Data Abstraction and Problem Solving with C++: Walls and Mirrnorsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0

Chapter 2 Recursion: The Mirrors

1 The problem is defined in terms of a smaller problem of the same type:
Here, the last value in the array is checked and then the remaining
partthb€ array is passed to the function.

Each recursive call diminishes the size of the problem:
The recursive call to getNumberEqual subtracts 1 from the current value
for n, passing this as the parameter n in the next call,
effertduelpg the size of the unsearched remainder of the array by

1.
An instance of the problem serves as the base case:

Here, the case where the size of the arrwyfiﬁ)O
(i. eresults in the return of the value 0: an array of size 0 can
haveinetances of the desiredValue. This terminates the
recursion.
As the problem size diminishes, the base case is reached:

n is an integer and is decremented by 1 with each recursive
callAfter n recursive calls, the parametsthncahl will have
the the value 0 and the base case will be reached.

2a The call rabbit (5) produces the following box trace:

Follow the rabbit(4) call

Follow the rabbit(2) call

Base case: n = 2

n=>5 n=4 n=3 n=2

rabbit(4) = ? rabbit(3) = ? rabbit(2) = ? The rabbit (2) call
rabbit(3) = ? rabbit(2) = ? rabbit (1) = ? completes

return ? return ? return ? return 1

Data Abstraction and Problem Solving with C++: Walls and Mirrnorsth edition, Frank M. Carrano and Timothy Henry

Solutions to Exercises,

n=>5
rabbit (4)
rabbit (3)

return

n=>5

rabbit (4)
rabbit (3)

return

e

e

Ver.

6. 0.

- -POIIO“ the rabbit(2) call
- - - e T callcompletes
- - - e rabbie) el completes

Follow the rabbit (1) call

Base case:

The rabbit (1) call
completes

The rabbit (3) call
completes

Follow the rabbit(3) call

n=3

rabbit (2)
rabbit (1)
return ?

n=3

rabbit(2) =

rabbit (1)
return ?

?

Is

0

Follow the rabbit(2) call

n=2
Base case: n = 2
return 1
n=2
The rabbit(2) call completes
return 1

n =1

Data Abstraction and Problem Solving with C++: Walls and Mirrnorsth edition, Frank M. Carrano and Timothy Henry
Solutions to Exercises, Ver. 6.0.

2b The call countDown (5) produces the following box trace:

The rabbit (1) call completes

The rabbit(3) call completes

The rabbit(5) call completes and

-

the value 5 is returned to the
calling function

The value 5 is printed
Follow the call to countDown (4)

The value 4 is printed
Follow the call to countDown (3)

The value 3 is printed
Follow the call to countDown(2)

The value 2 is printed
Follow the call to countDown (1)

The value 1 is
printed. Follow
the call to
countDown (0)

n=>5 n=4 n=3 n=2 n=1 n=20
cout << “5 “: cout << “4 “; cout << “3 “;: cout << “2 “: cout << “1 “; cout << endl:
return

The end of line is printed and
the countDown(0) call completes.

n=>5 n =4 n=3 n=2 n=1 n=20

N w6, . “« I N “ “ . N “ “ . « « N .

cout << “H %, cout << “4 cout << “3 ¢, cout << “2 ¢, cout << “1 : cout << endl;
return

The countDown (1) call completes.

Data Abstraction and Problem Solving with C++: Walls and Mirrorsth edition, Frank M. Carrano and Timothy
Solutions to Exercises, Ver. 6.0.

The countDown(2) call completes.

The countDown(3) call completes.

The countDown(4) call completes.

The countDown(5) call completes and returns to the calling function.

Henry.

3 J*#% Returns the sum of the [irst n integers in the array anArray.
Precondition: 0 <= n <= size of anArray.
Postcondition: The Sum of the first n integers In the
array anArray are returned. The contents of
anArray and the value of n are unchanged. */
int computeSum(const int anArray[], int n)
{ // base case

(n <=0)
return 0;
else // reduce the problem size

return anArray[n — 1] + computeSum(anArray, n — 1);
VY // end computeSum

4int sum (int start, int end)
{
if (start == end)
return end;
else

return start + sum(start + 1, end);:

—

Data Abstraction and Problem Solving with C++: Walls and Mirroisth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

b#include <string>
using namespace std;

V74
// Writes a character string backward.
// Precondition: The string str contains size characters,

Ve where size >= 1.

