
Solutions for Selected Exercises

Frank M. Carrano
University of Rhode Island

Charles Hoot
Oklahoma City University

Version 4.0, © 2015 Pearson Education, Inc. All rights reserved.
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Contents
(Click on any entry below to locate the solutions for that chapter.)

Please send comments or errors to carrano@acm.org

Prelude: Designing Classes 3
Chapter 1: Bags 5
Chapter 2: Bag Implementations That Use Arrays 9
Chapter 3: A Bag Implementation That Links Data 17
Chapter 4: The Efficiency of Algorithms 26
Chapter 5: Stacks 33
Chapter 6: Stack Implementations 37
Chapter 7: Recursion 42
Chapter 8: An Introduction to Sorting 57
Chapter 9: Faster Sorting Methods 66
Chapter 10: Queues, Deques, and Priority Queues 71
Chapter 11: Queue, Deque, and Priority Queue Implementations 79
Chapter 12: Lists 86
Chapter 13: List Implementations That Use Arrays 91
Chapter 14: A List Implementation That Links Data 98
Chapter 15: Iterators 109
Chapter 16: Sorted Lists 117
Chapter 17: Inheritance and Lists 125
Chapter 18: Searching 128
Chapter 19: Dictionaries 136
Chapter 20: Dictionary Implementations 146
Chapter 21: Introducing Hashing 158
Chapter 22: Hashing as a Dictionary Implementation 162
Chapter 23: Trees 166
Chapter 24: Tree Implementations 173
Chapter 25: A Binary Search Tree Implementation 183
Chapter 26: A Heap Implementation 193
Chapter 27: Balanced Search Trees 198
Chapter 28: Graphs 205
Chapter 29: Graph Implementations 211

!2
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

mailto:carrano@acm.org

Prelude: Designing Classes

1. Consider the interface NameInterface defined in Segment P.13. We provided comments for only two of the
methods. Write comments in javadoc style for each of the other methods.

/** Sets the first and last names.
 @param firstName A string that is the desired first name.
 @param lastName A string that is the desired last name. */
public void setName(String firstName, String lastName);

/** Gets the full name.
 @return A string containing the first and last names. */
public String getName();

/** Sets the first name.
 @param firstName A string that is the desired first name. */
public void setFirst(String firstName);

/** Gets the first name.
 @return A string containing the first name. */
public String getFirst();

/** Sets the last name.
 @param lastName A string that is the desired last name. */
public void setLast(String lastName);

/** Gets the last name.
 @return A string containing the last name. */
public String getLast();

/** Changes the last name of the given Name object to the last name of this Name object.
 @param aName A given Name object whose last name is to be changed. */
public void giveLastNameTo(NameInterface aName);

/** Gets the full name.
 @return A string containing the first and last names. */
public String toString();

2. Consider the interface Circular and the class Circle, as given in Segment P.15.
a. Is the client or the method setRadius responsible for ensuring that the circle’s radius is positive?
b. Write a precondition and a postcondition for the method setRadius.
c. Write comments for the method setRadius in a style suitable for javadoc.
d. Revise the method setRadius and its precondition and postcondition to change the responsibility mentioned

in your answer to Part a.
a. The client is responsible for guaranteeing that the argument to the setRadius method is positive.
b. Precondition: newRadius >= 0. Postcondition: The radius has been set to newRadius.
c. /** Sets the radius.
 @param newRadius A non-negative real number. */

d. Precondition: newRadius is the radius. Postcondition: The radius has been set to newRadius if newRadius
>= 0.

 /** Sets the radius.
 @param newRadius A real number.
 @throws ArithmeticException if newRadius < 0. */
 public void setRadius(double newRadius) throws ArithmeticException
 {
 if (newRadius < 0)
 throw new ArithmeticException("Radius was negative");
 else
 radius = newRadius;
 } // end setRadius

!3
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

3. Write a CRC card and a class diagram for a proposed class called Counter. An object of this class will be used
to count things, so it will record a count that is a nonnegative whole number. Include methods to set the counter
to a given integer, to increase the count by 1, and to decrease the count by 1. Also include a method that returns
the current count as an integer, a method toString that returns the current count as a string suitable for display
on the screen, and a method that tests whether the current count is zero.

