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CHAPTER 1 Data Mining and Analysis

1.7 EXERCISES

Q1. Show that the mean of the centered data matrix Z in Eq. (1.5) is 0.

Answer: Each centered point is given as: zi = xi −µ. Their mean is therefore:

1

n

n∑

i=0

zi = 1

n

n∑

i=0

(xi −µ)

= 1

n

n∑

i=0

xi − 1

n
·n ·µ

= µ−µ = 0

Q2. Prove that for the Lp-distance in Eq. (1.2), we have

δ∞(x,y) = lim
p→∞

δp(x,y) = d
max
i=1

{
|xi − yi |

}

for x,y ∈R
d .

Answer: We have to show that

lim
p→∞

(
d∑

i=1

|xi − yi |p
) 1

p

= d
max
i=1

{
|xi − yi |

}

Assume that dimension a is the max, and let m = |xa − ya |. For simplicity, we

assume that |xi − yi | < m for all i 6= a.

If we divide and multiply the left hand side with mp we get:

(
mp

d∑

i=1

( |xi − yi |
m

)p
) 1

p

= m


1+

∑

i 6=a

( |xi − yi |
m

)p




1
p
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4 Data Mining and Analysis

As p → ∞, each term
(

|xi−yi |
m

)p

→ 0, since m > |xi − yi | for all i 6= a. The finite

summation
∑

i 6=a

(
|xi−yi |

m

)p

converges to 0 as p → ∞, as does 1/p.

Thus δ∞(x,y) = m× 10 = m = |xa − ya | = maxd
i=1{|xi − yi |}

Note that the same result is obtained even if we assume that dimensions other

than a achieve the maximum value m. In the worst case, we have m = |xi − yi | for

all d dimensions. In this case, the expression on LHS becomes

lim
p→∞

m

(
d∑

i=1

1p

)1/p

= lim
p→∞

md1/p = lim
p→∞

md0 = m
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CHAPTER 2 Numeric Attributes

2.7 EXERCISES

Q1. True or False:

(a) Mean is robust against outliers.

Answer: False

(b) Median is robust against outliers.

Answer: True

(c) Standard deviation is robust against outliers.

Answer: False

Q2. Let X and Y be two random variables, denoting age and weight, respectively.

Consider a random sample of size n = 20 from these two variables

X = (69,74,68,70,72,67,66,70,76,68,72,79,74,67,66,71,74,75,75,76)

Y = (153,175,155,135,172,150,115,137,200,130,140,265,185,112,140,

150,165,185,210,220)

(a) Find the mean, median, and mode for X.

Answer: The mean, median, and mode are:

µ = 1

20

2∑

i=1

0xi = 1429/20 = 71.45

median = (71+ 72)/2 = 71.5

mode = 74

(b) What is the variance for Y?
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8 Numeric Attributes

Answer: The mean of Y is µY = 3294/20 = 164.7. The variance is:

σ 2
Y = 1

20

2∑

i=1

0yi −µY = 27384.2/20 = 1369.21

(c) Plot the normal distribution for X.

Answer: The mean for X is µX = 71.45, and the variance is σ 2
X = 13.8475, with

a standard deviation of σX = 3.72.

0

0.05

0.10

60 65 70 75 80

x

f (x)

(d) What is the probability of observing an age of 80 or higher?

Answer: If we leverage the empirical probability mass function, we get:

P (X ≥ 80) = 0/20 = 0

since we do not have anyone with age 80 or more in our sample.

We can use the normal distribution modeling, with parameters µX = 71.45 and

σ 2
X = 3.72 to get:

P (X ≥ 80) =
∞∫

80

N(x|µX,σX) = 0.010769

(e) Find the 2-dimensional mean µ̂ and the covariance matrix 6̂ for these two

variables.

Answer: The mean and covariance matrices are:

µ = (µX,µY)T = (71.45,164.7)T

6 =
(

σ 2
X σXY

σXY σ 2
Y

)
=
(

13.8475 122.435

122.435 1369.21

)

(f) What is the correlation between age and weight?
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2.7 Exercises 9

Answer:

ρXY = σXY/(σXσY) = 122.435√
13.845 · 1369.21

= 0.889

(g) Draw a scatterplot to show the relationship between age and weight.

Answer: The scatterplot is shown in the figure below.
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Q3. Show that the identity in Eq. (2.15) holds, that is,

n∑

i=1

(xi −µ)2 = n(µ̂−µ)2 +
n∑

i=1

(xi − µ̂)2

Answer: Consider the RHS

n(µ̂−µ)2 +
n∑

i=1

(xi − µ̂)2 = n(µ̂2 − 2µ̂µ+µ2)+
n∑

i=1

(x2
i − 2xi µ̂+ µ̂2)

= nµ̂2 − 2nµ̂µ+nµ2 +
(

n∑

i=1

x2
i

)
− 2nµ̂2 +nµ̂2

=
(

n∑

i=1

x2
i

)
− 2nµ̂µ+nµ2

=
(

n∑

i=1

x2
i

)
− 2n

(∑n
i=1 xi

n

)
µ+

n∑

i=1

µ2

=
n∑

i=1

(xi −µ)2
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10 Numeric Attributes

Q4. Prove that if xi are independent random variables, then

var

(
n∑

i=1

xi

)
=

n∑

i=1

var(xi )

This fact was used in Eq. (2.12).