// Postcondition: str is written backward, but remains
// unchanged.

Ve

void writeBackward(string str, int size)
{ // base case
if (size == 1)
cout << str[0];

// else, write rest of string
else if (size > 1)
{
cout << strlsize - 1];
writeBackward (str, size — 1);
}
s/ size <= 0 do nothing;
V' end writeBackward

6 The recursive method does not have a base case. As such, it will never terminate.

7 V4
// Prints out the integers from I through n as a
// comma separated list followed by a newline.
// Precondition: n >= 0 and limit == n.
// Postcondition: The integers from 1 through n

Y74 are printed out followed by a
/4 newline.
V4

void printIntegers(int n, int limit)

{
if (n > 0)
{ // print out the rest of the integers
printIntegers(n — 1, limit);

// now print out this integer
cout << n;

// test for end of string
if (n!= limit)
cout << 7,
else
cout << 7.7 << endl; // end of string
Y/ end if

”

v/ n <=0 do nothing
} // end printintegers

Data Abstraction and Problem Solving with C++: Walls and Mirroisth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

8int getSum(int n)
{

int result;
if (n==1)
result = 1;
else
result = n + sum (n-1);
return result;
} // end getSum

9const int NUMBER BASE = 10;

J#% Displays the decimal digits of number in reverse order.

Precondition: number >= 0.

Postcondition: The decimal digits of number are printed in reverse order.
This function does not output a newline character at the
end of a string. */

void reverseDigits(int number)
{ // check for input bounds
if (number >= 0)
{ // base case
if (number < NUMBER_BASE)
cout << number;
else

{ // print out rightmost digit
cout << number % NUMBER BASE;

// pass remainder of digits to next call
reverseDigits (number / NUMBER BASE) ;
} /end if

} o /end if
} // end reverseDigits

10a

/#% Displays a line of n characters, where ch is the character.
Precondition: n >= 0.
Postcondition: A Iline of n characters ch is output

followed by a newline. */

void writeLine(char ch, int n)

{ // base case
if (n <= 0)

cout << endl;

// write rest of line
else

{
cout << ch;

writeLine(ch, n — 1);

} // end if
V' // end writeline

Data Abstraction and Problem Solving with C++: Walls and Mirrnoisth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

10b
J#% Displays a block of m rows by n columns of character ch.
Precondition: m >= 0 and n >= 0.
Postcondition: A block of m rows by n columns of
character ch is printed. */
void writeBlock(char ch, int m, int n)

{ if (m > 0)
{
writeLine(ch, n); // write first line
writeBlock(ch, m = 1, n): // write rest of block

}

// base case: m <= 0 do nothing.
Y // end writeBlock

11Running the given program produces the following output:

Enter: a=1b =7
Enter: a=1b =3
Leave: a=1b =3
Leave: a=1b =7
2

12Running the given program produces the following output:

Enter: first = 1 last = 30
Enter: first = 1 last = 14
Enter: first = 1 last = 6
Enter: first = 4 last = 6
Leave: first = 4 last = 6
Leave: first = 1 last = 6
Leave: first = 1 last = 14
Leave: first = 1 last = 30

5

13The algorithm first checks to see if is a positive number: if not it immediately terminates. Otherwise, an
division of by 8 is taken and if thetegeult is greater than 07 (i.8).,: the function is called agairi8wathan
argument. This call processes that portion of the number composed of higher powers of 8. After this
tapiduehfor the current powkr§, is printed.

The given function computes the number of times 80, 81, 82, ..n Whékse values are stacked recursively
dngialee printed out in the reverse of the order of computation. The following is the hand execeti00:
with
n = 100
displayOctal (12)
n =12
displayOctal (1)
n=1
cout << 1
cout << 4
cout << 4

Output: 144

11

Data Abstraction and Problem Solving with C++: Walls and Mirroitsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

14Even though the precondition states that is nonnegative, there is no actual code to keep a negatiwe value
from being used as the argument in ftdye function.

