Contents

Cont	nts	1
1	Data Mining and Analysis	3 3
PART	I DATA ANALYSIS FOUNDATIONS	5
2	Numeric Attributes	7 7
3	Categorical Attributes	16
	3.7 Exercises	16
4	Graph Data	20
	4.6 Exercises	20
5	Kernel Methods	26
	5.6 Exercises	26
6	High-dimensional Data	29
	6.9 Exercises	29
7	Dimensionality Reduction	39
	7.6 Exercises	39
PART	II FREQUENT PATTERN MINING	45
8	Itemset Mining	47
	8.5 Exercises	47
9	Summarizing Itemsets	56
	9.6 Exercises	56
		1

Contents

10	Sequence Mining	63
	10.5 Exercises	63
11	Graph Pattern Mining	75 75
12	Pattern and Rule Assessment	84 84
PAR	T III CLUSTERING	89
13	Representative-based Clustering	91 91
14	Hierarchical Clustering	99 99
15	Density-based Clustering115.5Exercises1	06 .06
16	Spectral and Graph Clustering116.5Exercises1	11 .11
17	Clustering Validation117.5Exercises1	18 .18
PAR	TIV CLASSIFICATION 1	.23
18	Probabilistic Classification118.5Exercises1	25 25
19	Decision Tree Classifier119.4Exercises1	29 .29
20	Linear Discriminant Analysis120.4Exercises1	37 .37
21	Support Vector Machines 1 21.7 Exercises 1	41 .41
22	Classification Assessment 1 22.5 Exercises	45 45

2

CHAPTER 1 Data Mining and Analysis

1.7 EXERCISES

Q1. Show that the mean of the centered data matrix \mathbf{Z} in Eq. (1.5) is $\mathbf{0}$.

Answer: Each centered point is given as: $\mathbf{z}_i = \mathbf{x}_i - \boldsymbol{\mu}$. Their mean is therefore:

$$\frac{1}{n}\sum_{i=0}^{n} \mathbf{z}_{i} = \frac{1}{n}\sum_{i=0}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})$$
$$= \frac{1}{n}\sum_{i=0}^{n} \mathbf{x}_{i} - \frac{1}{n} \cdot n \cdot \boldsymbol{\mu}$$
$$= \boldsymbol{\mu} - \boldsymbol{\mu} = \mathbf{0}$$

Q2. Prove that for the L_p -distance in Eq. (1.2), we have

$$\delta_{\infty}(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} \delta_p(\mathbf{x}, \mathbf{y}) = \max_{i=1}^d \{ |x_i - y_i| \}$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Answer: We have to show that

$$\lim_{p \to \infty} \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}} = \max_{i=1}^{d} \{ |x_i - y_i| \}$$

Assume that dimension *a* is the max, and let $m = |x_a - y_a|$. For simplicity, we assume that $|x_i - y_i| < m$ for all $i \neq a$.

If we divide and multiply the left hand side with m^p we get:

$$\left(m^p \sum_{i=1}^d \left(\frac{|x_i - y_i|}{m}\right)^p\right)^{\frac{1}{p}} = m \left(1 + \sum_{i \neq a} \left(\frac{|x_i - y_i|}{m}\right)^p\right)^{\frac{1}{p}}$$

As $p \to \infty$, each term $\left(\frac{|x_i - y_i|}{m}\right)^p \to 0$, since $m > |x_i - y_i|$ for all $i \neq a$. The finite summation $\sum_{i\neq a} \left(\frac{|x_i - y_i|}{m}\right)^p$ converges to 0 as $p \to \infty$, as does 1/p. Thus $\delta_{\infty}(\mathbf{x}, \mathbf{y}) = m \times 1^0 = m = |x_a - y_a| = \max_{i=1}^d \{|x_i - y_i|\}$ Note that the same result is obtained even if we assume that dimensions other

Note that the same result is obtained even if we assume that dimensions other than *a* achieve the maximum value *m*. In the worst case, we have $m = |x_i - y_i|$ for all *d* dimensions. In this case, the expression on LHS becomes

$$\lim_{p \to \infty} m \left(\sum_{i=1}^{d} 1^p \right)^{1/p} = \lim_{p \to \infty} m d^{1/p} = \lim_{p \to \infty} m d^0 = m$$

PART ONE DATA ANALYSIS FOUNDATIONS

CHAPTER 2 Numeric Attributes

2.7 EXERCISES

- Q1. True or False:
 - (a) Mean is robust against outliers.

