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2  

COMPLEXITY ANALYSIS  
 
1.  (a) The function f  never exceeds the value of a certain constant c .  

(b)  f is a constant function.  
 

(c) The function f  never exceeds the value of the power function nc for some constant c .  

 

2. In the following answers, these two definitions are used:  

1( )f n  is 1( ( ))O g n  if there exist positive numbers c1 and N1 such that 1 1 1( ) ( )f n c g n  for all 1n N ;  

2 ( )f n  is 2( ( ))O g n  if there exist positive numbers c2 and N2 such that 2 2 2( ) ( )f n c g n  for all 2n N ;  

(a) From the above definitions, we have  

 1 1 1 2 1 2( ) max( ( ) ( )) for all max( ),f n c g n g n n N N      

 2 2 1 2 1 2( ) max( ( ) ( )) for all max( ),f n c g n g n n N N      

which implies that  

1 2 1 2 1 2 1 2( ) ( ) ( ) max( ( ) ( )) for all max( ).f n f n c c g n g n n N N        

Hence for 3 1 2c c c   and 3 1 2 1 2 3 1 2max( ) ( ) ( ) max( ( ) ( ))N N N f n f n c g n g n        for all 

3n N , that is, 1 2( ) ( )f n f n  is 1 2(max( ( ) ( ))).O g n g n   

(b) If 1 2( ) ( ),g n g n  then for 1 2max( ),c c c   1 2( ) ( )cg n cg n  and 1 2 2( ) ( ) 2 ( ),cg n cg n cg n   which 

implies that 1 2( ( )) ( ( ))O g n O g n  is 2( ( )).O g n   

(c) The rule of product, 1 2( ) ( )f n f n  is 1 2( ( ) ( ))O g n g n  is true, since 

1 2 1 2 1 2( ) ( ) ( ) ( )f n f n c c g n g n    for all 1 2max( ).n N N    

(d) ( ( ))O cg n  is ( ( ( ))O g n  means that any function f which is ( )O cg  is also ( )O g . Function f is 

( )O cg  if there are two constants 1c  and N so that 1( ) ( )f n c cg n  for all n N ; in this case, for 

a constant 2 1 2( ) ( );c c c f n c g n    thus by choosing properly a constant 2c  (whose value depends 

on the value of c and 1c ), f is ( ).O g  
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(e) A constant c is O(1) if there exist positive numbers 1c  and N such that 1 1c c   for all ;n N  

that is, the constant function c is independent of n, and we can simply set 1c c .  

 

3. (a)  2

1

n

i
i

 is 3( )O n  if a constant can be found such that 2 3

1
;

n

i
i cn


  but 2 2 3

1
,

n

i
i n n n


    

thus c = 1 for any n.  

(b) Function lgkan n  is ( )kO n  if there is a c and N for which lgk kan n cn   for all .n N  The 

inequality becomes lga n c   for 1N  , and since lg 0a n   we can put c = a. But there is no 

positive c for which lgc a n   (it holds for c = 0), thus lgkan n  is not ( ).kn  

(c) Function 1 1 lgn n n   is 1 1( )n   if two constants can be found such that 
1 1 1 1 1 1

1 2lg .c n n n n c n      These inequalities can be transformed into 1
1 21 lg ;c n n c    by 

the rule of L’Hospital, 1 1lg (lg )n n n n     has the same limit as 1 1(lg ) ( 1 ) (10 lg ) ,e n e n        

which is 0. Hence, 1 21 1 10lgc c e    .  

(d) 2n  is ( )O n  if there is a c and N for which 2n cn   for all .n N  If N = 1, then 2n cn   implies 

that 2 (1 2 3 ),n c n       i.e., 2 2 2 2
1 2 3 2 .n c      

For the other part of the exercise: !n  is O(2n) if there are constants c and N such that ! 2nn c  for 

.n N  The inequality ! 2nn c  implies  1 2 3 2 ,nn c      i.e., 31 2
2 2 2 2 ,n c     for all n’s. 

But such a constant c cannot be found.  

(e) We can find such a c that for some N and all , 2 2 ,n a nn N c   if 2 / 2 2 .n a n ac     

(f) We cannot find such a c that for some N and all , 2 2 ,n a nn N c   because there exists no 

constant 2 / 2 2 .n a nc n a   .  

(g) Because lg2 ,nn   then lg2 ;a a nn   therefore, if lglg2 2 ,na n   then lg2 .nan   Now we have to 

find such a c that for some N and all lg, 2 ,n an N cn   or lg lg2 2 ,n a nc  i.e., lg lg2 / 2 ,n a nc   

which is possible because the function lg lg2 / 2n a n  is decreasing.  

