Chapter 2

2.1 Consider the signals displayed in Figure P2.1.Show that each of these signals can be
expressed as the sum of rectangular I'T(t) and/or triangular A(t) pulses.
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2.2 For the signal x,(t) in Figure P2.1 (b) plot the following signals

a. X,(t-3)
b. Xz(_t)
C. X (2t)
d. x,(3-2t)
Solution:
X (t=3) X (-1)
1 1
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2.3 Plot the following signals
a. x(t)=2I1(t/2)cos(6xt)

11
b. Xx,(t)= 2[E+Esgn(t)}
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c. X{M)=x(-t+2)

d. x,(t)=sinc(2t)I1(t/2)

Solution:
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2.4 Determine whether the following signals are periodic. For periodic signals,
determine the fundamental period.

a. X (t) =sin(zt)+5cos(4xt/5)

Solution:

sin(zt) is periodic with period T, = 27 _ 2. cos(4t/5) is periodic with period
T

= 2z _5. x,(t) is periodic if the ratio 1. can be written as ratio of
Az |5 2 2

integers. In the present case,

2x2 4
5

(6]
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Therefore, x,(t) is periodic with fundamental period T, such that
T, =5T, =4T, =10

b. x,(t)=e' +e’* +cos(12t)

Solution:

e'*is periodic with period T, = 2?” Similarly, e'*'is periodic with period

T, :%T . cos(12t) is periodic with period T, = i_;[ :%. X, (t) is periodic with

fundamental period T, =LCM (T,,T,,T;) =2?”.

C. X,(t) =sin(2xt)+cos(10t)
Solution:

sin(2zt) is periodic with period T, = i—” =1. cos(10t) is periodic with period
T

2 . C . T . . .
_E_Z X,(t) is periodic if the ratio —- can be written as ratio of integers.

T,=—=
10 5 T,
In the present case,

1x5

155
T

i
T, V4

Since  is an irrational number, the ratio is not rational. Therefore, x,(t)is not
periodic.

d. x((t)= cos(Z;rt —%) +sin(5xt)
Solution:

COS(Zﬂ't —%) Is periodic with period T, = z—ﬂ =1. sin(5xt) is periodic with
T

period T, :é—” =§. X, (t) is periodic if the ratio :I_r—lcan be written as ratio of
4 2

integers. In the present case,
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L _1x5_5
T, 2 2

Therefore, x,(t) is periodic with fundamental period T, such that
T,=2T,=5T,=2
2.5 Classify the following signals as odd or even or neither.

a. x(t)=-4t

Solution:

X(—t) = 4t = —(-4t) = —x(t) . So x(t) is odd.

b. x(t)=e™
Solution:

el =e™ S0 x(t)is even.

c. X(t) =5cos(3t)

Solution:

Since cos(t) is even, 5cos(3t) is also even.
d. x(t) =sin(3t —%)
Solution:

X(t) =sin(3t —%) =—cos(3t) which is even.

e. x()=uf(t)

Solution:
u(t) is neither even nor odd; For example, u(l) =1 but u(-1) =0=-u(l).

5
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f. x(t) =sin(2t) + cos(2t)

Solution:

X(t) is neither even nor odd; For example,

X(77 18) =~/2 but x(—7 /8) = 0 % —x(7 /8)..

2.6 Determine whether the following signals are energy or power, or neither and
calculate the corresponding energy or power in the signal:

a. x/(t)y=u()

Solution:

The normalized average power of a signal x(t) is defined as

T/2 172
1

1 1T
P, ||m—Tj/2|u(t)| dt = lim = jldt fim =~ =~

Therefore, x(t) is a power signal.
b. x,(t) = 4cos(2t) +3cos(4xt)

Solution:

4cos(27t) is a power signal. 3cos(47rt) is also a power signal. Since X, (t) is
sum of two power signals, it is a power signal.