Answer: False

(b) Median is robust against outliers.

Answer: True

(c) Standard deviation is robust against outliers.

Answer: False

Q2. Let X and Y be two random variables, denoting age and weight, respectively. Consider a random sample of size n = 20 from these two variables

$$X = (69, 74, 68, 70, 72, 67, 66, 70, 76, 68, 72, 79, 74, 67, 66, 71, 74, 75, 75, 76)$$
$$Y = (153, 175, 155, 135, 172, 150, 115, 137, 200, 130, 140, 265, 185, 112, 140, 150, 165, 185, 210, 220)$$

(a) Find the mean, median, and mode for X.

Answer: The mean, median, and mode are:

$$\mu = \frac{1}{20} \sum_{i=1}^{2} 0x_i = 1429/20 = 71.45$$

median = $(71 + 72)/2 = 71.5$
mode = 74

(b) What is the variance for *Y*?

Answer: The mean of Y is $\mu_Y = 3294/20 = 164.7$. The variance is:

$$\sigma_Y^2 = \frac{1}{20} \sum_{i=1}^{2} 0y_i - \mu_Y = 27384.2/20 = 1369.21$$

(c) Plot the normal distribution for *X*.

Answer: The mean for *X* is $\mu_X = 71.45$, and the variance is $\sigma_X^2 = 13.8475$, with a standard deviation of $\sigma_X = 3.72$.

(d) What is the probability of observing an age of 80 or higher?

Answer: If we leverage the empirical probability mass function, we get:

 $P(X \ge 80) = 0/20 = 0$

since we do not have anyone with age 80 or more in our sample. We can use the normal distribution modeling, with parameters $\mu_X = 71.45$ and $\sigma_X^2 = 3.72$ to get:

$$P(X \ge 80) = \int_{80}^{\infty} N(x|\mu_X, \sigma_X) = 0.010769$$

(e) Find the 2-dimensional mean $\hat{\mu}$ and the covariance matrix $\hat{\Sigma}$ for these two variables.

Answer: The mean and covariance matrices are:

$$\boldsymbol{\mu} = (\mu_X, \mu_Y)^T = (71.45, 164.7)^T$$
$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix} = \begin{pmatrix} 13.8475 & 122.435 \\ 122.435 & 1369.21 \end{pmatrix}$$

(f) What is the correlation between age and weight?

Answer: $\rho_{XY} = \sigma_{XY} / (\sigma_X \sigma_Y) = \frac{122.435}{\sqrt{13.845 \cdot 1369.21}} = 0.889$ (g) Draw a scatterplot to show the relationship between age and weight. Answer: The scatterplot is shown in the figure below. $^{\circ}$ $^{\circ}$ Y: Weight $^{\circ}$ $^{\circ}$ \circ \bigcirc X: Age

Q3. Show that the identity in Eq. (2.15) holds, that is,

$$\sum_{i=1}^{n} (x_i - \mu)^2 = n(\hat{\mu} - \mu)^2 + \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Answer: Consider the RHS

$$n(\hat{\mu} - \mu)^{2} + \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2} = n(\hat{\mu}^{2} - 2\hat{\mu}\mu + \mu^{2}) + \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\hat{\mu} + \hat{\mu}^{2})$$

$$= n\hat{\mu}^{2} - 2n\hat{\mu}\mu + n\mu^{2} + \left(\sum_{i=1}^{n} x_{i}^{2}\right) - 2n\hat{\mu}^{2} + n\hat{\mu}^{2}$$

$$= \left(\sum_{i=1}^{n} x_{i}^{2}\right) - 2n\hat{\mu}\mu + n\mu^{2}$$

$$= \left(\sum_{i=1}^{n} x_{i}^{2}\right) - 2n\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)\mu + \sum_{i=1}^{n} \mu^{2}$$

$$= \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Q4. Prove that if x_i are independent random variables, then

$$var\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} var(x_i)$$

This fact was used in Eq. (2.12).

