AutoNumber | PrimaryKey | Yes Surrogate Key
ShipperName Text (35) No Yes

ShipperlnvoiceNumber | Number No Yes Long Integer
DepartureDate Date/Time No No

ArivalDate Date/Time No No

InsuredValue Currency No No Two Decimal Places

image142.png
SHIPMENT_ITEM

Column Name Type Key Required Remarks

ShipmentiD Number Primary Key, | Yes Long Integer
Foreign Key

ShipmentitemiD. Number Primary Key | Yes Long Integer

ItemiD Number ForeignKey | Yes Long Integer

Value Currency No Yes Two Decimal Places

image143.png
ItemID | Description | PurchaseDate | Store | City Quantity | LocalCurrencyAmount | ExchangeRate

1 | QE Dining Set | 07-Apr-11 Eastem | Manila 2 403405 001774
Treasures

2 | Willow Serving | 15-Jul-11 Jade Singapore | 75 102 0.5903
Dishes Antiques

3 | LargeBureau | 17-Jul-11 Eastem | Singapore | 8 2000 05903

Sales
4 |BrassLamps | 20-Jul-11 Jade Singapore | 40 50 0.5903

Antiques

image144.png
ShipmentD | ShipperName ShipperlnvoiceNumber | DepartureDate | ArrivalDate | InsuredValue
1 ABC Trans-Oceanic 2008651 10-Dec-11 15-Mar-11 $15,000.00
2 ABC Trans-Oceanic 2009012 10-Jan-11 20-Mar-11 $12,000.00
3 Worldwide 49100300 05-May-11 17-Jun-11 $20,000.00
4 International 399400 02-Jun-11 17-Jul-11 $17,500.00
5 Worldwide 84899440 10-Jul-11 28-Jul-11 $25,000.00
6 International 488955 05-Aug-11 11-Sep-11 $18,000.00

image145.png
ShipmentiD | ShipmentitemID | ItemID Value
3 1 1 $15,000.00
4 1 4 $1,200.00
4 2 3 $9,500.00
4 3 2 $4,500.00

image146.png
Description - | PurchaseDate - Store Gty | Quantity -| LocalCurrencyAmount - | ExchangeRate -

QE Dining set 4/7/2011 Eastern Treasures Manila 2 403405 00177

2 Willow Serving Dishes 7/15/2011 Jade Antiques singapore 7 102 0.5%03

3 Large Bureau 7/17/2011 Eastern sales singapore 5 2000 0.5%03

4 Brass Lamps 7/20/2011 Jade Antiques singapore 0 50 0.5%03

* o o
W Lore 0] K NoFiter [[searcn

image147.png
DepartureDate -

3/20/2011
6/17/2011
7/17/2011
7/28/2011
9/11/2011

$12,000.00
$20,000.00
$17,500.00
$25,000.00
$18,000.00

2 ABC Trans-Oceanic 2003012 1/10/2011

3 Worldwide 49100300 5/5/2011

4 International 399400 6/2/2011

5 Worldwide 84899440 7/10/2011

6 Interational 488955 8/5/2011
e e IR

image148.png
T R R T

image149.png
2 ABC Trans-Oceanic 2009012

3 Worldwide 49100300
4 International 3299400
5 Worldwide 84899440
6 International 488955

e R e T

image150.png
2 ABC Trans-Oceanic 2009012

3 Worldwide 49100300
4 International 3299400
5 Worldwide 84899440
6 International 488955

e R e T

image151.png
ShipperName ShipperinvoiceNumber -
ABC Trans-Oceanic 2008651
2 ABC Trans-Oceanic 2009012

R

image152.png
shipperName shipperinvoiceNumber - | AmivalDate -
ABC Trans-Oceanic 2008651 3/15/2011

T

image153.png
ShipperName

shipperinvoiceNumber

AmivalDate -

/ABC Trans-Oceanic 3/15/2011

2 ABC Trans-Oceanic 3/20/2011

5 Worldwide 7/28/2011
s

image154.png
MinlnsuredValue -
$12,000.00

Record: 4 < 10f1 Mo | W No Filter | Search

image155.png
Record: 4 < 10f1 Mo | W No Filter | Search

image9.png
'SKU_Description
std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Record: W

