// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

.Di II!I.IE TURES
A0 ALGORITHMS
“JAVA

// © 2013 Cengage Learning, all rights reserved.

2

COMPLEXITY ANALYSIS

1. (@ The function f never exceeds the value of a certain constant C.

(b) fisaconstant function.

(c) The function f never exceeds the value of the power function n® for some constant C .

2. In the following answers, these two definitions are used:

f,(n) is O(g,(n)) if there exist positive numbers ¢, and N, such that f,(n) <c,g,(n) forall n>N;

f,(n) is O(g,(n)) if there exist positive numbers ¢, and N, such that f,(n) <c,g,(n) forall n>N,;

(@) From the above definitions, we have
f,(n) <c, -max(g,(n),g,(n)) for all n > max(N,,N,),
f,(n) <c, -max(g,(n),g,(n)) for all n > max(N,,N,),
which implies that
f.(n)+ f,(n) <(c, +c,)-max(g,(n),g,(n)) for all n > max(N,, N,).
Hence for ¢; =c; +c¢, and N, =max(N,,N,), f,(n)+ f,(n) <c,-max(g,(n)+g,(n)) for all
n>N,,thatis, f(n)+ f,(n) is O(max(g,(n),g,(n))).

(b) If g,(n)<g,(n), then for c =max(c,,c,), cg,(n)<cg,(n) and cg,(n)+cg,(n) < 2cg,(n), which
implies that O(g,(n)) +0O(g,(n)) is O(g,(n)).

(c) The rule of product, f,(n)-f,(n) is O(g,(n)-g,(n)) is true, since
f,(n)- f,(n) <ccc,9,(n)-g,(n) forall n>max(N,,N,).

(d) Of(cg(n)) is (O(g(n)) means that any function f which is O(cg) is also O(g) . Function f is
O(cg) if there are two constants ¢, and N so that f(n) <ccg(n) for all n<N; in this case, for
aconstant ¢, =c,c, f(n) <c,g(n); thus by choosing properly a constant c, (whose value depends
on the value of cand c,), fis O(g).

2-1

STRUCTURES
150 KLGORITHMS
*JAVR

// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

// © 2013 Cengage Learning, all rights reserved.

() A constant ¢ is O(1) if there exist positive numbers ¢, and N such that ¢ <c, -1 for all n>N;
that is, the constant function c is independent of n, and we can simply set ¢, =c.

3 (a) Zin=1i2 is O(n®) if a constant can be found such that Z:Lli2 <cn®; but Z:in:li2 <n-n®=nd
thus ¢ = 1 for any n.

(b) Function an® /lgn is O(n*) if there is a ¢ and N for which an® /Ign<cn* for all n> N. The
inequality becomes a/Ign<c for N >1, and since a/lgn — 0 we can put ¢ = a. But there is no
positive ¢ for which ¢ <a/Ign (it holds for ¢ = 0), thus an® /lgn is not ®(n®).

() Function n**+nlgn is ©(n*") if two constants can be found such that
¢, <n**+nlgn<c,n*’. These inequalities can be transformed into ¢, <1+n~'lgn<c,; by
the rule of L’Hospital, n™*-Ign = (Ign)/n™ has the same limit as (Ige)/(.1-n") = (10-1lge)/n?,
which is 0. Hence, ¢, =1c, =1+10lge.

(d) 2" is O(n!) if there is ac and N for which 2" <cn! forall n>N. If N =1, then 2" <cn! implies
that 2" <c(1-2-3-..-n), ie, 2-3.-2...-2<2=c.

For the other part of the exercise: n! is O(2n) if there are constants ¢ and N such that n!<c2" for
nzN.ThehwmmHWIHSCZ”hnmm512'3”snSC(T),Le,%~§%u.n%SC,mrMIn%
But such a constant ¢ cannot be found.

(e) We can find such a c that for some Nand all n> N,2""® <¢2", if c>2"% /2" =22

() We cannot find such a ¢ that for some N and all n>N,2" <¢2", because there exists no
constant ¢ > 2" /2" =2n-a..

(g) Because n=2"", then n® =2%9"; therefore, if 29" > 2V then n? > 2¥9" Now we have to
find such a c that for some N and all n>N,2/9" <cn®, or 2/9" < 229" je, ¢ > 26" /221"
which is possible because the function plan /palan g decreasing.

