

// DataStructures&AlgorithmsInJava (Adam Drozdek, 4th ed.)

// Instructor’s Solutions Manual

// © 2013 Cengage Learning, all rights reserved.

1-1

1

OBJECT-ORIENTED PROGRAMMING USING JAVA

1. Constructors do not have a return type.

2. The following table indicates different accessing modes created with the reserved words private,
protected, and public. The rows indicate the place from which an access is made and show whether
the access is possible for a particular declaration.

Place of access private No modifier protected public

Same class yes yes yes yes

same package subclass no yes yes yes

Same package non-subclass no yes yes yes

Different package subclass no no yes yes

Different package non-subclass no no no yes

3. Calls object1.process1(1000) and object1.process4(2000) refer to methods defined in
ExtC, because object1 is an instance of this class.

process1() defined in ExtC does not override process1() in C, because their signatures are
different. Therefore, because object2 is of type C, the system looks for a definition of process1(int)
in C. It does not find one, thus, a compilation error is issued, to the effect that an explicit cast is needed,
as in object2.process1((char)3000), in which case the character with Unicode value 3000
should be printed by process1() defined in C . For a similar reason, the statement
object2.process4(4000) also causes a compilation error, because process4() is not defined in C.
Note that object2 is assigned an object of type ExtC, which may suggest that process4() defined in
ExtC should be called, however, the compilation error is caused by the type of object2, which is C,
not ExtC. To have the benefit of polymorphism, the method in ExtC must have exactly the same
signature as a corresponding method in C.

object3.process1('P') calls process1() defined in C.

// DataStructures&AlgorithmsInJava (Adam Drozdek, 4th ed.)

// Instructor’s Solutions Manual

// © 2013 Cengage Learning, all rights reserved.

1-2

object3.process2('Q') calls process2() defined in ExtC on account of dynamic binding.
Finally, object3.process3('R') invokes method process3() defined in C however, process3()
calls process2(), and because object3 refers to an instance of ExtC, then, due to dynamic binding,
process3() calls process2() defined in ExtC.

4. (a) interface I2 extends I1 {
 double I2f1();
 void I2f2(int i);
 // int I1f1(); - this can be done, but it is redundant;
 // double I2f1() { return 10; } – it cannot have a body;
 // private int AC1f4(); - interface methods cannot be
 // private, static, synchronized, final;
 // private int n = 10; - interface fields cannot be private or

protected;
 }

(b) class CI1 implements I1 {
 // int I1f1() { } – must be public;
 // void I1f2(int i) { } – must be public;
 int CI1f3() { }
 }

(c) An interface cannot be instantiated.

5. (a) abstract class AC1 {
 int AC1f1() { }
 void AC1f2(int i) { }
 // int AC1f3(); - a method without body must be declared
 // abstract, as in: abstract int AC1f3();
 }

(b) CAC1 must be an interface.

(c) Multiple inheritance is not supported.

(d) Abstract class cannot be instantiated.

// DataStructures&AlgorithmsInJava (Adam Drozdek, 4th ed.)

// Instructor’s Solutions Manual

// © 2013 Cengage Learning, all rights reserved.

1-3

6. Definition

public boolean equals(SomeInfo si) {
 return n == si.n;
}

does not override the definition

public boolean equals(Object si) {
 return n == ((SomeInfo) si).n;
}

because the two methods have different signatures; to override the standard method equals(), the
parameter must be of type Object.

