

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

5

Chapter 2 Recursion: The Mirrors

1 The problem is defined in terms of a smaller problem of the same type:

 Here, the last value in the array is checked and then the remaining

part of the array is passed to the function.

Each recursive call diminishes the size of the problem:

 The recursive call to getNumberEqual subtracts 1 from the current value

 for n, passing this as the parameter n in the next call,

effectively reducing the size of the unsearched remainder of the array by

1.

An instance of the problem serves as the base case:

 Here, the case where the size of the array is 0

(i.e.:

n ≤0)

 results in the return of the value 0: an array of size 0 can

have no instances of the desiredValue. This terminates the

recursion.

As the problem size diminishes, the base case is reached:

 n is an integer and is decremented by 1 with each recursive

call. After n recursive calls, the parameter n in

the

n th call will have

 the value 0 and the base case will be reached.

2a The call rabbit(5) produces the following box trace:

 Follow the rabbit(4) call

 Follow the rabbit(3) call

 Follow the rabbit(2) call

 Base case: n = 2

 The rabbit(2) call
 completes

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2

return 1

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

6

 Follow the rabbit(1) call

 Base case: n = 1

 The rabbit(1) call
 completes

 The rabbit(3) call
 completes

 Follow the rabbit(2) call

 Base case: n = 2

 The rabbit(2) call completes

 The rabbit(4) call completes

 Follow the rabbit(3) call

Follow the rabbit(2) call

 Base case: n = 2

 The rabbit(2) call completes

n = 5
rabbit(4) = ?
rabbit(3) = a?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 1

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = 2
rabbit(2) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = 2
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = 2
rabbit(2) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = 2
rabbit(2) = 1
return 3

n = 2

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 4
rabbit(3) = 2
rabbit(2) = 1
return 3

n = 2

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 2

return 1

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

7

Follow the rabbit(1) call

 Base case: n = 1

 The rabbit(1) call completes

 The rabbit(3) call completes

 The rabbit(5) call completes and
 the value 5 is returned to the
 calling function

2b The call countDown(5) produces the following box trace:

The value 5 is printed.
Follow the call to countDown(4)

The value 4 is printed.
Follow the call to countDown(3)

The value 3 is printed.
Follow the call to countDown(2)

The value 2 is printed.
Follow the call to countDown(1)

The value 1 is
printed. Follow
the call to
countDown(0)

The end of line is printed and
the countDown(0) call completes.

The countDown(1) call completes.

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 1

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = 3
rabbit(3) = 2
return 5

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = 3
rabbit(3) = 2
return 5

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
cout << “5 “;

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

8

The countDown(2) call completes.

The countDown(3) call completes.

The countDown(4) call completes.

The countDown(5) call completes and returns to the calling function.

3 /** Returns the sum of the first n integers in the array anArray.
 Precondition: 0 <= n <= size of anArray.

 Postcondition: The Sum of the first n integers in the
 array anArray are returned. The contents of

 anArray and the value of n are unchanged. */
int computeSum(const int anArray[], int n)

{ // base case

 if (n <= 0)
 return 0;

 else // reduce the problem size

 return anArray[n - 1] + computeSum(anArray, n - 1);
} // end computeSum

4int sum (int start, int end)
{

 if (start == end)

 return end;
 else

 return start + sum(start + 1, end);
}

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

n = 5
cout << “5 “;

n = 4
cout << “4 “;

n = 3
cout << “3 “;

n = 2
cout << “2 “;

n = 1
cout << “1 “;

n = 0
cout << endl;
return

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

9

5#include <string>

using namespace std;

// ---

// Writes a character string backward.
// Precondition: The string str contains size characters,

// where size >= 1.
// Postcondition: str is written backward, but remains

// unchanged.

// ---
void writeBackward(string str, int size)

{ // base case
 if (size == 1)

 cout << str[0];

 // else, write rest of string

 else if (size > 1)
 {

 cout << str[size – 1];

 writeBackward(str, size - 1);
 }

 // size <= 0 do nothing;
} // end writeBackward

6 The recursive method does not have a base case. As such, it will never terminate.

7 // ---

// Prints out the integers from 1 through n as a
// comma separated list followed by a newline.

// Precondition: n >= 0 and limit == n.