4. Suppose you want to design software for a restaurant. Give use cases for placing an order and settling the

bill. Identify a list of possible classes. Pick two of these classes, and write CRC cards for them.

System: Orders
Use case: Place an Order
Actor: Waitress
Steps:
1.Waitress starts a new order.
2.The waitress enters a table number.
3.Waitress chooses a menu item and adds it to the order.
 a. If there are more items, return to step 3.
4. The order is forwarded to the kitchen.

System: Orders
Use case: Settle Bill
Actor: Cashier
Steps:
1. The cashier enters the order id.
2. The system displays the total.
3. The customer makes a payment to the cashier.
4. The system computes any change due.
5. The cashier gives the customer a receipt.

Possible classes for this system are: Restaurant, Waitress, Cashier, Menu, MenuItem, Order, OrderItem, and
Payment.

Counter

Responsibilities
 Set the counter to a value
 Add 1 to the counter
 Subtract 1 from the counter
 Get the value of the counter as an integer
 Get the value of the counter as a string
 Test whether the counter is zero

Collaborations

!4

Counter

-count: integer

+setCounter(theCount:integer): void
+incrementCount(): void
+decrementCount(): void
+getCurrentCount(): integer
+toString(): String
+isZero(): boolean

© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 1: Bags

1. Specify each method of the class PiggyBank, as given in Listing 1-3, by stating the method’s purpose; by
describing its parameters; and by writing preconditions, postconditions, and a pseudocode version of its
header. Then write a Java interface for these methods that includes javadoc-style comments.

Purpose: Adds a given coin to this piggy bank.
Parameter: aCoin - a given coin
Precondition: None.
Postcondition: Either the coin has been added to the bank and the method returns true,
 or the method returns false because the coin could not be added to the bank.
public boolean add(aCoin)

Purpose: Removes a coin from this piggy bank.
Precondition: None.
Postcondition: The method returns either the removed coin or null in case the bank
 was empty before the method began execution.
public Coin remove()

Purpose: Detects whether this piggy bank is empty.
Precondition: None.
Postcondition: The method returns either true if the bank is empty or
 false if it is not empty.
public boolean isEmpty()

/**
 An interface that describes the operations of a piggy bank.
 @author Frank M. Carrano
 @version 4.0
*/
public interface PiggyBankInterface
{
 /** Adds a given coin to this piggy bank.
 @param aCoin A given coin.
 @return Either true if the coin has been added to the bank,
 or false if it has not been added. */
 public boolean add(Coin aCoin);

 /** Removes a coin from this piggy bank.
 @return Either true if a coin has been removed from the bank,
 or false if it has not been removed. */
 public Coin remove();

 /** Detects whether this piggy bank is empty.
 @return Either true if the bank is empty, or false if it not empty. */
 public boolean isEmpty();
} // end PiggyBankInterface

2. Suppose that groceryBag is a bag filled to its capacity with 10 strings that name various groceries. Write Java
statements that remove and count all occurrences of "soup" in groceryBag. Do not remove any other strings from
the bag. Report the number of times that "soup" occurred in the bag. Accommodate the possibility that
groceryBag does not contain any occurrence of "soup".

int soupCount = 0;
while (bag.remove("soup"))
 soupCount++;
System.out.println("Removed " + soupCount + " cans of soup.");

!5
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

3. Given groceryBag, as described in Exercise 2, what effect does the operation groceryBag.toArray() have on
groceryBag?

No effect; groceryBag is unchanged by the operation.

4. Given groceryBag, as described in Exercise 2, write some Java statements that create an array of the distinct
strings that are in this bag. That is, if "soup" occurs three times in groceryBag, it should only appear once in
your array. After you have finished creating this array, the contents of groceryBag should be unchanged.

Object[] items = groceryBag.toArray();
BagInterface<String> tempBag = new Bag<>(items.length);
for (Object anItem: items)
{
 String aString = anItem.toString();
 if (!tempBag.contains(aString))
 tempBag.add(aString);
} // end for
items = tempBag.toArray();

5. The union of two collections consists of their contents combined into a new collection. Add a method union to
the interface BagInterface for the ADT bag that returns as a new bag the union of the bag receiving the call to
the method and the bag that is the method’s one argument. Include sufficient comments to fully specify the
method.