 

4. (a)  Let  1 1 ,f n a n  and  2 2 ;f n a n  then both f1 and f2 are O(n), but      1 2 1 2f n f n a a n    

is not    0 .O n n O   Hence,    1 2f n f n  is not  1 2( ) ( ) .O g gn n   

(b) Take the same functions as before;      1 2 1 2/ /f n f n a a n  is not    / 1 .O n n O  Therefore, 

   1 2/f n f n  is not     1 2/ .O g n g n  

 

5. For functions        2 2
1 2, , ,f n an O n f n cn d g n n      both f1(n) and f2(n) are O(g(n)), but f1 is 

not O(f2).  
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6. (a) It is not true that if  1f n  is   g n  then  2 f n  is  (2 )g n , if, for example,   ,f n n  and 

  2 .g n n   

(b)    f n g n  is not      min , ,f n g n  if, for example,   ,f n n  and   1
.g n

n
   

(c) 2na is not  2 ,nO  because there is no constant  12 2 2n ana nc    for any n and 1;a   for 1a   

the function  12n a  is decreasing so that a c meeting the specified condition can be found.  

 

7. If the line  

for (i = 0, length = 1; i < n-1; i++)  

is replaced by the line  

for (i = 0, length = 1; i < n-1 && length < n-i; i++)  

in the algorithm for finding the longest subarray with numbers in increasing order, then the best case, 
when all numbers in the array are in decreasing order, remains O(n) since the inner loop is executed just 
once for each of the 1n   executions of the outer loop. For the ordered array, the outer loop is executed 
just once and the inner loop 1n   times, which makes it another best case.  

But the algorithm is still O(n2). For example, if the array is [5 4 3 2 1 1 2 3 4 5], i.e., the first half of the 
array is in descending order, then the outer loop executes n/2 times and for each iteration 1, , / 2i n  , 
the inner loop iterates i times, which makes O(n2) iterations in total. This inefficiency is due to the fact 
that the inner loop remembers only the length of the longest subarray, not its position, thereby checking 
subarrays of this subarray, e.g., after checking the subarray [5 4 3 2 1], it also checks its subarrays  
[4 3 2 1], [3 2 1], etc. To improve the algorithm more and make it O(n), the inner loop  

for (i1 = i2 = k = i; k < n-1 && a[k] < a[k+1]; k++, i2++);  

should be changed to  

for (i1 = i2 = k; k < n-1 && a[k] < a[k+1]; k++, i2++);  

 

8. The complexity of selectkth() is          21 2 2 1 / 2 .n n n k n k k O n            

 
9. The algorithm for adding matrices requires n2 assignments. Note that the counter i for the inner loop 

does not depend on the counter j for the outer loop and both of them take values 0, , 1n  .  

All three counters, i, j, and k in the algorithm for matrix multiplication are also independent of each 
other, hence the complexity of the algorithms is n3.  

To transpose a matrix,  2 1 2

0 1
3

n n

i j i
O n

 

  
   assignments are required.  

 

10. (a) The autoincrement cnt1++ is executed exactly n2 times.  

(b)  2

1

n

i
i O n


   
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(c)  lg

1
lg

n

i
i n n


   

(d)  lg

1
2

n i

i
n


   

 

11. 
 

 
 1 2 1 2 1 41 7 3

4 2 4 2 8 8

n n n nn n n

n

       
   




 

 
12. To prove the conjecture, the best thing to do is to devise an amortized cost that remains constant for 

each increment step. For example,  

    2 number of bits in  set to 1amCost increment x x    

If the cost of setting one bit is one unit, then after setting a 1 bit there is one unit left for setting this bit 
back to 0, therefore, there is no need to charge anything for setting bits to 0. Note that the amortized 
cost for one increment is always 2. 

 

Another definition is  

      number of flipped bits number of 1s added to amCost increment x x    

The following table illustrates the application of this definition to increments of a 3-bit binary number.  

 

Number Flipped bits  Added 1s  Amortized cost   
000  
001 1 1 2 
010 2 0 2 
011 1 1 2 
100 3 1 2 
101 1 1 2 
110 2 0 2 
111 1 1 2 

 

13. For an alternative  1 2 ,A p p   generate an expression    1 2 1 2 .A p p z p p z        For an 

alternative A = p1, generate the expression: 

        1 1 1 1A p y z p y z p y z p y z            . 

 