Answer: We assume for simplicity that all the variables are discrete. A similar

approach can be used for continuous variables.

Consider the random variable x1 + x2. Its mean is given as

µx1+x2 =
∑

x1=a

∑

x2=b

(a + b)f (a,b)

Since x1 and x2 are independent, their joint probability mass function is given as:

f (x1,x2) = f (x1) ·f (x2)

Thus, the mean is given as

µx1+x2 =
∑

x1=a

∑

x2=b

(a + b)f (a,b)

=
∑

x1=a

∑

x2=b

(a + b)f (a)f (b)

=
∑

x1=a

f (a)
∑

x2=b

(a + b)f (b)

=
∑

x1=a

f (a)


∑

x2=b

af (b)+
∑

x2=b

bf (b)




=
∑

x1=a

f (a)
(
a +µx2

)

= µx1 +µx2

In general, we can show that the expected value of the sum of the variables xi is the

sum of their expected values, i.e.,

E

[
n∑

i=1

xi

]
=

n∑

i=1

E[xi ]

Now, let us consider the variance of the sum of the random variables:

var

(
n∑

i=1

xi

)
= E



(

n∑

i=1

xi − E

[
n∑

i=1

xi

])2



= E



(

n∑

i=1

xi −
n∑

i=1

E[xi ]

)2



= E



(

n∑

i=1

(xi − E[xi ])

)2
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2.7 Exercises 11

= E




n∑

i=1

(xi − E[xi])
2 + 2

n∑

i=1

∑

j>i

(xi − E[xi])(xj − E[xj ])




=
n∑

i=1

E
[
(xi − E[xi ])

2
]
+ 2

n∑

i=1

∑

j>i

cov(xi ,xj )

=
n∑

i=1

var(xi)

The last step follows from the fact that cov(xi ,xj ) = 0 since they are independent.

Q5. Define a measure of deviation called mean absolute deviation for a random variable

X as follows:
1

n

n∑

i=1

|xi −µ|

Is this measure robust? Why or why not?

Answer: No, it is not robust, since a single outlier can skew the mean absolute

deviation.

Q6. Prove that the expected value of a vector random variable X = (X1,X2)
T is simply the

vector of the expected value of the individual random variables X1 and X2 as given in

Eq. (2.18).

Answer: This follows directly from the definition of expectation of a vector random

variable. When both X1 and X2 are discrete we have

µ = E[X] =
∑

x

xf (x) =
∑

x1

∑

x2

(
x1

x2

)
f (x1,x2) =

(
µX1

µX2

)

Likewise, when both X1 and X2 are continuous we have

µ = E[X] =
∫ ∫

x

xf (x)dx =
∫

x1

∫

x2

(
x1

x2

)
f (x1,x2)dx1dx2 =

(
µX1

µX2

)

In more detail, assume that both X1 and X2 are discrete, we have

µ = E

[(
X1

X2

)]
=
∑

x1,x2

(
x1

x2

)
f (x1,x2) =




∑

x1,x2

x1 f (x1,x2)

∑

x1,x2

x2 f (x1,x2)




=




∑

x1

x1

∑

x2

f (x1,x2)

∑

x2

x2

∑

x1

f (x1,x2)


=




∑

x1

x1 f (x1)

∑

x2

x2 f (x2)


=




E[X1]

E[X2]


=

(
µX1

µX2

)

where f (x1,x2) = p(X1 = x1,X2 = x2) is the joint probability mass function of

X1 and X2, and f (x1) =
∑

x2
f (x1,x2) and f (x2) =

∑
x1

f (x1,x2) are the marginal

probability distributions of X1 and X2, respectively. Note that X1 and X2 do not

have to be independent for the above to hold.
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12 Numeric Attributes

Q7. Show that the correlation [Eq. (2.23)] between any two random variables X1 and X2

lies in the range [−1,1].

Answer: The Cauchy-Schwartz inequality states that for any two vectors x and y in

an inner product space, they satisfy:

|〈x,y〉|2 ≤ 〈x,x〉 · 〈y,y〉

Define the inner product between two random variables X1 and X2 as follows:

〈X1,X2〉 = E[X1X2]

Expectation is a valid inner product since it satisfies the three conditions: i)

symmetric: E[X1X2]= E[X2X2], ii) positive-semidefinite: E[X1X2]= E[X2
1]≥0, and

iii) linear: E[(aX1)X2] = aE[X1X2] and E[(X1 + Z)X2] = E[X1X2]+ E[ZX2].