Tof32 | b M| G NoFiter | Search

image156.png
 NumberOfshipments -

e e T e

image157.png
X

store
Eastern Treasures
Willow Serving Dishes Jade Antiques
Large Bureau Eastern Sales
Brass Lamps Jade Antiques
*
Tots |+ von| Khe Search

StdCurrencyAmount ~
7156.4047

60.2106

1150.6

29515

image158.png
singapore Eastern Sales
singapore Jade Antiques

T IR e T

image159.png
store

Eastern Treasures

singapore Eastern sales

singapore Jade Antiques

Record: 4 < 10f3 » M | o Search

City_Store_Combination_Count

image160.png
DepartureDate -
6/2/2011
Worldwide 5/5/2011

*

Record: 4 1012 b M b

Search

image10.png
'SKU_Description

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear

101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

[Recorce 04Tt o000 [o Fiker [S

image161.png
DepartureDate

International 6/2/2011
International 6/2/2011
Worldwide 5/5/2011

T I e

image162.png
ShipmentitemiD - Description ShipperName - DepartureDate -

1 Brass Lamps International 6/2/2011
4 2 Large Bureau International 6/2/2011
4 3 Willow Serving Dishes International 6/2/2011
3 1 QE Dining set Worldwide 5/5/2011

Recoras W (Lora |3 %7 | o Fiter [[searen |

image163.png
DepartureDate -
6/2/2011
Worldwide 5/5/2011

Recor: 4 < 10f2 > M

Search

image164.png
DepartureDate =
6/2/2011

*

Record: W < 1ofl | » M b

image165.png
DepartureDate =
6/2/2011

Search

image166.png
Value
$1,200.00
$9,500.00
$4,500.00

6/2/2011
International 6/2/2011
International 6/2/2011

DepartureDate

Search

Record: H < 1of3 | » 3

image11.png
kU -

100100
std. Scuba Tank, Magenta 100200
Dive Mask, Small Clear 101100
Dive Mask, Med Clear 101200
Half-dome Tent 201000
Half-dome Tent Vestibule 202000
Light Fly Climbing Harness 301000
Locking Carabiner, Oval 302000
std. Scuba Tank, Yellow 100100
std. Scuba Tank, Magenta 100200
Dive Mask, Small Clear 101100
Dive Mask, Med Clear 101200
Half-dome Tent 201000
Half-dome Tent Vestibule 202000
Light Fly Climbing Harness 301000
Locking Carabiner, Oval 302000
std. Scuba Tank, Yellow 100100
std. Scuba Tank, Magenta 100200
Dive Mask, Small Clear 101100
Dive Mask, Med Clear 101200
Half-dome Tent 201000
Half-dome Tent Vestibule 202000
Light Fly Climbing Harness 301000
Locking Carabiner, Oval 302000
std. Scuba Tank, Yellow 100100
std. Scuba Tank, Magenta 100200
Dive Mask, Small Clear 101100
Dive Mask, Med Clear 101200
Half-dome Tent 201000
Half-dome Tent Vestibule 202000
Light Fly Climbing Harness 301000
Locking Carabiner, Oval 302000

*

Record: W« 10f32 | » M b | ' o Filter | Search

image12.png
kU -

101200
Dive Mask, Small Clear 101100
Half-dome Tent 201000
Half-dome Tent Vestibule 202000
Light Fly Climbing Harness 301000
Locking Carabiner, Oval 302000
std. Scuba Tank, Magenta 100200
std. Scuba Tank, Yellow 100100