T/2 T/2
P, —I|m1 j [ 4cos(27t) +3cos(4xt) ] dt—llmi I [4003(27:t)+3005(47rt)} dt

—/2 —/2

T/2
T j [16C082(27rt)+9C052 (47t)+24cos(2rt) cos(47zt)]dt

Tow

-T2
Now
T/2 8 T/2 8T
lim = [ 16cos*(2t)dt = lim = [ [L+cos(4xt)Jdt = lim — =8
Too T N T e Towo T

1 T/2
- 2 _
Ilm—T J 9cos”(4rt)dt=4.5

-T2
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T/2

24 T¢ 24
lim T Tj/ 2 cos(2zt) cos (4t )dt = lim T_lez [ cos(6t) +cos(2zt) Jdt =0

Therefore,

P, =8+45=125

C. Xs(t) =%

Solution:

T/2 5 T/2 1T/2 _2
E, =lim [ L/tfdt=lim [ t7dt=lim| > :"m( )20
% 11 2% 11 ool tlyy, ) Toe\T/2
T/2 T/2 T/2
p, =lim= [ f/tfdt=lim> | t7dt=lim>| - :,imi( -2 ]:o
S TowT i Too T M Towo T t| T T\ T /2

X;(t) is neither an energy nor a power signal.

d. x,(t)=e"u(t)

Solution:
12 TI2 —2at 112
£, =lim | [etu(®[‘dt=lim [ e*dt=lim| S |=im(-e*" +1)=
4 Tﬁoo__l_/2 T 0 T oo Za 0 2aT~>oo 2a
Thus x,(t) is an energy signal.
e. Xs(t)=TI(t/3)+TII(t)
Solution:
X5 (t)
2
— 1
312 312 t
.
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T/2 -1/2 1/2 -1/2
. =lim j ITT(t/3)+T1(t)[ dlt = jldt+ j 4dt + j 1dt
1 -3/2 -1/2 -3/2

=1+4+1=6

Thus x,(t) is an energy signal.

f. x,(t) =5e2 10y (t)

Solution:
i (-2t+j102t) 2 b 2t . j10zty |2 b 4t
_ i -2t+j107 _ i -2t j107 — i -
Xe_!'ﬂl j ‘Se u(t)‘ dt—!mj"Se e ) dt-!ngOZSJ'e dt
-T/2 0 0
e|") 25 25
=25lim| ——| |=="lim(-e?" +1)=="
Too 4 0 4 T 4

Thus x,(t) is an energy signal.

9. X (t)= i A[(t-4n)/2]

Solution:

X,(t) is a periodic signal with period T, =4.

1" 2
X7:T_TJ- t/2:|dt_f

3
el )L
2 3 . 2 3) 6

2.7 Evaluate the following expressions by using the properties of the delta function:

o'—.l—\

17 )
(1-t)° 2!(1—2t+t Jot

a. x(t)=o(4t)sin(2t)

Solution:

S5(4t) = %é(t)

0 =%5(t)sin(2t) =%5(t)sin(0) 0

8
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b, x,(t)=5(t) cos(BO;zt + %j
Solution:
T T T
X, (t) =5 (t) cos(BO;zt + Zj =0o(t) cos(o + Zj =C0sS (Zj o(t)

C. X,(t) = S(t)sinc(t +1)
Solution:

X, (t) = S(t)sinc(t +1) = S(t)sinc(0 +1) = S(t)sinc(l) = 5(t) x 0 =0
d. x,(t)=5(t—2)e'sin(2.5xt)
Solution:

X, (t) = 5(t—2)e'sin(2.5xt)
=5(t—2)e’sin(2.57x2) = 5(t—2)e *sin(z) =0

e. X(t)= Té(Zt)sinc(t)dt
Solution:

Xs (t) = ]15 (2t)sinc(t)dt = %15 (t)sinc(t)dt
1

17 .. 1%
== jw 8(D)sinc(0)dt =~ jw s(t)dt ==

f. X (t) = j 5(t—3)cos(t)dt
Solution:

X () = T o(t—3)cos(t)dt = cos(3) T o(t—3)dt = cos(3)

9
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gxﬂU=T&Z4)1ﬁm

1_
Solution:

1

e dt
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1% 1
dt=—= [ S(t-2)dt=—=
7£ (t=2) 7

:Taa—a
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Solution:

T g LT 4)
&m=£f@p4m3m=§j5@—?%3m

—0

4 -4

o —xé —4 ©
=1j5@—i%33m=3—j5@—ﬂ)ng—
37 3 37 3 3

i, X () =5'(t) ®TI(t)