Note that the union of two bags might contain duplicate items. For example, if object x occurs five times in one
bag and twice in another, the union of these bags contains x seven times. Specifically, suppose that bag1 and bag2 are
Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2 contains
the String objects b, b, d, and e. After the statement

BagInterface<String> everything = bag1.union(bag2);

executes, the bag everything contains the strings a, b, b, b, c, d, and e. Note that union does not affect the con-
tents of bag1 and bag2.

/** Creates a new bag that combines the contents of this bag and a
 second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the union of the two bags. */
public BagInterface<T> union(BagInterface<T> anotherBag);

6. The intersection of two collections is a new collection of the entries that occur in both collections. That is, it
contains the overlapping entries. Add a method intersection to the interface BagInterface for the ADT bag
that returns as a new bag the intersection of the bag receiving the call to the method and the bag that is the
method’s one argument. Include sufficient comments to fully specify the method.

Note that the intersection of two bags might contain duplicate items. For example, if object x occurs five times in
one bag and twice in another, the intersection of these bags contains x twice. Specifically, suppose that bag1 and bag2
are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2
contains the String objects b, b, d, and e. After the statement

BagInterface<String> commonItems = bag1.intersection(bag2);

executes, the bag commonItems contains only the string b. If b had occurred in bag1 twice, commonItems would
have contained two occurrences of b, since bag2 also contains two occurrences of b. Note that intersection
does not affect the contents of bag1 and bag2.

/** Creates a new bag that contains those objects that occur in both this
 bag and a second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the intersection of the two bags. */
public BagInterface<T> intersection(BagInterface<T> anotherBag);

!6
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

7. The difference of two collections is a new collection of the entries that would be left in one collection after
removing those that also occur in the second. Add a method difference to the interface BagInterface for the
ADT bag that returns as a new bag the difference of the bag receiving the call to the method and the bag that is
the method’s one argument. Include sufficient comments to fully specify the method.

Note that the difference of two bags might contain duplicate items. For example, if object x occurs five times in
one bag and twice in another, the difference of these bags contains x three times. Specifically, suppose that bag1 and
bag2 are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2
contains the String objects b, b, d, and e. After the statement

BagInterface leftOver1 = bag1.difference(bag2);

executes, the bag leftOver1 contains the strings a and c. After the statement

BagInterface leftOver2 = bag2.difference(bag1);

executes, the bag leftOver2 contains the strings b, d, and e. Note that difference does not affect the contents
of bag1 and bag2.

/** Creates a new bag of objects that would be left in this bag
 after removing those that also occur in a second given bag
 without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the difference of the two bags. */
public BagInterface<T> difference(BagInterface<T> anotherBag);

8. Write code that accomplishes the following tasks: Consider two bags that can hold strings. One bag is named
letters and contains several one-letter strings. The other bag is empty and is named vowels. One at a time,
remove a string from letters. If the string contains a vowel, place it into the bag vowels; otherwise, discard
the string. After you have checked all of the strings in letters, report the number of vowels in the bag
vowels and the number of times each vowel appears in the bag.

BagInterface<String> allVowels = new Bag<>();
allVowels.add("a");
allVowels.add("e");
allVowels.add("i");
allVowels.add("o");
allVowels.add("u");
BagInterface<String> vowels = new Bag<>();

while (!letters.isEmpty())
{
 String aLetter = letters.remove();
 if (allVowels.contains(aLetter))
 vowels.add(aLetter);
} // end while

System.out.println("There are " + vowels.getCurrentSize() + " vowels in the bag.");
String[] vowelsArray = {"a", "e", "i", "o", "u"};
for (int index = 0; index < vowelsArray.length; index++)
{
 int count = vowels.getFrequencyOf(vowelsArray[index]);
 System.out.println(vowelsArray[index] + " occurs " + count + " times.");
} // end for

!7
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

9. Write code that accomplishes the following tasks: Consider three bags that can hold strings. One bag is named
letters and contains several one-letter strings. Another bag is named vowels and contains five strings, one for
each vowel. The third bag is empty and is named consonants. One at a time, remove a string from letters.
Check whether the string is in the bag vowels. If it is, discard the string. Otherwise, place it into the bag
consonants. After you have checked all of the strings in letters, report the number of consonants in the bag
consonants and the number of times each consonant appears in the bag.