Record: W< 10f8 | » M+ | ' NoFilter | Search

image13.png
BEEEEEE

[
8585858888888 8EEEREREE

Record WL or52 [y S Norier [[seoreh

image14.png
Recor

ot TR Neruter [[seareh

image15.png
[| 100 100200 std. Scuba Tank, Magenta. 200 20
N 100 101100 Dive Mask, Small Clear 0 500
|| 100 101200 Dive Mask, Med Clear 100 500
N 100 201000 Half-dome Tent 2 100
|| 100 202000 Half-dome Tent Vestibule 10 250
N 100 301000 Light Fly Climbing Harness 3200 250
|| 100 302000 Locking Carabiner, Oval 1000 0
N 200 100100 std. Scuba Tank, Yellow 100 50
|| 200 100200 std. Scuba Tank, Magenta. 75 7
N 200 101100 Dive Mask, Small Clear 0 500
|| 200 101200 Dive Mask, Med Clear 50 500
N 200 201000 Half-dome Tent 10 250
|| 200 202000 Half-dome Tent Vestibule 1 250
N 200 301000 Light Fly Climbing Harness 250 250
|| 200 302000 Locking Carabiner, Oval 1250 0
N 3200 100100 std. Scuba Tank, Yellow 100 0
|| 300 100200 std. Scuba Tank, Magenta. 100 100
N 3200 101100 Dive Mask, Small Clear 3200 200
|| 300 101200 Dive Mask, Med Clear a7 0
N 3200 201000 Half-dome Tent 250 0
|| 300 202000 Half-dome Tent Vestibule 100 0
N 3200 301000 Light Fly Climbing Harness 0 250
|| 300 302000 Locking Carabiner, Oval 500 500
N 400 100100 std. Scuba Tank, Yellow 200 0
|| 400 100200 std. Scuba Tank, Magenta. 250 0
N 400 101100 Dive Mask, Small Clear 50 0
|| 400 101200 Dive Mask, Med Clear 250 250
N 400 201000 Half-dome Tent 0 250
|| 400 202000 Half-dome Tent Vestibule 0 200
N 400 301000 Light Fly Climbing Harness 0 250
|| 400 302000 Locking Carabiner, Oval 0 1000
*

Record: W« 10f32 | » M b | ' o Filter | Search

image16.png
'SKU_Description =

QuantityOnOrder -

B 100 100200 std. Scuba Tank, Magenta. 200 20
B 100 101100 Dive Mask, Small Clear 0 500
B 100 101200 Dive Mask, Med Clear 100 500
B 100 201000 Half-dome Tent 2 100
B 100 202000 Half-dome Tent Vestibule 10 250
B 100 301000 Light Fly Climbing Harness 3200 250
B 100 302000 Locking Carabiner, Oval 1000 0
B 200 100100 std. Scuba Tank, Yellow 100 50
B 200 100200 std. Scuba Tank, Magenta. 75 7
B 200 101100 Dive Mask, Small Clear 0 500
B 200 101200 Dive Mask, Med Clear 50 500
B 200 201000 Half-dome Tent 10 250
B 200 202000 Half-dome Tent Vestibule 1 250
B 200 301000 Light Fly Climbing Harness 250 250
B 200 302000 Locking Carabiner, Oval 1250 0
B 3200 100100 std. Scuba Tank, Yellow 100 0
B 300 100200 std. Scuba Tank, Magenta. 100 100
B 3200 101100 Dive Mask, Small Clear 3200 200
B 300 101200 Dive Mask, Med Clear a7 0
B 3200 201000 Half-dome Tent 250 0
B 300 202000 Half-dome Tent Vestibule 100 0
B 3200 301000 Light Fly Climbing Harness 0 250
B 300 302000 Locking Carabiner, Oval 500 500
B 400 100100 std. Scuba Tank, Yellow 200 0
B 400 100200 std. Scuba Tank, Magenta. 250 0
B 400 101100 Dive Mask, Small Clear 50 0
B 400 101200 Dive Mask, Med Clear 250 250
B 400 201000 Half-dome Tent 0 250
B 400 202000 Half-dome Tent Vestibule 0 200
B 400 301000 Light Fly Climbing Harness 0 250
400 302000 Locking Carabiner, Oval 0 1000
£l
Record: W < 1032 | » 5| G lloFiter | search