Solution:

XJDZTHa—ﬂ&@mr:Gﬁégﬂa—ﬂ

=TI (t)=5(t+0.5)-5(t-0.5)

7=0

2.8 For each of the following continuous-time systems, determine whether or not the system is (1)
linear, (2) time-invariant, (3) memoryless, and (4) casual.

a. yt)=x(t-1
Solution:

The system is linear, time-invariant, causal, and has memory. The system has
memory because current value of the output depends on the previous value of
the input. The system is causal because current value of the output does not
depend on future inputs. To prove linearity, let x(t) = ax (t) + fX,(t). The

response of the system to x(t) is

10
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y(t) =x(t-1) =ax(t-1)+ x,(t-1)
=ay, () + BY,(t)

where X, (t) —Z—y, (t) and x, () —Z— v, (t).

To show that the system is time-invariant, let x, (t) = x(t —t,) be the system
input. The corresponding output is

Y, () =X, (t -1 =x({t-1-t,) = y(t-t,)
b. y(t)=3x(t)-2
Solution:
The system is nonlinear, time-invariant, causal, and memoryless. The system is

memoryless because current value of the output depends only on the current

value of the input. The system is causal because current value of the output does
not depend on future inputs.

To prove nonlinearity, let x(t) = ax (t) + £X,(t). The response of the system
tox(t) is

y(t) = 3x(t) -2 =3[ax (t) + fx,(t)] -2
#ay,(t)+ By, () = a[3X1(t) - 2] + ﬂ[3xz - 2]

To show that the system is time-invariant, let x, (t) = x(t —t,) be the system
input. The corresponding output is

y, (1) =3x,(t) -2 =3x(t-t,) -2=y(t-t,)
c. (=[x
Solution:
The system is nonlinear, time-invariant, causal, and memoryless. The system is

memoryless because current value of the output depends only on the current

value of the input. The system is causal because current value of the output does
not depend on future inputs.

To prove nonlinearity, let x(t) = ax (t) + X, (t). The response of the system to
X(t) is

11
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y(0) =|ax (1) + B%, (1)) <|ax, (O)] + |5, (1)

Because

|, ()] +[ 8% ()] =[] %, (O] +[ B]%, (©)] # @y, (£) + B, (t) for all & and 3,
the system is nonlinear.

To show that the system is time-invariant, let x, (t) = x(t —t,) be the system
input. The corresponding output is

¥ (1) =[x O =[xt -t)] = y(t-t,)

d. y(t) =[cos(2t)]x(t)

Solution:
The system is linear, time-variant, causal, and memoryless. The system is
memoryless because current value of the output depends only on the current

value of the input. The system is causal because current value of the output does
not depend on future inputs.

To prove nonlinearity, let x(t) = ax,(t) + SX,(t) . The response of the system
tox(t) is

y(t) =[cos(2t) | x(t) = [cos(2t) |[arx, (t) + Bx,(1)]
= a[cos(2t)]x (t) + B[cos(2t)] x, (t) = ay, (t) + BY, (1)

To prove time-variance, let x, (t) = x(t —t,) be the system input. The
corresponding output is

y, (t) =[cos(2t)] x, (t) = [cos(2t) ] x(t—t, ) = y(t —t,) = cos[ 2(t—t,) | x(t-t,)

e. y(t)=e"

Solution:
The system is nonlinear, time-invariant, causal, and memoryless. The system is
memoryless because current value of the output depends only on the current

value of the input. The system is causal because current value of the output does
not depend on future inputs.

12
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To prove nonlinearity, let x(t) = ax (t) + X, (t). The response of the system
tox(t) is

y(t) = e (O+5% (1) _ qax®afXl) 4 ayl(t) +ﬁY2 (t) = qeX® +ﬂexz(t)
forall « and g

To show that the system is time-invariant, let x, (t) = x(t —t,) be the system
input. The corresponding output is

y(t) =¥ =e" Y = y(t-t,)

f.oy(t) =tx(t)
Solution:

The system is linear, time-variant, causal, and memoryless. The system is
memoryless because current value of the output depends only on the current
value of the input. The system is causal because current value of the output does

not depend on future inputs. To prove nonlinearity, let x(t) = ax,(t) + £x,(t).
The response of the system to x(t) is

y(t) =t[ax (1) + Bx,(1)] = atx, (1) + Btx, (1) = ay; (1) + BY, (1)

To prove time-variance, let x,(t) = x(t —t,) be the system input. The
corresponding output is

y (0) =t (1) =tx(t—t,) = y(t—t,) = (t—t, ) x(t—t,)

t

g. y(t)= j x(27)dr

Solution:

The system is linear, time-invariant, causal, and has memory. The system has
memory because current value of the output depends only on the past values of
the input. The system is causal because current value of the output does not

depend on future inputs. To prove linearity, let x(t) = ax (t) + £x,(t). The
response of the system to x(t) is

13
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y(t) = [ [ax(20)+ Bx,(27)]dr =& [ x,(20)d7+ B [ x,(22)d7 =y, (1) + BY, (1)

—00

To check for time-variance, let x, (t) = x(t —t,) be the system input. The
corresponding output is

t =t

y,(t) = j x1(21)dr:jx[2(r—to)]dr: j x(2a)da =y(t-t,)

—00 —00

2.9 Calculate the output y(t) of the LTI system for the following cases:
a. x(t)=e™?u(t) and h(t) =u(t—2)—u(t—4)
Solution:

h(t) = u(t—2)—u(t—4) :n(%j

y(t) = T h(z)x(t—7)dr :_]i e Xyt — )11 (TT_:SJ dr

—0

For t <2, there is no overlap and y(t) =0.

‘ 2 2|7 g a2t
For 2<t<4, y(t):je—z(t—r)dz_:Ie—ZTdZ_:e :1 e
2 0 _2 ‘0 2
Fort>4,
T 4 4
y(t) = }ez(”)dr =™ j‘e”dr — e —e™ e —et _ 22 (e 1)
2 2 2 2 2 2
_ a—2(t-2)
1-¢ ) 2<t<4
2
4
y(t) =<e?t2 —(e 2_1) , t>4
0, otherwise

b. x(t)=eu(t) and h(t) = e 2u(t)

14

© 2012 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any
manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.



Solution:
I t
y(t) = I e u(r)e ™ u(t-r)dr :I e 20,
e )
For t <0, there is no overlap and y(t) =0.

; :e’Z‘(et —1):e’t —e? t>0

t
y(t)=e? '[ e'dr =e?'e’
0

c. x(t) =u(-t) and h(t) = 5(t) —3e*'u(t)

Solution:
y(t) = T h(r)x(t—7)dr :T [5(r)—-3e*"u(z) Ju(z—t)dr
Now

T o(r)u(r —t)dz =u(-t)

L) -2 |®
Fort<O0, .[3e‘2’dr=36 _3
0 ““ o 2
i i x| 3
Fort>0, | 3eu(r)u(r-t)dr=|3e%dr= =Zeg™?
L (Du(z-t) j 51 =3
—+1:§, t<0
2
y(t) =
e, t>0

d. x(t)=0(t—-2)+3e*u(-t) and h(t) = u(t) —u(t-1)

Solution:

15
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y(t) = ]O h(z)x(t—7)dz =T [5(t—7-2)+3e*u(-t+7) |[u()-u(r-1)]dr

—00 —00

- T S(t—7—2)[u(r)—u(r-1)]dr+ T 3™y (-t +7)[u(r) —u(r —1)]dr
Now
T S(t-7-2)[u(r)-u(r-1]dr =u(t—2)-u(t—2-1) =TI (t-2.5)
For t<0,

[ 3 u(-t+7)[u(r)—u(z -] dz = [3e*dr =3e” e *"d7
—0 0 0

-3z
3t €

' 1
31~ (1_e_3j
0

J‘ 3e* (-t +7)[u(r) ~u(z -1)]dz = .[Ses(“’)d 7 =3e% .[ e ¥dr
—o0 t t

=3e

For 0<t<1,

-3z
3 €

1
1
3 -3
3 =et(e t_e_S]
t

=3e

e™ (1—%} t<0
e
y(t) =<e* (eS‘ —isj 0<t<1
e
1 2<t<3
, otherwise

2.10 The impulse response function of a continuous-time LTI is displayed in Figure P2.2(b). Assuming
the input x(t) to the system is waveform illustrated in Figure P2.2(a), determine the system output

waveform y(t) and sketch it.