// Postcondition: The integers from 1 through n
// are printed out followed by a

// newline.
// ---

void printIntegers(int n, int limit)

{
 if (n > 0)

 { // print out the rest of the integers
 printIntegers(n - 1, limit);

 // now print out this integer

 cout << n;

 // test for end of string

 if (n != limit)

cout << ", ";
 else

cout << "." << endl; // end of string
 } // end if

 // n <= 0 do nothing

} // end printIntegers

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

10

8int getSum(int n)

{

 int result;
 if (n == 1)

 result = 1;
 else

 result = n + sum (n-1);
 return result;

} // end getSum

9const int NUMBER_BASE = 10;

/** Displays the decimal digits of number in reverse order.

 Precondition: number >= 0.

 Postcondition: The decimal digits of number are printed in reverse order.
 This function does not output a newline character at the

 end of a string. */

void reverseDigits(int number)
{ // check for input bounds

 if (number >= 0)
 { // base case

 if (number < NUMBER_BASE)
 cout << number;

 else

 { // print out rightmost digit
 cout << number % NUMBER_BASE;

 // pass remainder of digits to next call
 reverseDigits(number / NUMBER_BASE);
 } // end if

 } // end if

} // end reverseDigits

10a
/** Displays a line of n characters, where ch is the character.

 Precondition: n >= 0.
 Postcondition: A line of n characters ch is output

 followed by a newline. */

void writeLine(char ch, int n)
{ // base case

 if (n <= 0)
 cout << endl;

 // write rest of line

 else

 {
 cout << ch;

 writeLine(ch, n - 1);
 } // end if

} // end writeLine

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

11

10b
/** Displays a block of m rows by n columns of character ch.

 Precondition: m >= 0 and n >= 0.
 Postcondition: A block of m rows by n columns of

 character ch is printed. */

void writeBlock(char ch, int m, int n)
{ if (m > 0)

 {
 writeLine(ch, n); // write first line

 writeBlock(ch, m - 1, n); // write rest of block
 }

 // base case: m <= 0 do nothing.
} // end writeBlock

11Running the given program produces the following output:

Enter: a = 1 b = 7
Enter: a = 1 b = 3

Leave: a = 1 b = 3
Leave: a = 1 b = 7

2

12Running the given program produces the following output:

Enter: first = 1 last = 30

Enter: first = 1 last = 14

Enter: first = 1 last = 6
Enter: first = 4 last = 6

Leave: first = 4 last = 6
Leave: first = 1 last = 6

Leave: first = 1 last = 14
Leave: first = 1 last = 30

5

13The algorithm first checks to see if n is a positive number: if not it immediately terminates. Otherwise, an

integer division of n by 8 is taken and if the result is greater than 0 (i.e.:

if

n > 8), the function is called again with n /8 as an

argument. This call processes that portion of the number composed of higher powers of 8. After this

call, the residue for the current power, n % 8, is printed.

The given function computes the number of times 80, 81, 82, ... will

divide

n . These values are stacked recursively

and are printed out in the reverse of the order of computation. The following is the hand execution

with

n = 100:

n = 100
displayOctal(12)

 n = 12
 displayOctal(1)

 n = 1

 cout << 1
 cout << 4

cout << 4

Output: 144

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

12

14Even though the precondition states that n is nonnegative, there is no actual code to keep a negative value

for

n

from being used as the argument in the function.

A call to the function f will produce a further call to f with a negative argument

when

n = 3. Because 3 is not

within the subrange of 0 to 2, the default case will execute, and the function will attempt to evaluate

f(1) and f(- 1). Because the value for f(n) is based on the values for f(n-2) and f(n-4), if n is even, its addends will be

the next two smaller even integers; likewise, if n is odd, f(n)’s addends will be n ’s next two smaller odd integers.

Thus any odd nonnegative integer will eventually cause f to evaluate f(3).

Theoretically, calling f with an odd integer will cause an infinite sequence of function calls.