image17.png
Quantiyonorser -

[| 200 100100 std. Scuba Tank, Yellow 100 50
N 3200 100100 std. Scuba Tank, Yellow 100 o
|| 400 100100 std. Scuba Tank, Yellow 200 o
N 100 100200 std. Scuba Tank, Magenta 200 20
|| 200 100200 std. Scuba Tank, Magenta. 75 7
N 3200 100200 std. Scuba Tank, Magenta 100 100
|| 400 100200 std. Scuba Tank, Magenta. 250 o
N 3200 101100 Dive Mask, Small Clear 3200 200
|| 400 101100 Dive Mask, Small Clear 0 o
N 100 101200 Dive Mask, Med Clear 100 500
|| 200 101200 Dive Mask, Med Clear 50 500
N 3200 101200 Dive Mask, Med Clear a75 o
|| 400 101200 Dive Mask, Med Clear 250 250
N 100 201000 Half-dome Tent 2 100
|| 200 201000 Half-dome Tent 10 250
N 3200 201000 Half-dome Tent 250 0
|| 100 202000 Half-dome Tent Vestibule 10 250
N 200 202000 Half-dome Tent Vestibule 1 250
|| 300 202000 Half-dome Tent Vestibule 100 0
N 100 301000 Light Fly Climbing Harness 3200 250
|| 200 301000 Light Fly Climbing Harness 250 250
N 100 302000 Locking Carabiner, Oval 1000 0
|| 200 302000 Locking Carabiner, Oval 1250 0

3200 302000 Locking Carabiner, Oval 500 500
*]

Record: W < 1025 | » | G lioFiter | search

image18.png
'SKU_Description

101100 Dive Mask, Small Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

[Recora W < Lor7 v 1 vi | et Fier [[Searen

image19.png
- 'SKU_Description =

101100 Dive Mask, Small Clear
301000 Light Fly Climbing Harness

302000 Locking Carabiner, Oval
301000 Light Fly Climbing Harness
202000 Half-dome Tent Vestibule
201000 Half-dome Tent

[Recora W < Lor7 v 1 vi | et Fier [[Searen

image20.png
31 SQL-Query-CHOZRQ02:26

*

Record: W

'SKU_Description =
Std. Scuba Tank, Yellow

100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

1of25 | b W | G NoFiter | Search

WarehouselD -

BEEE3EE8888888858888

100
100
100
100
100
100
100

image21.png
- 'SKU_Description =

202000 Half-dome Tent Vestibule

301000 Light Fly Climbing Harness

302000 Locking Carabiner, Oval
301000 Light Fly Climbing Harness
101100 Dive Mask, Small Clear
101100 Dive Mask, Small Clear

Record WL orT v | K Norier [[seoreh

image22.png
-1 SKUDescription -
100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
101100 Dive Mask, Small Clear
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
101100 Dive Mask, Small Clear
302000 Locking Carabiner, Oval

E8B8888855858888

g8

Record: W

Tof17 | v ¥ | G loFiter | Search

image23.png
SKU_Description QuantityOnHand ~

Half-dome Tent 2

[Recora W < Lor1 | v 1 vi | i Fiter [[Searn

image24.png
SKU_Description QuantityOnHand ~

Half-dome Tent 2

[Recora W < Lor1 | v 1 vi | i Fiter [[Searn

image25.png
'SKU_Description
Half-dome Tent
202000 Half-dome Tent Vestibule

Record: W < 1of2 | » M+ | loFilter | Search

image26.png
'SKU_Description
Light Fly Climbing Harness

Record: 4« 1ofL W0 | K No Filter | [Search

image27.png
'SKU_Description
std. Scuba Tank, Yellow
100200 Std. Scuba Tank, Magenta

Record: W < 1of2 | » M+ | G NoFilter | Search

image28.png
X

TotalQuantityOnHand - | AverageQuantityOnHand - | MaximumQuantityOnHand - | MinimumQuantityOnHand -
6573 205.40625 1250 0