Answer: We assume for simplicity that all the variables are discrete. A similar approach can be used for continuous variables.

Consider the random variable $x_1 + x_2$. Its mean is given as

$$\mu_{x_1+x_2} = \sum_{x_1=a} \sum_{x_2=b} (a+b) f(a,b)$$

Since x_1 and x_2 are independent, their joint probability mass function is given as:

$$f(x_1, x_2) = f(x_1) \cdot f(x_2)$$

Thus, the mean is given as

$$\mu_{x_1+x_2} = \sum_{x_1=a} \sum_{x_2=b} (a+b) f(a,b)$$

= $\sum_{x_1=a} \sum_{x_2=b} (a+b) f(a) f(b)$
= $\sum_{x_1=a} f(a) \sum_{x_2=b} (a+b) f(b)$
= $\sum_{x_1=a} f(a) \left(\sum_{x_2=b} af(b) + \sum_{x_2=b} bf(b) \right)$
= $\sum_{x_1=a} f(a) (a + \mu_{x_2})$
= $\mu_{x_1} + \mu_{x_2}$

In general, we can show that the expected value of the sum of the variables x_i is the sum of their expected values, i.e.,

$$E\left[\sum_{i=1}^{n} x_i\right] = \sum_{i=1}^{n} E[x_i]$$

Now, let us consider the variance of the sum of the random variables:

$$var\left(\sum_{i=1}^{n} x_i\right) = E\left[\left(\sum_{i=1}^{n} x_i - E\left[\sum_{i=1}^{n} x_i\right]\right)^2\right]$$
$$= E\left[\left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} E[x_i]\right)^2\right]$$
$$= E\left[\left(\sum_{i=1}^{n} (x_i - E[x_i])\right)^2\right]$$

$$= E\left[\sum_{i=1}^{n} (x_i - E[x_i])^2 + 2\sum_{i=1}^{n} \sum_{j>i} (x_i - E[x_i])(x_j - E[x_j])\right]$$
$$= \sum_{i=1}^{n} E\left[(x_i - E[x_i])^2\right] + 2\sum_{i=1}^{n} \sum_{j>i} cov(x_i, x_j)$$
$$= \sum_{i=1}^{n} var(x_i)$$

The last step follows from the fact that $cov(x_i, x_j) = 0$ since they are independent.

Q5. Define a measure of deviation called *mean absolute deviation* for a random variable *X* as follows:

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\mu|$$

Is this measure robust? Why or why not?

Answer: No, it is not robust, since a single outlier can skew the mean absolute deviation.

Q6. Prove that the expected value of a vector random variable $\mathbf{X} = (X_1, X_2)^T$ is simply the vector of the expected value of the individual random variables X_1 and X_2 as given in Eq. (2.18).

Answer: This follows directly from the definition of expectation of a vector random variable. When both X_1 and X_2 are discrete we have

$$\boldsymbol{\mu} = E[\mathbf{X}] = \sum_{\mathbf{x}} \mathbf{x} f(\mathbf{x}) = \sum_{x_1} \sum_{x_2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} f(x_1, x_2) = \begin{pmatrix} \mu_{X_1} \\ \mu_{X_2} \end{pmatrix}$$

Likewise, when both X_1 and X_2 are continuous we have

$$\boldsymbol{\mu} = E[\mathbf{X}] = \iint_{\mathbf{X}} \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \iint_{x_1} \iint_{x_2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} f(x_1, x_2) dx_1 dx_2 = \begin{pmatrix} \mu_{X_1} \\ \mu_{X_2} \end{pmatrix}$$