while (!letters.isEmpty())
{
 String aLetter = letters.remove();
 if (!vowels.contains(aLetter))
 consonants.add(aLetter);
} // end while

System.out.println("There are " + consonants.getCurrentSize() +
 " consonants in the bag.");
final String[] CONSONANTS = {"a", "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",
 "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"};
for (int index = 0; index < CONSONANTS.length; index++)
{
 int count = consonants.getFrequencyOf(CONSONANTS[index]);
 System.out.println(CONSONANTS[index] + " occurs " + count + " times.");
} // end for

!8
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 2: Bag Implementations That Use Arrays

1. Why are the methods getIndexOf and removeEntry in the class ArrayBag private instead of public?
The methods are implementation details that should be hidden from the client. They are not ADT bag operations
and are not declared in BagInterface. Thus, they should not be public methods.

2. Implement a method replace for the ADT bag that replaces and returns any object currently in a bag with a
given object.

/** Replaces an unspecified entry in this bag with a given object.
 @param replacement The given object.
 @return The original entry in the bag that was replaced. */
public T replace(T replacement)
{
 T replacedEntry = bag[numberOfEntries - 1];
 bag[numberOfEntries - 1] = replacement;
 return replacedEntry;
} // end replace

3. Revise the definition of the method clear, as given in Segment 2.23, so that it is more efficient and calls only

the method checkInitialization.

public void clear()
{
 checkInitialization();
 for (int index = 0; index < numberOfEntries; index++)
 bag[index] = null;
 numberOfEntries = 0;
} // end clear

4. Revise the definition of the method remove, as given in Segment 2.24, so that it removes a random entry from a
bag. Would this change affect any other method within the class ArrayBag?

Begin the file containing ArrayBag with the following statement:
import java.util.Random;

Add the following data field to ArrayBag:
private Random generator;

Add the following statement to the initializing constructor of ArrayBag:
generator = new Random();

The definition of the method remove follows:

public T remove()
{
 T result = removeEntry(generator.nextInt(numberOfEntries));
 return result;
} // end remove

!9
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

5. Define a method removeEvery for the class ArrayBag that removes all occurrences of a given entry from a bag.

The following method is easy to write, but it is inefficient since it repeatedly begins the search from the
beginning of the array bag:

/** Removes every occurrence of a given entry from this bag.
 @param anEntry The entry to be removed. */
public void removeEvery(T anEntry)
{
 int index = getIndexOf(anEntry);
 while (index > -1)
 {
 T result = removeEntry(index); // removeEntry is a private method in ArrayBag
 index = getIndexOf(anEntry);
 } // end while
} // end removeEvery

The following method continues the search from the last found entry, so it is more efficient. But it is easy to
make a mistake while coding:

public void removeEvery2(T anEntry)
{
 for (int index = 0; index < numberOfEntries; index++)
 {
 if (anEntry.equals(bag[index]))
 {
 removeEntry(index);
 // Since entries in array bag are shifted, index can remain the same;
 // but the for statement will increment index, so need to decrement it here:
 index--;
 } // end if
 } // end for
} // end removeEvery2

6. An instance of the class ArrayBag has a fixed size, whereas an instance of ResizableArrayBag does not. Give
some examples of situations where a bag would be appropriate if its size is: a. Fixed; b. Resizable.
a. Simulating any application involving an actual bag, such a grocery bag.
b. Maintaining any collection that can grow in size or whose eventual size is unknown.

7. Suppose that you wanted to define a class PileOfBooks that implements the interface described in Project 2 of
the previous chapter. Would a bag be a reasonable collection to represent the pile of books? Explain.

No. The books in a pile have an order. A bag does not order its entries.

8. Consider an instance myBag of the class ResizableArrayBag, as discussed in Segments 2.36 to 2.40. Suppose
that the initial capacity of myBag is 10. What is the length of the array bag after 
a. Adding 145 entries to myBag? 
b. Adding an additional 20 entries to myBag?
a. 160. During the 11th addition, the bag doubles in size to 20. At the 21st addition, the bag’s size increases

to 40. At the 41st addition, it doubles in size again to 80. At the 81st addition, the size becomes 160 and
stays that size during the addition of the 145th entry.

b. 320. The array can accommodate 160 entries. Since it contains 145 entries, it can accommodate 15 more
before having to double in size again.

