CHAPTER 1
Introduction

1.4
The general way to do this is to write a procedure with heading

void processFile( String fileName );

which opens fileName, does whatever processing is needed, and then closes it. If a line of the form

#include SomeFile

is detected, then the call

processFile( SomeFile );

is made recursively. Self-referential includes can be detected by keeping a list of files for which a call to processFile has not yet terminated, and checking this list before making a new call to processFile.

1.5
public static int ones( int n )

{

   if( n < 2 )

      return n;

   return n % 2 + ones( n / 2 );

}

1.7
(a) The proof is by induction. The theorem is clearly true for 0 < X ( 1, since it is true for X = 1, and for X < 1, log X is negative. It is also easy to see that the theorem holds for 1 < X ( 2, since it is true for X = 2, and for X < 2, log X is at most 1. Suppose the theorem is true for p < X ( 2p (where p is a positive integer), and consider any 2p < Y ( 4p (p ( 1). Then log Y = 1 + log(Y/2)< 1 + Y/2 < Y/2 + Y/2 ( Y, where the first inequality follows by the inductive hypothesis.


(b) Let 2X = A. Then AB = (2X)B = 2XB. Thus log AB = XB. Since X = log A, the theorem is proved.

1.8
(a) The sum is 4/3 and follows directly from the formula.


(b) 
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 Subtracting the first equation from the second gives 
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By part (a), 3S = 4/3 so S = 4/9.


(c) 
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 Subtracting the first equation from the second gives 
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 Rewriting, we get 
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 Thus 3S = 2(4/9) + 4/3 = 20/9. Thus S = 20/27.

(d) Let SN = 
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 Follow the same method as in parts (a) – (c) to obtain a formula for SN in terms of SN–1, SN–2,..., S0 and solve the recurrence. Solving the recurrence is very difficult.

1.9
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1.10
24 = 16 
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 1 (mod 5). (24)25 
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 125 (mod 5). Thus 2100 
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 1 (mod 5).

1.11
(a) Proof is by induction. The statement is clearly true for N = 1 and N = 2. Assume true for N = 1, 2, ... , k. Then 
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 By the induction hypothesis, the value of the sum on the right is Fk+2 – 2 + Fk+1 = Fk+3 – 2, where the latter equality follows from the definition of the Fibonacci numbers. This proves the claim for N = k + 1, and hence for all N.


(b) As in the text, the proof is by induction. Observe that ( + 1 = (2. This implies that ( –1 + ( –2 = 1. For N = 1 and N = 2, the statement is true. Assume the claim is true for N = 1, 2, ... , k.
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by the definition, and we can use the inductive hypothesis on the right-hand side, obtaining
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and proving the theorem.


(c) See any of the advanced math references at the end of the chapter. The derivation involves the use of generating functions.

1.12
(a) 
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 = N(N + 1) – N = N2.


(b) The easiest way to prove this is by induction. The case N = 1 is trivial. Otherwise,
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