Record: 4+ 1of1 W0 | K No Filter | [Search

image29.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

ORDER BY TotalltemsOnHand DESC;

<l

i

- x
/% DBE-e12 Chapter02 SQL-Query-Review-Question-2.36

sezecT WarehouseID, Si(QuantityOnHand) AS TotalltemsOnHand

FROM INVENTORY

GROUP BY WarehouseID @

Er|

WarehouselD _ TotaltemsOnHand

1 [1862
2 3 " 185
3 m 1736
4w 1150

image30.png
TotalltemsOnHand

Record W (Lot v | K Norter [[seoreh

image31.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

GROUP BY WarenouseID
ORDER BY TotalltemsOnHandLT3 DESC;

< i

- x
/% DBP-el2 Chapter02 SQL-Query-Review-Question-2.37

sezecT WarehouseID, S (QuantityOnHand) AS TotalltemsOnHendLT3

FROM INVENTORY

WHERE QuantityonHand < 3 O

=3 Resuts [[Ty Messages|

WarchouselD _ TotaltemsOnHandLT3
2

EEEIE

1
[
[

image32.png
TotalitemsOnHandLT3 ~

Record W (Lot Ty P K Norer [[seareh

image33.png
DBP-e12-MSSQL-C..WWU\Auer (52))° |

- x
/% DBE-e12 Chaprero? SgL-guery-Review-guestion-2.38

SSIECT WarehouseID, S (Qusnvityonfiand) AS TovalltemsOnRandiTs

Fron IVENTORY

wazRe Quenticyoniand < 3

GROVE 5Y WarenouseId =
mYING comvT(r) < 2

ORDER BY TotalltemsOnHandLT3 DESC:

<l

i

Er|

WerchouselD _ TotaltemsOnHandLT3
HED io

image34.png
TotalltemsOnHandLT3 ~

0

Record WAoo P Noruter [[seareh

image35.png
| SKU Description | WarehouselD - | WarehouseCity -

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta.
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta.
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor

Record: W

“ot24 | > M | & NoFiter | Search

image36.png
| SKU Description | WarehouselD - | WarehouseCity -

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta.
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval
100100 std. Scuba Tank, Yellow
100200 std. Scuba Tank, Magenta.
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
100 Atlanta
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
200 Chicago
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor
300 Bangor

Record: W

“ot24 | > M | & NoFiter | Search

image37.png
| SKU Description | WarehouselD - | WarehouseCity -

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

400 Seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle

WA
WA
WA
WA
WA
WA
WA

Record: W

TR TR TR

image38.png
| SKU Description | WarehouselD - | WarehouseCity -

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

400 Seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle
400 seattle

WA
WA
WA
WA
WA
WA
WA

Record: W

TR TR TR

image39.png
std. Scuba Tank, Magenta is in a warehouse in Atlanta
Dive Mask, Small Clear is in a warehouse in Atlanta
Dive Mask, Med Clear is in a warehouse in Atlanta
Half-dome Tent is in a warehouse in Atlanta
Half-dome Tent Vestibule is in a warehouse in Atlanta
Light Fly Climbing Harness is in a warehouse in Atlanta
Locking Carabiner, Oval is in a warehouse in Atlanta
std. Scuba Tank, Yellow is in a warehouse in Chicago
std. Scuba Tank, Magenta is in a warehouse in Chicago
Dive Mask, Small Clear is in a warehouse in Chicago
Dive Mask, Med Clear is in a warehouse in Chicago
Half-dome Tent is in a warehouse in Chicago
Half-dome Tent Vestibule is in a warehouse in Chicago
Light Fly Climbing Harness is in a warehouse in Chicago
Locking Carabiner, Oval is in a warehouse in Chicago
std. Scuba Tank, Yellow is in a warehouse in Bangor
std. Scuba Tank, Magenta is in a warehouse in Bangor
Dive Mask, Small Clear is in a warehouse in Bangor
Dive Mask, Med Clear is in a warehouse in Bangor
Half-dome Tent is in a warehouse in Bangor
Half-dome Tent Vestibule is in a warehouse in Bangor
Light Fly Climbing Harness is in a warehouse in Bangor
Locking Carabiner, Oval is in a warehouse in Bangor
std. Scuba Tank, Yellow is in a warehouse in Seattle
std. Scuba Tank, Magenta is in a warehouse in Seattle.
Dive Mask, Small Clear is in a warehouse in Seattle
Dive Mask, Med Clear is in a warehouse in Seattle.
Half-dome Tent is in a warehouse in Seattle
Half-dome Tent Vestibule is in a warehouse in Seattle
Light Fly Climbing Harness is in a warehouse in Seattle
Locking Carabiner, Oval is in a warehouse in Seattle