In more detail, assume that both X_1 and X_2 are discrete, we have

$$\boldsymbol{\mu} = E\left[\binom{X_1}{X_2}\right] = \sum_{x_1, x_2} \binom{x_1}{x_2} f(x_1, x_2) = \begin{pmatrix}\sum_{x_1, x_2} x_1 f(x_1, x_2) \\ \sum_{x_1, x_2} x_2 f(x_1, x_2) \end{pmatrix}$$
$$= \begin{pmatrix}\sum_{x_1} x_1 \sum_{x_2} f(x_1, x_2) \\ \sum_{x_2} x_2 \sum_{x_1} f(x_1, x_2) \end{pmatrix} = \begin{pmatrix}\sum_{x_1} x_1 f(x_1) \\ \sum_{x_2} x_2 f(x_2) \end{pmatrix} = \begin{pmatrix}E[X_1] \\ E[X_2] \end{pmatrix} = \binom{\mu_{X_1}}{\mu_{X_2}}$$

where $f(x_1, x_2) = p(X_1 = x_1, X_2 = x_2)$ is the joint probability mass function of X_1 and X_2 , and $f(x_1) = \sum_{x_2} f(x_1, x_2)$ and $f(x_2) = \sum_{x_1} f(x_1, x_2)$ are the marginal probability distributions of X_1 and X_2 , respectively. Note that X_1 and X_2 do not have to be independent for the above to hold.

Q7. Show that the correlation [Eq. (2.23)] between any two random variables X_1 and X_2 lies in the range [-1, 1].

Answer: The Cauchy-Schwartz inequality states that for any two vectors **x** and **y** in an inner product space, they satisfy:

$$|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \cdot \langle \mathbf{y}, \mathbf{y} \rangle$$

Define the inner product between two random variables X_1 and X_2 as follows:

$$\langle X_1, X_2 \rangle = E[X_1 X_2]$$

Expectation is a valid inner product since it satisfies the three conditions: i) symmetric: $E[X_1X_2] = E[X_2X_2]$, ii) positive-semidefinite: $E[X_1X_2] = E[X_1^2] \ge 0$, and iii) linear: $E[(aX_1)X_2] = aE[X_1X_2]$ and $E[(X_1 + Z)X_2] = E[X_1X_2] + E[ZX_2]$.

Then, we have

$$\begin{aligned} |\sigma_{12}| &= \left| cov(X_1, X_2) \right|^2 \\ &= \left| E[(X_1 - \mu_1)(X_2 - \mu_2)] \right|^2 \\ &= \left| \langle (X_1 - \mu_1)(X_2 - \mu_2) \rangle \right|^2 \\ &\leq \langle X_1 - \mu_1, X_1 - \mu_1 \rangle \cdot \langle X_2 - \mu_2, X_2 - \mu_2 \rangle \\ &= E[X_1 - \mu_1] \cdot E[X_2 - \mu_2] \\ &= \sigma_1 \cdot \sigma_2 \end{aligned}$$

Since $|\sigma_{12}| \le \sigma_1 \cdot \sigma_2$, it follows that the correlation $\rho_{12} = \sigma_{12}/\sigma_1\sigma_2$ lies in the range [-1, 1].

Q8. Given the dataset in Table 2.1, compute the covariance matrix and the generalized variance.

	X_1	X_2	X_3
x ₁	17	17	12
x ₂	11	9	13
X 3	11	8	19

Table 2.1. Dataset for Q8

Answer: The covariance matrix is:

$$\boldsymbol{\Sigma} = \begin{pmatrix} 8.0 & 11.33 & -5.33 \\ 11.33 & 16.22 & -8.56 \\ -5.33 & -8.56 & 9.56 \end{pmatrix}$$

The generalized variance is:

$$\det(\mathbf{\Sigma}) = -1.38 \times 10^{-13}$$

Q9. Show that the outer-product in Eq. (2.31) for the sample covariance matrix is equivalent to Eq. (2.29).

Answer: Let $\mathbf{z}_i = \mathbf{x}_i - \hat{\boldsymbol{\mu}}$ denote a centered data point. The outer product form of covariance matrix is given as:

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_i \mathbf{z}_i^T$$

Let us consider the entry in cell (j, k); we have:

$$\widehat{\Sigma}(j,k) = \frac{1}{n} \sum_{i=1}^{n} z_{ij} z_{ik} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \hat{\mu}_j) (x_{ik} - \hat{\mu}_k) = \hat{\sigma}_{jk}$$

which is exactly the covariance between the *j*-th and *k*-th attribute.