Then, we have

|σ12| =
∣∣∣cov(X1,X2)

∣∣∣
2

=
∣∣E[(X1 −µ1)(X2 −µ2)]

∣∣2

=
∣∣∣〈(X1 −µ1)(X2 −µ2)〉

∣∣∣
2

≤ 〈X1 −µ1,X1 −µ1〉 · 〈X2 −µ2,X2 −µ2〉
= E[X1 −µ1] ·E[X2 −µ2]

= σ1 ·σ2

Since |σ12| ≤ σ1 · σ2, it follows that the correlation ρ12 = σ12/σ1σ2 lies in the range

[−1,1].

Q8. Given the dataset in Table 2.1, compute the covariance matrix and the generalized

variance.

Table 2.1. Dataset for Q8

X1 X2 X3

x1 17 17 12

x2 11 9 13

x3 11 8 19

Answer: The covariance matrix is:

6 =




8.0 11.33 −5.33

11.33 16.22 −8.56

−5.33 −8.56 9.56




The generalized variance is:

det(6) = −1.38× 10−13
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2.7 Exercises 13

Q9. Show that the outer-product in Eq. (2.31) for the sample covariance matrix is

equivalent to Eq. (2.29).

Answer: Let zi = xi − µ̂ denote a centered data point. The outer product form of

covariance matrix is given as:

6̂ = 1

n

n∑

i=1

ziz
T
i

Let us consider the entry in cell (j,k); we have:

6̂(j,k) = 1

n

n∑

i=1

zij zik = 1

n

n∑

i=1

(xij − µ̂j )(xik − µ̂k) = σ̂jk

which is exactly the covariance between the j -th and k-th attribute.

Q10. Assume that we are given two univariate normal distributions, NA and NB, and let

their mean and standard deviation be as follows: µA = 4, σA = 1 and µB = 8,σB = 2.

(a) For each of the following values xi ∈ {5,6,7} find out which is the more likely

normal distribution to have produced it.

Answer: If we plug-in xi in the equation for the normal distribution, we obtain

the following:

NA(5) = 0.242 NB(5) = 0.065

NA(6) = 0.054 NB(6) = 0.121

NA(7) = 0.004 NB(7) = 0.176

Based on these values, we can claim that NA is more likely to have produced 5,

but NB is more likely to have produced 6 and 7.

We can also solve this problem by finding the z-score for each value. We can

then assign a point to the distribution for which it has a lower z-score (in terms

of absolute value). For example, for 5, we have zA(5) = (5 − 4)/1 = 1, and

zB(5) = (5 − 8)/2 = −1.5. Since |zB| > |zA| we can claim that 5 comes from

NA.

For 6 and 7 we have:

zA(6) = (6− 4)/1 = 2 zB(6) = (6− 8)/2 = −1

zA(6) = (7− 4)/1 = 3 zB(7) = (7− 8)/2 = −0.5

Thus, these values are more likely to have been generated from NB.

(b) Derive an expression for the point for which the probability of having been

produced by both the normals is the same.

Answer: Plugging in the parameters of NA and NB into the equation for the

normal distribution, and after setting up the equality, we obtain:

1√
2π

e− (x−4)2

2 = 1

2
√

2π
e− (x−8)2

8
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14 Numeric Attributes

2e
(x−8)2

8 = e
(x−4)2

2

taking ln on both sides yields

ln(2)+ (x − 8)2

8
= (x − 4)2

2

8ln(2)+ x2 + 64− 16x

8
= x2 + 16− 8x

2

2ln(2)+ x2/4− 4x = x2 − 8x

3

4
x2 − 4x − 2ln(2) = 0

0.75x2 − 4x − 1.4 = 0

We can solve this equation using the general solution for a quadratic equation:
−b±

√
b2−4ac

2a
. Plugging in the values from above we get x = 5.67.

Q11. Consider Table 2.2. Assume that both the attributes X and Y are numeric, and the

table represents the entire population. If we know that the correlation between X

and Y is zero, what can you infer about the values of Y?

Table 2.2. Dataset for Q11

X Y

1 a

0 b

1 c

0 a

0 c

Answer: Since the correlation is zero, we have cov(X,Y) = 0, which implies that

E[XY] = E[X]E[Y]. From the data we have

E[XY] = (a + c)/5 E[X] = 2/5 E[Y] = (2a + 2c + b)/5

Equating these we get

(a + c)/5 = 2(2a + 2c + b)/25

5a + 5c = 4a + 4c + 2b

a + c = 2b

Q12. Under what conditions will the covariance matrix 6 be identical to the correlation

matrix, whose (i,j ) entry gives the correlation between attributes Xi and Xj ? What

can you conclude about the two variables?
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2.7 Exercises 15

Answer: If the covariance matrix equals the correlation matrix, this means that for

all i and j , we have

ρij = σij

σij

σiσj

= σij

σiσj = 1

Thus, for the covariance matrix to equal the correlation matrix, Xi and Xj must

be perfectly correlated; either σi = σj = 1 or σi = σj = −1.
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