Record: W« 1of32 | » M+ | ' NoFilter | Search

image40.png
- 'SKU_Description =

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear

101200 Dive Mask, Med Clear

201000 Half-dome Tent
202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Record WL ors v K Norier [[seareh

image41.png
- 'SKU_Description =

100200 Std. Scuba Tank, Magenta
101100 Dive Mask, small Clear

101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Record WL ors TP R N rer [[seoreh

image42.png
AverageQuantityOnHand
27

Record: 4+ 1of1 W0 | K No Filter | [Search

image43.png
AverageQuantityOnHand
27

Record: 4+ 1of1 W0 | K No Filter | [Search

image1.jpeg

image44.png
TotalitemsOnHand

- TotalitemsOnOrder

100
100
100
100
100
100
100

100
250
500
20
0
250
0
500
250
250
500
7
50
250
0
250
100
0
200
0
500
1700
0
250
0

[
85888 EEEEEEEES

BB 88888 BREugs. .o

Record W (Lo |y P S Norier [[seareh

image45.png
[| 200 Chicago L
|| 200 Chicago i
[| 200 Chicago i
|| 200 Chicago i
[| 200 Chicago i
|| 200 Chicago i

200 Chicago w

Lucille Smith
Lucille Smith
Lucille smith
Lucille Smith
Lucille smith
Lucille Smith
Lucille smith

'SKU_Description’ =

100200 std. Scuba Tank, Magenta.
101100 Dive Mask, Small Clear
101200 Dive Mask, Med Clear
201000 Half-dome Tent

202000 Half-dome Tent Vestibule
301000 Light Fly Climbing Harness
302000 Locking Carabiner, Oval

Y. sgon

Record WL ors T A K Norier [[seareh

image46.png
The PROJECT
table

The ASSIGNMENT
table

> PROJECT
7 Projecti
DEPARTMENT =l I
[Deparmentiame| || et
BudgetCode
StartDate
OfficeNumber
EndDate
Phone
EMPLOYEE
7 EmployeeNumber
FirstName
LastName
= Department

Phone
Email

¥ Projectin
7 EmployeeNumber
HoursWorked

image47.png
PROJECT

Column Name Type Key Required Remarks
ProjectiD Number Primary Key | Yes Long Integer
Name Text (50) No Yes

Department Text (35) ForeignKey | Yes

MaxHours Number No Yes Double
StartDate Date/Time No No

EndDate Date/Time No No

image48.png
Field Properties

‘General [Lookup|

Field Size

Long Integer

Format

Decimal Places

Auto

nput Mask:

Caption

Default Value

Validation Rule

Validation Text

Required

Yes

Indexed

Yes (No Duplicates]

Smart Tags

Text Align

General

Afield name can be up to 64 characters long,
including spaces. Press FL. for help on field

image49.png
PROJECT

7 projectiD
Name

DEPARTMENT o)

Department
MaxHours
StartDate
EndDate

7 Departmentame
BudgetCode
OfficeNumber

Phone.

EMPLOYEE

7 EmployeeNumber
Firsthame.
LastName
Department
Phone.

Email

T
Table/Query: Related Table/Query:

fewner mors) _‘z'

Departmente] Department

Enforce Referentil Integrity
Cascade Update Related Fields
[T cascade Delete Related Records:

Relatonship Type: One-To-Many