Solution:

For t <1, there is no overlap and y(t) =0.

16
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Figure P2.2

x(7) (@

(b)

1<t<?2

(©

5<t<6

t-1
As shown in Figure (b), y(t):.[dr:t—l for 1<t<2
0
1
For 2<t<3, y(t):jdr:l
0
1
For 3<t<4, y(t)= [ dr =1-t+3=4-t
t-3
t
Referring to Figure (c), y(t):J‘dr: t-5 for5<t<7
t 5
For 7<t<8, y(t)= [ dr=t-t+2=2

t-2

7
For 8<t<10, y(t)= jdr=7—t+3=10—t

t-3

+y(t)

2__

A / \ /\
| | | | | | | i i —1
1 2 3 4 5 6 7 8 9 10
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© 2012 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any
manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.



2.11 An LTI system has the impulse response h(t) =e***?u(t-2).
a. Isthe system casual?
Solution:
Yes. The system is casual because h(t) =0 fort<O0.

b. Isthe system stable?

Solution:

5x |©
e

=2
-0.5

The system is stable because T |h(t)ldt = Teo'sxdx =
s 0 0
c. Repeat parts (a) and (b) for h(t) =e **"*2u(t+2).
Solution:
The system is not causal but stable.
2.12 Write down the exponential Fourier series coefficients of the signal
X(t) =5sin(407t) +7 cos (807t — 7/ 2) —cos (1607t + 7/ 4)

Solution:

Applying the Euler’s formula, we get the following terms:

ej407zt _ e—j407rt ej807rte—j7r/2 + e—j807ztej7r/2 eleOﬂ'tejﬂ'M + e—jl607rte—j7r/4
x(t)=5 - +7 _
2 2

— —j2.5ej40”t + j2l5e—j407rt _ J35ej807z‘t + j3l5e—j807rt _0-5ej7r/4ej160ﬂ1 _0-5e—j7r/4e—j1607tt
The Fourier coefficients are

C,=-J25C  =]j25
C,=-j35C,=]j35

C,=-0.5e""*,C_, =-0.5¢ "

a. Is x(t) periodic? If so, what is its period?

Solution:

18
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Yes. o, =407 = f, =20,T, = i. The period isi =0.05sec.
20 20

2.13 A signal has the two-sided spectrum representation shown in Figure P2.3.

Figure P2.3
10
7 F_r":r-'?- A Te— Jmia
A A
4 F'i; w2 de —jmwi2
1 T » [ (Hz
— 150 —50 ] S0 |50 f }

a. Write the equation for x(t).

Solution:

X(t) =14cos (1007zt - %) +10+8 cos(SOO;rt —%j

b. Isthe signal periodic? If so, what is its period?

Solution:

Yes. It is periodic with fundamental period T, = % =0.02.
c. Does the signal have energy at DC?

Solution:

Yes as indicated by the presence of DC termC, =10.

2.14 Write down the complex exponential Fourier series for each of the periodic signals shown in
Figure P2.4. Use odd or even symmetry whenever possible.

Solution:

a. TO =3, fo =1/3 x(f)
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jzdt Ildt} ;4 1)=1

1 2 B 27rnt 27rnt
cn=§j 3 dt- je 3dt}

- T 2 T 3
3|5
= 2e —e
3x27zn o )

_2_e—j27m +e—j47rn/3:|

27zn
~ 13 ( iamn3 1) ~ 3e—j27m/3 e+j27rn/3 _ e—jZﬂn/S
2zn zn 2]
—j2zn/3
:36 n(zg ], =+1,+2,.....
zn 3

b. T,=2f =1/2

JEETT

1 it
C,== jtdt} >3] =3

-1

1

_1'2[”

/]

-1

(h)

NN S
VAL

|
I
b

.
I

— J te—j/lm 1 _
-1

1_1 —jant 1 i —jmnt
C =§__j1te dt =~ om _Iltd(e )