On the practical level, the computer's run-time stack will overflow, or an integer underflow will

happen.
The following is the exact output of the program:

Function entered with n = 8
Function entered with n = 6

Function entered with n = 4

Function entered with n = 2
Function entered with n = 0

Function entered with n = 2
Function entered with n = 4

Function entered with n = 2
Function entered with n = 0

The value of f(8) is 27

15The following output is produced when x is a value argument:

6 2

7 1
8 0

8 0
7 1

6 2

Changing x to a reference argument produces:

6 2

7 1
8 0

8 0
8 1

8 2

16a The call binSearch(5) produces the following box trace:

value = 5
first = 1
last = 8
mid = 4
value < anArray[4]

value = 5
first = 1
last = 3
mid = 2
value = anArray[2]
return 2

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

13

16b The call binSearch(13) produces the following box trace:

16c The call binSearch(16) produces the following box trace:

17a For a binary search to work, the array must first be sorted in either ascending or descending

order.

b The index is (0 + 101)/2 = 50.

c Number of comparisons = ⎣⎦lg101= 6.

18a
/** Returns the value of x raised to the nth power.

 Precondition: n >= 0
 Postcondition: The computed value is returned. */

double power1(double x, int n)
{ double result = 1; // value of x^0

 while (n > 0) // iterate until n == 0
 { result *= x;

 n--;

 }
 return result;

} // end power1

18b
/** Returns the value of x raised to the nth power.

 Precondition: n >= 0
 Postcondition: The computed value is returned. */

double power2(double x, int n)
{ // base case

 if (n == 0)

 return 1;

 // else, multiply x by rest of computation

 else
 return x * power2(x, n-1);

} // end power2

value = 13
first = 1
last = 8
mid = 4
value > anArray[4]

value = 13
first = 5
last = 8
mid = 6
value < anArray[6]

value = 13
first = 5
last = 5
mid = 5
value < anArray[5]

value = 13
first = 5
last = 4
first > last
return 0

value = 16
first = 1
last = 8
mid = 4
value > anArray[4]

value = 16
first = 5
last = 8
mid = 6
value < anArray[6]

value = 16
first = 5
last = 5
mid = 5
value > anArray[5]

value = 16
first = 6
last = 5
first > last
return 0

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

14

18c /** Returns the value of x raised to the xth power.

 Precondition: n >= 0

 Postcondition: The computed value is returned. */
double power3(double x, int n)

{
 if (n == 0)

 return 1;
 else

 { // do this computation only once!!

 double halfPower = power3(x, n/2);

 // if n is even...
 if (n % 2 == 0)

return halfPower * halfPower;

 // if n is odd...

 else
return x * halfPower * halfPower;

 }

} // end power3

18d The following table lists the number of multiplications performed by each of the algorithms for computing

the values on the top line:

332 319

power1 32 19

power2 32 19

power3 7 8

18e The following table lists the number of recursive calls made by each of the algorithms indicated in order to

perform the computation on the inputs given on the top line:

332 319

power2 32 19

power3 6 5

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

15

19Maintain a count of the recursive depth of each call by passing this count as an additional parameter to the

function call and print that many spaces or tabs in front of each message:

/** Computes a term in the Fibonacci sequence.
 Precondition: n is a positive integer and tab = 0.

 Postcondition: The progress of the recursive function call is displayed
 as a sequence of increasingly nested blocks. The function

 returns the nth Fibonacci number. */

int rabbit(int n, int tab)
{

 int value;

 // Indent the proper distance for this block

 for (int i = 0; i < tab; i++)
 cout << '\t';

 // Display status of call

 cout << "Enter: n = " << n << endl;

 if (n <= 2)

 value = 1;

 else // n > 2, so n-1 > 0 and n-2 > 0

 // indent by one for next call
 value = rabbit(n-1, tab+1) + rabbit(n-2, tab+1);

 // Indent the proper distance for this block

 for (i = 0; i < tab; i)

 cout << '\t';

 // Display status of call
 cout << "Leave: n = " << n << " value = " << value << endl;

 return value;
}

20a f(6) is 8; f(7) is 11; f(12) is 95; f(15) is 320.

20bSince we only need the five most recently computed values, we will maintain a "circular" five-element

array indexed modulus 5.