!10
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

9. Define a method at the client level that accepts as its argument an instance of the class ArrayBag and returns an
instance of the class ResizableArrayBag that contains the same entries as the argument bag.
For simplicity, we assume that the original bag contains strings. To drop this assumption, we would need to
write the method as a generic method, which is described in Java Interlude 3.

public static ResizableArrayBag<String> convertToResizable(ArrayBag<String> aBag)
{
 ResizableArrayBag<String> newBag = new ResizableArrayBag<>();

 Object[] bagArray = aBag.toArray();
 for (int index = 0; index < bagArray.length; index++)
 newBag.add((String)bagArray[index]);

 return newBag;
} // end convertToResizable

10. Suppose that a bag contains Comparable objects such as strings. A Comparable object belongs to a class that

implements the standard interface Comparable<T>, and so has the method compareTo. Implement the following
methods for the class ArrayBag:
• The method getMin that returns the smallest object in a bag
• The method getMax that returns the largest object in a bag
• The method removeMin that removes and returns the smallest object in a bag
• The method removeMax that removes and returns the largest object in a bag
Students might have trouble with this exercise, depending on their knowledge of Java. The necessary details
aren’t covered until Java Interlude 3. You might want to ask for a pseudocode solution instead of a Java method.

Change the header of BagInterface to
public interface BagInterface<T extends Comparable<? super T>>

Change the header of ArrayBag to
public class ArrayBag<T extends Comparable<? super T>> implements BagInterface<T>

Allocate the array tempBag in the constructor of ArrayBag as follows:
T[] tempBag = (T[])new Comparable<?>[desiredCapacity];

Allocate the array result in the method toArray as follows:
T[] result = (T[])new Comparable<?>[numberOfEntries];

The required methods follow:

/** Gets the smallest value in this bag.
 @returns A reference to the smallest object, or null if the bag is empty. */
public T getMin()
{
 if (isEmpty())
 return null;
 else
 return bag[getIndexOfMin()];
} // end getMin

// Returns the index of the smallest in this bag.
// Precondition: The bag is not empty.
private int getIndexOfMin()
{
 int indexOfSmallest = 0;
 for (int index = 1; index < numberOfEntries; index++)
 {
 if (bag[index].compareTo(bag[indexOfSmallest]) < 0)
 indexOfSmallest = index;
 } // end for

!11
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

 return indexOfSmallest;
} // end getIndexOfMin

/** Gets the largest value in this bag.
 @returns A reference to the largest object, or null if the bag is empty */
public T getMax()
{
 if (isEmpty())
 return null;
 else
 return bag[getIndexOfMax()];
} // end getMax

// Returns the index of the largest value in this bag.
// Precondition: The bag is not empty.
private int getIndexOfMax()
{
 int indexOfLargest = 0;
 for (int index = 1; index < numberOfEntries; index++)
 {
 if (bag[index].compareTo(bag[indexOfLargest]) > 0)
 indexOfLargest = index;
 } // end for
 return indexOfLargest;
} // end getIndexOfMax

/** Removes the smallest value in this bag.
 @returns A reference to the removed (smallest) object,
 or null if the bag is empty. */
public T removeMin()
{
 if (isEmpty())
 return null;
 else
 {
 int indexOfMin = getIndexOfMin();
 T smallest = bag[indexOfMin];
 removeEntry(indexOfMin);
 return smallest;
 } // end if
} // end removeMin

/** Removes the largest value in this bag.
 @returns A reference to the removed (largest) object,
 or null if the bag is empty. */
public T removeMax()
{
 if (isEmpty())
 return null;
 else
 {
 int indexOfMax = getIndexOfMax();
 T largest = bag[indexOfMax];
 removeEntry(indexOfMax);
 return largest;
 } // end if
} // end removeMax

!12
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

11. Suppose that a bag contains Comparable objects, as described in the previous exercise. Define a method for
the class ArrayBag that returns a new bag of items that are less than some given item. The header of the method
could be as follows:

public BagInterface<T> getAllLessThan(Comparable<T> anObject)

Make sure that your method does not affect the state of the original bag.