- **Q10.** Assume that we are given two univariate normal distributions, N_A and N_B , and let their mean and standard deviation be as follows: $\mu_A = 4$, $\sigma_A = 1$ and $\mu_B = 8$, $\sigma_B = 2$.
 - (a) For each of the following values $x_i \in \{5, 6, 7\}$ find out which is the more likely normal distribution to have produced it.

Answer: If we plug-in x_i in the equation for the normal distribution, we obtain the following:

$N_A(5) = 0.242$	$N_B(5) = 0.065$
$N_A(6) = 0.054$	$N_B(6) = 0.121$
$N_A(7) = 0.004$	$N_B(7) = 0.176$

Based on these values, we can claim that N_A is more likely to have produced 5, but N_B is more likely to have produced 6 and 7.

We can also solve this problem by finding the *z*-score for each value. We can then assign a point to the distribution for which it has a lower *z*-score (in terms of absolute value). For example, for 5, we have $z_A(5) = (5-4)/1 = 1$, and $z_B(5) = (5-8)/2 = -1.5$. Since $|z_B| > |z_A|$ we can claim that 5 comes from N_A .

For 6 and 7 we have:

$$z_A(6) = (6-4)/1 = 2$$

 $z_B(6) = (6-8)/2 = -1$
 $z_A(6) = (7-4)/1 = 3$
 $z_B(7) = (7-8)/2 = -0.5$

Thus, these values are more likely to have been generated from N_B .

(b) Derive an expression for the point for which the probability of having been produced by both the normals is the same.

Answer: Plugging in the parameters of N_A and N_B into the equation for the normal distribution, and after setting up the equality, we obtain:

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-4)^2}{2}} = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-8)^2}{8}}$$

$$2e^{\frac{(x-8)^2}{8}} = e^{\frac{(x-4)^2}{2}}$$

taking ln on both sides yields

$$\ln(2) + \frac{(x-8)^2}{8} = \frac{(x-4)^2}{2}$$

$$\frac{8\ln(2) + x^2 + 64 - 16x}{8} = \frac{x^2 + 16 - 8x}{2}$$

$$2\ln(2) + \frac{x^2}{4} - 4x = x^2 - 8x$$

$$\frac{3}{4}x^2 - 4x - 2\ln(2) = 0$$

$$0.75x^2 - 4x - 1.4 = 0$$

We can solve this equation using the general solution for a quadratic equation: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Plugging in the values from above we get x = 5.67.

Q11. Consider Table 2.2. Assume that both the attributes *X* and *Y* are numeric, and the table represents the entire population. If we know that the correlation between *X* and *Y* is zero, what can you infer about the values of *Y*?

X	Y
1	а
0	b
1	С
0	а
0	С

Table 2.2. Dataset for Q11

Answer: Since the correlation is zero, we have cov(X, Y) = 0, which implies that E[XY] = E[X]E[Y]. From the data we have

E[XY] = (a+c)/5 E[X] = 2/5 E[Y] = (2a+2c+b)/5

Equating these we get

$$(a+c)/5 = 2(2a+2c+b)/25$$
$$5a+5c = 4a+4c+2b$$
$$a+c = 2b$$

Q12. Under what conditions will the covariance matrix Σ be identical to the correlation matrix, whose (i, j) entry gives the correlation between attributes X_i and X_j ? What can you conclude about the two variables?

Answer: If the covariance matrix equals the correlation matrix, this means that for all i and j, we have

$$\rho_{ij} = \sigma_{ij}$$
$$\frac{\sigma_{ij}}{\sigma_i \sigma_j} = \sigma_{ij}$$
$$\sigma_i \sigma_j = 1$$

Thus, for the covariance matrix to equal the correlation matrix, X_i and X_j must be perfectly correlated; either $\sigma_i = \sigma_j = 1$ or $\sigma_i = \sigma_j = -1$.