4 (@ Let f(n)=an, and f,(n)=a,n; then both f; and f, are O(n), but f (n)-f,(n)=(a,-a,)n
isnot O(n—n)=0(0). Hence, f,(n)-f,(n) isnot O(g,(n)—g,(n)).

(b) Take the same functions as before; f,(n)/ f,(n)=(a,/a,)n isnot O(n/n)=0(1). Therefore,
f,(n)/ f,(n) isnot O(g,(n)/g,(n)).

5. For functions f,(n)=an’+0(n), f,(n)=cn+d,g(n)=n*, both fi(n) and f,(n) are O(g(n)), but f, is

not O(f,).

2-2

// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

STRUCTURES
150 KLGORITHMS
*JAVR

// © 2013 Cengage Learning, all rights reserved.

6. (@ Itis not true that if f,(n) is ©(g(n)) then 2'™ is @(2°"), if, for example, f(n)=n, and
g(n)=2n

() f(n)+g(n) isnot @(min(f(n),g(n))), if, for example, f(n)=n, and g(n):%.

() 2™isnot 0(2”), because there is no constant ¢ > 2" /2" = 2" forany nand a>1; for a<1

the function 2" is decreasing so that a ¢ meeting the specified condition can be found.

7. If the line
for (i = 0, length

1; 1 < n-1; i++)
is replaced by the line
for (i = 0, length

1; 1 < n-1 && length < n-i; i++)

in the algorithm for finding the longest subarray with numbers in increasing order, then the best case,
when all numbers in the array are in decreasing order, remains O(n) since the inner loop is executed just
once for each of the n—1 executions of the outer loop. For the ordered array, the outer loop is executed
just once and the inner loop n—1 times, which makes it another best case.

But the algorithm is still O(n?). For example, if the array is [543 2 112 3 4 5], i.e., the first half of the
array is in descending order, then the outer loop executes n/2 times and for each iteration i =1,...,n/2,

the inner loop iterates i times, which makes O(n?) iterations in total. This inefficiency is due to the fact
that the inner loop remembers only the length of the longest subarray, not its position, thereby checking
subarrays of this subarray, e.g., after checking the subarray [5 4 3 2 1], it also checks its subarrays
[4321],[321], etc. To improve the algorithm more and make it O(n), the inner loop

for (il = 12 = k = i; k < n-1 && a[k] < a[k+1]; k++, i2++);
should be changed to
for (i1l = i2 = k; k < n-1 && a[k] < a[k+1]; k++, i2++);

8. The complexity of selectkth() is (n—1)+(n—2)+--+(n-k)=(2n-k -1)k/2 :O(nz).

9. The algorithm for adding matrices requires n? assignments. Note that the counter i for the inner loop
does not depend on the counter j for the outer loop and both of them take values 0,...,n-1.

All three counters, i, j, and k in the algorithm for matrix multiplication are also independent of each
other, hence the complexity of the algorithms is n®.

n-1

. -2 : .
To transpose a matrix, Zin:o Z 3=0 (nz) assignments are required.

j=i+l

10. (@) The autoincrement cnt1++ is executed exactly n? times.

® XLi=o(n’)

2-3

// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

ThSTRUCTURES
150 KLGORITHMS
*JAVR

// © 2013 Cengage Learning, all rights reserved.

@ X hi=e(nlgn)
@ Yh2=0(n
1+..+(n-2) n-1 n n-1+2(n-1)+4n 7n-3

11. -
4(n-2) a2 8 8

12. To prove the conjecture, the best thing to do is to devise an amortized cost that remains constant for
each increment step. For example,

amCost (increment(x)) = 2-(number of bits in x set to 1)

If the cost of setting one bit is one unit, then after setting a 1 bit there is one unit left for setting this bit
back to 0, therefore, there is no need to charge anything for setting bits to 0. Note that the amortized
cost for one increment is always 2.

Another definition is
amCost (increment (x)) = (number of flipped bits) + (number of 1s added to x)

The following table illustrates the application of this definition to increments of a 3-bit binary number.

Number Flipped bits Added 1s Amortized cost

000

001 1 1 2
010 2 0 2
011 1 1 2
100 3 1 2
101 1 1 2
110 2 0 2
111 1 1 2

13. Foranalternative A=(p, Vv p,), generate an expression A'=(p,v P, v zZ)A(p, Vv p,—z). Foran

alternative A = py, generate the expression:

A’z(plvyvz)((plv_‘yvz)/\(plvyV—|Z)/\(p1V—|yv—|Z)).

2-4