See the note in the solution to Exercise 10 about student background.

 /** Creates a new bag of objects that are in this bag and are less than a given object.
 @param anObject A given object.
 @return A new bag of objects that are in this bag and are less than anObject. */
 public BagInterface<T> getAllLessThan(Comparable<T> anObject)
 {
 BagInterface<T> result = new ArrayBag<>();

 for (int index = 0; index < numberOfEntries; index++)
 {
 if (anObject.compareTo(bag[index]) > 0)
 result.add(bag[index]);
 } // end for

 return result;
 } // end getAllLessThan

12. Define an equals method for the class ArrayBag that returns true when the contents of two bags are the same.
Note that two equal bags contain the same number of entries, and each entry occurs in each bag the same
number of times. The order of the entries in each array is irrelevant.

public boolean equals(Object other)
{
 boolean result = false;
 if (other instanceof ArrayBag)
 {
 // The cast is safe here
 @SuppressWarnings("unchecked")
 ArrayBag<T> otherBag = (ArrayBag<T>)other;
 int otherBagLength = otherBag.getCurrentSize();
 if (numberOfEntries == otherBagLength) // Bags must contain the same number of objects
 {
 result = true; // Assume equal
 for (int index = 0; (index < numberOfEntries) && result; index++)
 {
 T thisBagEntry = bag[index];
 T otherBagEntry = otherBag.bag[index];
 if (!thisBagEntry.equals(otherBagEntry))
 result = false; // Bags have unequal entries
 } // end for
 } // end if
 // Else bags have unequal number of entries
 } // end if

 return result;
} // end equals

!13
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

13. The class ResizableArrayBag has an array that can grow in size as objects are added to the bag. Revise the
class so that its array also can shrink in size as objects are removed from the bag. Accomplishing this task will
require two new private methods, as follows:
• The first new method checks whether we should reduce the size of the array:

 private boolean isTooBig()

This method returns true if the number of entries in the bag is less than half the size of the array and the size
of the array is greater than 20.

• The second new method creates a new array that is three quarters the size of the current array and then
copies the objects in the bag to the new array:

 private void reduceArray()

Implement each of these two methods, and then use them in the definitions of the two remove methods.

private boolean isTooBig()
{
 return (numberOfEntries < bag.length / 2) && (bag.length > 20);
} // end isTooBig

private void reduceArray()
{
 T[] oldBag = bag; // Save reference to array
 int oldSize = oldBag.length; // Save old max size of array

 @SuppressWarnings("unchecked")
 T[] tempBag = (T[])new Object[3 * oldSize / 4]; // Reduce size of array; unchecked cast
 bag = tempBag;

 // Copy entries from old array to new, smaller array
 for (int index = 0; index < numberOfEntries; index++)
 bag[index] = oldBag[index];
} // end reduceArray

public T remove()
{
 T result = removeEntry(numberOfEntries - 1);
 if (isTooBig())
 reduceArray();

 return result;
} // end remove

public boolean remove(T anEntry)
{
 int index = getIndexOf(anEntry);
 T result = removeEntry(index);

 if (isTooBig())
 reduceArray();

 return anEntry.equals(result);
} // end remove

!14
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

14. Consider the two private methods described in the previous exercise.
a. The method isTooBig requires the size of the array to be greater than 20. What problem could occur if this

requirement is dropped?
b. The method reduceArray is not analogous to the method doubleCapacity in that it does not reduce the size

of the array by one half. What problem could occur if the size of the array is reduced by one half instead of
three quarters?

a. If the size of the array is less than 20, it will need to be resized after very few additions or removals. Since
20 is not very large, the amount of wasted space will be negligible.

b. If the size of the array is reduced by half, a sequence of alternating removes and adds can cause a resize
with each operation.

