
Data Structures and
Algorithms in Python

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University

Instructor’s Solutions Manual



Chapter

1 Python Primer

Hints and Solutions

Reinforcement

R-1.1) Hint The modulo operator could be useful here.

R-1.1) Solution

def is multiple(n, m):
return n % m == 0

R-1.2) Hint Use bit operations.

R-1.2) Solution

def is even(k):
return (k & 1 == 0)

R-1.3) Hint Keep track of the smallest and largest value while looping.

R-1.3) Solution

def minmax(data):
small = big = data[0] % assuming nonempty
for val in data:
if val < small:
small = val

if val > big:
big = val

return small,big

R-1.4) Hint Although there is a formula for this, the easy thing to do is to

write a loop.

R-1.4) Solution

def sum of squares(n):
total = 0
for j in range(1, n+1):
total += j∗j

return total



2 Chapter 1. Python Primer

R-1.5) Hint How can you describe the range of integers for the sum?

R-1.5) Solution

total = sum(j∗j for j in range(1, n+1))

R-1.6) Hint Consider modifying the range over which you loop.

R-1.6) Solution

def sum of squares(n):
total = 0
for j in range(1, n+1, 2):
total += j∗j

return total

R-1.7) Hint How can you describe the range of integers for the sum?.

R-1.7) Solution

total = sum(j∗j for j in range(1, n+1, 2))

R-1.8) Hint Give your answer in terms of n and k.

R-1.8) Solution n+k

R-1.9) Hint Where does the sequence start and end? What is the step

size?

R-1.9) Solution range(50,81,10)

R-1.10) Hint Use a negative step size.

R-1.10) Solution range(8, −10, −2)

R-1.11) Hint Those look like powers of two!

R-1.11) Solution [2∗∗k for k in range(9)]

R-1.12) Hint Use randrange to pick the index of the chosen element.

R-1.12) Solution

def choice(data):
return data[randrange(len(data))]

Creativity

C-1.13) Hint The Python function does not need to be passed the value of

n as an argument.

C-1.14) Hint Note that both numbers in the pair must be odd.

C-1.14) Solution



3

def has odd pair(data):
count=0
for j in range(len(data)):
if data[j] % 2 == 1:
count++
if count == 2:
return True

return False

C-1.15) Hint The simple solution just checks each number against every

other one, but we will discuss better solutions later in the book. But make

sure you don’t compare a number to itself.

C-1.15) Solution

def distinct(data):
for k in range(1, len(data)):
for j in range(k):
if data[j] == data[k]:
return False

return True

C-1.16) Hint Think about the semantics of data[j] = data[j] ∗ factor.
C-1.17) Hint Try it out and see if it works!

C-1.17) Solution This does not work because it reassigns the value of

local variable val, but not the entries of the list data.

C-1.18) Hint What are the factors of each number?

C-1.18) Solution [k∗(k+1) for k in range(10)]
C-1.19) Hint Use the chr function with appropriate range

C-1.19) Solution [chr(k) for k in range(97,123)]
C-1.20) Hint Consider randomly swapping an element to the first posi-

tion, then randomly swapping a remaining element to the second position,

and so on.

C-1.21) Hint Use a list to store all the lines.

C-1.21) Solution

lines = [ ]
while True:
try:
single = input()
lines.append(single)

except EOFError:
break # leave the while loop

print('\n'.join(reversed(lines)))



4 Chapter 1. Python Primer

C-1.22) Hint Go back to the definition of dot product and write a for loop

that matches it.

C-1.22) Solution

return [a[k]∗b[k] for k in range(n)]

C-1.23) Hint Use a try-except structure.

C-1.23) Solution

try:
data[k] = val

except IndexError:
print("Don't try buffer overflow attacks in Python!")

C-1.24) Hint You can use the condition ch in 'aeiou' to test if a char-

acter is a vowel.

C-1.24) Solution

def num vowels(text):
total = 0
for ch in text.lower():
if ch in 'aeiou':
total += 1

return total

C-1.25) Hint Consider each character one at a time.

C-1.26) Hint Try a case analysis for each pair of integers and an operator.

C-1.27) Hint Either buffer the bigger value from each pair of factors, or

repeat the loop in reverse to avoid the buffer.

C-1.27) Solution

def factors(n): # generator that computes factors
buffer = [ ]
k = 1
while k ∗ k < n: # while k < sqrt(n)
if n % k == 0:
yield k
buffer.append(n // k)

k += 1
if k ∗ k == n: # special case if n is perfect square
yield k

for val in reversed(buffer):
yield val



5

C-1.28) Hint Use the ∗∗ operator to compute powers.

C-1.28) Solution

def norm(v, p=2):
temp = sum(val∗∗p for val in v)
return temp ∗∗ (1/p)

Projects

P-1.29) Hint There are many solutions. If you know about recursion, the

easiest solution uses this technique. Otherwise, consider using a list to

hold solutions. If this still seems to hard, then consider using six nested

loops (but avoid repeating characters and make sure you allow all string

lengths).

P-1.29) Solution Here is a possible solution:

def permute(bag, permutation):
# When the bag is empty, a full permutation exists
if len(bag) == 0:
print(''.join(permutation))

else:
# For each element left in the bag
for k in range(len(bag)):
# Take the element out of the bag and put it at the end of the permutation
permutation.append(bag.pop(k))

# Permute the rest of the bag (recursively)
permute(bag, permutation);

# Take the element off the permutation and put it back in the bag
bag.insert(k, permutation.pop())

permute(list('catdog'), [ ])

P-1.30) Hint This is the same as the logarithm, but you can use recursion

here rather than calling the log function.

P-1.31) Hint While not always optimal, you can design your algorithm so

that it always returns the largest coin possible until the value of the change

is met.

P-1.32) Hint Do a case analysis to categorize each line of input.



6 Chapter 1. Python Primer

P-1.33) Hint Write your program to loop continually until a quit operation

is entered. In each iteration, collect a sequence of button pushes, and then

output the result from processing that sequence of pushes.

P-1.34) Hint Define a way of indexing all the sentences and the location

in each one and then work out a way of picking eight of these locations

for a typo.

P-1.35) Hint Use a two-dimensional list to keep track of the statistics and

a one-dimensional list for each experiment.

P-1.36) Hint You need some way of telling when you have seen the same

word you have before. Feel free to just search through your list of words

to do this here.


