// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

Dm.SIT"RUC TURES
10 ALGORITHMS
“JAVA

// © 2013 Cengage Learning, all rights reserved.

1

OBJECT-ORIENTED PROGRAMMING USING JAVA

1. Constructors do not have a return type.

2. The following table indicates different accessing modes created with the reserved words private,
protected, and public. The rows indicate the place from which an access is made and show whether
the access is possible for a particular declaration.

Place of access private No modifier = protected public
Same class yes yes yes yes
same package subclass no yes yes yes
Same package non-subclass no yes yes yes
Different package subclass no no yes yes
Different package non-subclass no no no yes
3. Calls objectl.process1(1000) and objectl.process4(2000) refer to methods defined in

ExtC, because objectl is an instance of this class.

process1() defined in ExtC does not override processl1() in C, because their signatures are

different. Therefore, because object?2 is of type C, the system looks for a definition of processi(int)
in C. It does not find one, thus, a compilation error is issued, to the effect that an explicit cast is needed,

as in object2.process1((char)3000), in which case the character with Unicode value 3000

should be printed by process1() defined in C. For a similar reason, the statement

object2.process4(4000) also causes a compilation error, because process4() is not defined in C.
Note that object2 is assigned an object of type ExtC, which may suggest that process4() defined in

ExtC should be called, however, the compilation error is caused by the type of object2, which is C,

not ExtC. To have the benefit of polymorphism, the method in ExtC must have exactly the same

signature as a corresponding method in C.

object3.process1("P") calls process1() defined in C.

// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)
// Instructor’s Solutions Manual

Dm.SIT"RUC TURES
10 ALGORITHMS
“JAVA

// © 2013 Cengage Learning, all rights reserved.

object3.process2("Q") calls process2() defined in ExtC on account of dynamic binding.
Finally, object3.process3("R") invokes method process3() defined in C however, process3()
calls process2(), and because object3 refers to an instance of ExtC, then, due to dynamic binding,
process3() calls process2() defined in ExtC.

4, @) interface 12 extends 11 {
double 12F1();
void 12F2(int 1);
// int 11f1(); - this can be done, but it is redundant;
// double 12F1() { return 10; } — it cannot have a body;
// private int AC1f4(); - interface methods cannot be
// private, static, synchronized, final;
// private int n = 10; - interface fields cannot be private or

protected;
}
(b) class CI11 implements 11 {
// int 11f2Q { - } — must be public;
// void 11f2¢int i) { } — must be public;
int CILf3QO { - - - - -}
}

(c) An interface cannot be instantiated.

5. @ abstract class ACl {
int ACIf1QO { - . . .}
void AC1f2(int i) { . . -3}
// int AC1f3(); - a method without body must be declared
// abstract, as in: abstract int AC1f3();

}
(b) CAC1 must be an interface.

(©) Multiple inheritance is not supported.

(d) Abstract class cannot be instantiated.

// Instructor’s Solutions Manual

DlHS{T"RUE TURES
10 ALGORITHMS
“JAVA

// © 2013 Cengage Learning, all rights reserved.

// DataStructures&AlgorithmsinJava (Adam Drozdek, 4™ ed.)

Definition

public boolean equals(Somelnfo si) {
return n == si.n;
3

does not override the definition

public boolean equals(Object si) {
return n == ((Somelnfo) si).n;
}

because the two methods have different signatures; to override the standard method equals(), the

parameter must be of type Object.