15. Define the method union, as described in Exercise 5 of the previous chapter, for the class ResizableArrayBag.

public BagInterface<T> union(BagInterface<T> anotherBag)
{
 BagInterface<T> unionBag = new ResizableArrayBag<>();
 ResizableArrayBag<T> otherBag = (ResizableArrayBag<T>)anotherBag;

 int index;

 // Add entries from this bag to the new bag
 for (index = 0; index < numberOfEntries; index++)
 unionBag.add(bag[index]);

 // Add entries from the second bag to the new bag
 for (index = 0; index < otherBag.getCurrentSize(); index++)
 unionBag.add(otherBag.bag[index]);

 return unionBag;
} // end union

16. Define the method intersection, as described in Exercise 6 of the previous chapter, for the class
ResizableArrayBag.

public BagInterface<T> intersection(BagInterface<T> anotherBag)
{
 // The count of an item in the intersection is the smaller of the count in each bag.
 BagInterface<T> intersectionBag = new ResizableArrayBag<>();
 ResizableArrayBag<T> otherBag = (ResizableArrayBag<T>)anotherBag;
 BagInterface<T> copyOfAnotherBag = new ResizableArrayBag<>()

 int index;

 // Copy the second bag
 for (index = 0; index < otherBag.numberOfEntries; index++)
 copyOfAnotherBag.add(otherBag.bag[index]);

 // Add to intersectionBag each item in this bag that matches an item in anotherBag;
 // once matched, remove it from the second bag

 for (index = 0; index < getCurrentSize(); index++)
 {
 if (copyOfAnotherBag.contains(bag[index]))
 {
 intersectionBag.add(bag[index]);
 copyOfAnotherBag.remove(bag[index]);
 } // end if
 } // end for

 return intersectionBag;
} // end intersection

!15
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

17. Define the method difference, as described in Exercise 7 of the previous chapter, for the class
ResizableArrayBag.

public BagInterface<T> difference(BagInterface<T> anotherBag)
{
 // The count of an item in the difference is the difference of the counts in the two bags.
 BagInterface<T> differenceBag = new ResizableArrayBag<>();
 ResizableArrayBag<T> otherBag = (ResizableArrayBag<T>)anotherBag;

 int index;

 // copy this bag
 for (index = 0; index < numberOfEntries; index++)
 {
 differenceBag.add(bag[index]);
 } // end for

 // remove the ones that are in anotherBag
 for (index = 0; index < otherBag.getCurrentSize(); index++)
 {
 if (differenceBag.contains(otherBag.bag[index]))
 {
 differenceBag.remove(otherBag.bag[index]);
 } // end if
 } // end for

 return differenceBag;
} // end difference

!16
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 3: A Bag Implementation That Links Data

1. Add a constructor to the class LinkedBag that creates a bag from a given array of objects.

public LinkedBag(T[] items, int numberOfitems)
{
 this();

 for (int index = 0; index < numberOfitems; index++)
 add(items[index]);
} // end constructor

2. Consider the definition of LinkedBag’s add method that appears in Segment 3.12. Interchange the second and
third statements in the method’s body, as follows:

firstNode = newNode;
newNode.next = firstNode;

a. What is displayed by the following statements in a client of the modified LinkedBag?

 BagInterface<String> myBag = new LinkedBag<>();
 myBag.add("30");
 myBag.add("40");
 myBag.add("50");
 myBag.add("10");
 myBag.add("60");
 myBag.add("20");
 int numberOfEntries = myBag.getCurrentSize();
 Object[] entries = myBag.toArray();
 for (int index = 0; index < numberOfEntries; index++)
 System.out.print(entries[index] + " ");

b. What methods, if any, in LinkedBag could be affected by the change to the method add when they execute?
Why?

a. 20 20 20 20 20 20
b. The change to the add method causes add to create a one-node chain containing the last entry added to the

bag. However, numberOfEntries count the numbers of additions, which is 6 in this case. Other methods
execute using the incorrect contents of the bag.

3. Repeat Exercise 2 in the previous chapter for the class LinkedBag.
Implement a method replace for the ADT bag that replaces and returns any object currently in a bag with a
given object.

/** Replaces an unspecified entry in this bag with a given object.
 @param replacement The given object.
 @return The original entry in the bag that was replaced. */
public T replace(T replacement)
{
 T replacedEntry = firstNode.data;
 firstNode.data = replacement;

 return replacedEntry;
} // end replace

!17
© 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