A call to the function f will produce a further call to f with a negative argem8ntBecause 3 is not
whehin the subrange of 0 to 2, the default case will execute, and the function will attempt to evaluate
)(1 Beamdse flife value for f(n) is based on the values for f(n-2) and f(n—4), if n is even, its addends will be
the next two smaller even integers; likewisis ddd, f(n)’ s addends wifl sb@mext two smaller odd integers.
Thus any odd nonnegative integer will eventually cause f to evaluate f(3).

Theoretically, calling f with an odd integer will cause an infinite sequence of function calls.
prnachécal level, the computer’ s run—time stack will overflow, or an integer underflow will

happen.
The following is the exact output of the program:

Function entered with
Function entered with
Function entered with
Function entered with
Function entered with
Function entered with
Function entered with
Function entered with
Function entered with
The value of f(8) is 27

oo B en S en S on S e B oo S oo S e B en
Il
OO =D O R O

15The following output is produced when x is a value argument:

Sy 300 03 O
N = O O~ DN

Changing x to a reference argument produces:

CO GO CO CO 3 O
N = O O~ DN

16a The call binSearch(5) produces the following box trace:

12

Data Abstraction and Problem Solving with C++: Walls and Mirroitsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

16b The call binSearch(13) produces the following box trace:

16c The call binSearch(16) produces the following box trace:

17a For a binary search to work, the array must first be sorted in either ascending or descending

order.
b The index is (0 + 101)/2 = 50.
¢ Number of comparisons :i[Jlgloli 6.
18a
J*% Returns the value of x raised to the nth power.
Precondition: n >= 0
Postcondition: The computed value is returned. */
double powerl (double x, int n)
{ double result = 1; // value of x 0
while (n > 0) // iterate until n ==
{ result *= x;
n—;
}
return result;
} // end powerl
18b

/%% Returns the value of x raised to the nth power.
Precondition: n >= 0
Postcondition: The computed value is returned. */
double power2(double x, int n)
{ // base case
if (n == 0)
return 1;

// else, multiply x by rest of computation
else
return x * power2(x, n-1);
VY // end powerZ

13

Data Abstraction and Problem Solving with C++: Walls and Mirromsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

18¢ /¥ Returns the value of x raised to the xth power.
Precondition: n >= 0
Postcondition: The computed value is returned. */
double power3(double x, int n)

{

if (n==0)
return 1;
else

{ // do this computation only once!!
double halfPower = power3(x, n/2);

// if n is even...
if W% 2==0)
return halfPower * halfPower;

// if n is odd. ..

else
return x * halfPower * halfPower;

}
Y/ end power3

18d The following table lists the number of multiplications performed by each of the algorithms for computing
the values on the top line:

332 319
powerl 32 19
power2 32 19
powerd 7 8

18e The following table lists the number of recursive calls made by each of the algorithms indicated in order to
perform the computation on the inputs given on the top line:

332 319
power2 32 19
powerd 6 5

14

Data Abstraction and Problem Solving with C++: Walls and Mirromsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

19Maintain a count of the recursive depth of each call by passing this count as an additional parameter to the
functiorall and print that many spaces or tabs in front of each message:

J#% Computes a term in the Fibonacci sequence.

Precondition: n is a positive integer and tab = 0.

Postcondition: The progress of the recursive function call is displayed
as a sequence of increasingly nested blocks. The function
returns the nth Fibonacci number. %/

int rabbit(int n, int tab)
{

int value;
s/ Indent the proper distance for this block
for (int i = 0; i < tab; i++)

cout << '\t ;

v/ Display status of call

cout << “Enter: n =7 < n << endl;
if (n <= 2)
value = 1;

else // n>2 son-1>0and n2>0
// indent by one for next call
value = rabbit(n-1, tab+l) + rabbit(n-2, tab+l);

// Indent the proper distance for this block
for (i = 0;: i < tab; i)
cout << T\t

// Display status of call
cout << “Leave: n =7 << n < 7 value = 7 << value << endl;

return value;

20a f(6) is 8; f(7) is 11; £(12) is 95; f(15) is 320.

20bSince we only need the five most recently computed values, we will maintain a “circular” five—element
array indexed modulus b.