// Pre: n > 0.

int fOfN(int n)
{

 int last5[5] = {1, 1, 1, 3, 5};

 for (int i = 5; i < n; i++)

 {
 int fi = last5[(i - 1) % 5] + 3 * last5[(i - 5) % 5];

 // Replace entry in last5

 last5[i % 5] = fi; // f(i) = f(i - 1) + 3 x f(i - 5)

 } // end for

 return last5[(n - 1) % 5];

} // end fOfN

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

16

21aA function to compute n! iteratively:

long fact(int n)

{ int i;

 long result;

 if (n < 1) // base case
 result = 0;

 else

 {
 result = 1;

 for (i = 2; i <= n; i++)
 result *= i;

 } // end if

 return result;

} // end fact

21bA simple iterative solution to writing a string backwards:

#include <string>

void writeBackward(string str)

{
 for (int i = str.size() - 1; i >= 0; i--)

 cout << str[i];

 cout << endl;

} // end writeBackward

21cA function to perform an iterative binary search:

/** Searches a sorted array and returns the index in the

 array corresponding to the value key if key is in the
 array, -1 otherwise.

 Precondition: high is sorted in ascending order.
 low = 0 and high = the size of high - 1.

 Postcondition: If key is found, its location index

 in high is returned, else -1 is returned. */
int binarySearch(int anArray[], int key, int low, int high)

{
 int mid, result;

 while (low < high)

 { mid = (low + high)/2;

 if (anArray[mid] == key)
 { low = mid;

 high = mid;

 }
 else if (anArray[mid] < key)

 low = mid + 1; // search the upper half
 else

 high = mid - 1; // search the lower half
 } // end while

 if (low > high)
 result = -1; // if not found, return -1

 else if (anArray[low] != key)

 result = -1;

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

17

 else
 result = low;

 return result;

} // end binarySearch

21d We implement a function to find the kth smallest entry in an array using an integer array and a selection sort

up to k times. We assume a standard integer swap function.

int kSmall(int k, int anArray[], int size)
{

 for (int i=0; i<k; i++)

 for (int j = i+1; j < size; j++)
 if (anArray[j] < anArray[i])

 swap(anArray[i], anArray[j]);

 return anArray[k-1];
} // end kSmall

22 The for loop invariant is:

 3 ≤ i ≤ n

So the sum = ∑

=

− +−

n

i

irabbitirabbit

3

)2()1(.

23aWe must verify that the equation holds for both the base case and the recursive case.

For the base case, let gcd (a , b) = b . Then, a mod b = 0 and, since 0/ n = 0 for all n , then gcd (b , 0) = b . Hence, gcd (b ,

a mod b) = b .

For the recursive case, let gcd (a , b) = d , i.e.: a = dj and b = dk for integers d , j and k . Now there exists integer n = a

mod b such that (n - a)/ b = q , where q is an integer. Then, n-a = bq and, so n - dj = dkq i.e. n = d (kq + j). Then,

(n/d) = kq + j , where (kq + j) is an integer. So, d divides n i.e.: d divides (a mod b).

To show that d is the greatest common divisor of b and a mod b , suppose for contradiction there exists integer g > d

such that b = gr and (a mod b) = gs for integers r and s . Then, (gs - a)/ gr = q' where q' is an integer. So gs - a = grq'

i.e.: a = g (s - rq'). Thus, g divides a and g divides b . But gcd (a , b) = d by hypothesis. Therefore, gcd (b , a mod b) =

d .

The proof is symmetrical where gcd (b , a mod b) = d is taken for the hypothesis.

23b If b > a in the call to gcd , a mod b = a and so the recursive call effectively reverses the

arguments.

23cWhen a > b , the argument associated with the parameter a decreases in the next recursive call. If b > a , the next

recursive call will swap the arguments so that a > b . Thus, the first argument will eventually equal the second

and so eventually a mod b will be 0.

Data Abstraction and Problem Solving with C++: Walls and Mirrors , 6th edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

18

24a c (n)=

0 ifn =1

1 ifn =2

(c (n − i)+1)

i =1

n − 1

∑ ifn >2

⎧

⎨
⎪

⎪

⎩

⎪

⎪

24b c (n)=

0 ifn =1

1 ifn =2

c (n − 1)+ c (n − 2) ifn >2

⎧

⎨

⎪

⎩

⎪

25 Acker (1, 2) = 4

int acker(int m, int n)

{

 int result;

 if (m == 0)

 result = n+1;

 else if (n == 0)
 result = acker(m-1, 1);

 else

 result = acker(m-1, acker(m, n-1));

 return result;

} // end acker