// Pre: n > 0.
int fOfN(int n)
{
int last5[5] = {1, 1, 1, 3, 5};

for (int i = 5; i < n; i++)
{
int fi = lastb[(i - 1) % 5] + 3 * lasthb[(i - 5) % 5];

// Replace entry in lasth
last5[i % 5] = fi; // f(i) =f({1 -1) +3 x £f(1 - 5)
}// end for

return lastb[(n — 1) % 5];
}// end fOfN

15

Data Abstraction and Problem Solving with C++: Walls and Mirroisth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

2laA function to compute n! iteratively:

long fact(int n)
{ int i:
long result;

if (n<1) // base case
result = 0;

else

{
result = 1;

for i =2; i <=n; it+H)
result *= 1i:
} // end if

return result;
Y // end fact

21bA simple iterative solution to writing a string backwards:

#tinclude <{string>

void writeBackward(string str)
{
for (int i = str.size() — 1; i >=0; i—)
cout << strli]l;

cout << endl;
V' end writeBackward

21cA function to perform an iterative binary search:

/#% Searches a sorted array and returns the index in the
array corresponding to the value key if key is In the
array, —1 otherwise.

Precondition: high Is sorted in ascending order.
low = 0 and high = the size of high — 1.
Postcondition: If key is found, its location index
in high is returned, else -1 is returned. */
int binarySearch(int anArray[], int key, int low, int high)

{

int mid, result;
while (low < high)
{ mid = (low + high)/2;

if (anArray[mid] == key)
{ low = mid;

high = mid;
}
else if (anArray[mid] < key)
low = mid + 1; s/ search the upper half
else
high = mid - 1; // search the lower half

} // end while

if (low > high)

result = —1; // if not found return -1
else if (anArray[low] != key)
result = —1;

16

Data Abstraction and Problem Solving with C++: Walls and Mirromsth edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

else
result = low;

return result;
V' // end binarySearch

21d We implement a function to find the kth smallest entry in an array using an integer array and a selection sort
tipmes. kWe assume a standard integer swap function.

int kSmall (int k, int anArray[], int size)

{
for (int i=0; i<k; i++)
for (int j = i+l; j < size; j++)
if (anArray[j] < anArrayl[i])
swap (anArrayli], anArray[jl):

return anArrayl[k-1];
Y/ end kSmall

22 The for loop invariant is:

3 £<n

n

So the sum = X J'Taﬁﬁl'@ﬂlﬁbbjt

3

23aWe must verify that the equation holds for both the base case and the recursive case.

For the base case,gddl, b)) =b. Thena mod » = 0 and, sincea /0 for ajltheged®, 0) #. Hence,gcd®,
a mod b) =b.

For the recursive caseged@t b) =d, i.ea =djandb =dk for integatsjandk Now there exists integea
mod b such thatw €a) b =g, wherez is an integer. Thea,=bg and, sa —dj=dkqg i.en =d(kqg + J. Then,
(n/9d =kq +j wherekg +J is an integer.dShivides i.ed:dividesa mod b).

To show that/ is the greatest common dividommafz mod b, suppose for contradiction there exists gntdger
such that =gr and 4 mod b) =gs for integersands Then, g& —a) r =g whereg’ is an integergsSea =grq’
i.e.a =g(s —rgJ. Thusg dividea andg divides. Butged(a, b) =d by hypothesis. Therefgrep, a mod b) =

d.

The proof is symmetrical wherd(, a mod b)) =d is taken for the hypothesis.

23b If b >a in the callddhba mod b =a and so the recursive call effectively reverses the

arguments.
23cWhen a »b, the argument associated with the pawadeterases in the next recursive daDlla, Ifhe next
recursive call will swap the arguments a0 hhafhus, the first argument will eventually equal the second
so eventually mod » will be O. and

17

Data Abstraction and Problem Solving with C++:

Walls and Mirrorsth edition, Frank M. Carrano and Timothy Henry.

Solutions to Exercises, Ver. 6.0.

24a

24b

25

0 ifn =1
ifn =2
C(n>: m 1
Ylelh— D+1) ifn 2
\ £l
0 ifn =
cn)= 1 ifn =2
L cln— 1)+cn— 2) ifn >2

Acker(1, 2) = 4

int acker(int m, int n)

{

int result;

if (m == 0)
result = ntl;

else if (n == 0)
result = acker(m-1, 1);

else
result = acker (m—1, acker(m, n-1));

return result;
} // end acker

18