1
I e—jﬂntdt}
-1

= L e jan +e+J”n e—jzznt 1
27Z'n_ J;z'n -1
j e—j/rn e+j7m e—j;m ej;m
=t Tt
2| #n  zn  jx*n®  jztn’
- iz i(—1 n X3}
= Je — J( ) , n:il’iz’ _____ |
zn n ‘
c. T =2f =1/2 | N U T R A A
' (o] L] {c}
2A[ e[} 1) A
C, = jl t)dt |= Al t—— =A(1——j:_
0 2 2 2
0
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Since x,(t) is an even function of time,

C AL [ZA j (1-t)cos(znt)dt | = Aj.COS(ﬂ'nt)d'[—Aj‘tCOS(ﬂnt)dt

zZn

1 1
=02 [td (sinent)dt = 2| ~tsinrnt)] + | sin(ﬂnt)dt}
n 0 0

:A{O_M }:_ A;\ [cos(zn) - 1] A [1 cos(zn)]
0 VA

zn zn
0, n even
B 22—':2, n odd x4(0)
T
A
N — N '\/
d T,=31f =1/3 -1 1 2 3 4 5 6
° idi

3/2
C, = 2A jtdt jidt 2A| 1 +t|“"2 _hi, 1 2A
32l " |T3l2 2| 3

Since X, (t) is an even function of time,

0

A—, 2A1.5 3/2
C ="2= [? [ %, (t)cos(27rnt/3)dt} [ [teos(2znt/3)dt + | cos(27znt/3)dt}
0

"2
Now
h 3 | 3 L
[tcos(2znt /3)dt = —{ [td (sin(27znt/3))} = —{tsin(Z;mt/3)|o — [sin(2znt / 3)dt}
0 27zn| 5 2zn 5
3 3
—{sm(zzn /13)+ —cos(27rnt / 3)| }
2r
3 3
—{sm(zzn /3)+ —[cos(27rn /3)— 1]}
2
3 3 312 3 .
jcos(27mt/3)dt ——S|n(27mt/3)| :—ﬂsm(Zﬂn/B)
T

Substituting yields
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e. X ()= i p(t-8n)

where

p(t)=TI[(t-2)/2]+TI[(t-2)/4]-T1[(t-6)/2]|-TI[(t-6)/4]

The FT of the pulse shape p(t)over [0, T,] is given by

P(f)= | pe " dt

The FS coefficients of a periodic signal with basic pulse shape p(t)are given by

T

0

o

00

Comparing yields

Ti.[ p(t)e—jZanotdt

C, :TiP( 3

Now 0
M[(t-2)/2]«>2sinc(2f )e *"
T[(t-2)/ 4]« >4sinc(4f)e
T[(t-6)/2]«=>2sinc(2f)e >
T[(t-6)/4 ]« >4sinc(4f)e

Therefore,

P(f)=2sinc(2f)e " [1-e " |+4sinc(4f)e " [1-e *" |

The FS coefficients of a periodic signal x,(t) are now obtained as

22
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n

C = Ti{Zsinc(an0 )e i [1— g 18 } +4sinc(4nf, )e 1+ [1— g 18 ]}

_ 1 H —jznl2 —jzn H —jznl2 —jzn
_Z{smc(n/4)e 21— |+ 2sinc(n/ 2)e M [1-e) ]}
2.15 For the rectangular pulse train in Figure 2.23, compute the Fourier coefficients of the new periodic
signal y(t) given by
a. y(t)=x(t-0.5T))

Solution:

= t—nT
The FS expansion of a periodic pulse train x(t) = Z H[w} of
T

n=—o0

rectangular pulses is given by
X(t) — Z C:ejZﬂnfot
N=—c0
where the exponential FS coefficients are

n

Ct :Tisinc(nfor)

Let the FS expansion of a periodic pulse train y(t) = x(t —0.5T, ) be expressed as

o0

y(t) — z Crzlejsz‘jt

N=—ow0

where

1 i 1 i
C) == y(t)e "™ 'dt = = [ x(t —0.5T )e 1" 'dt
T j y(t) — [x(t-05T,)

0T,

J. X(V)e— j Zﬂnfovd v

To

_iJ‘X(V)e—jZ;znfo(wO.STo)dV :e—jZ;rnfO(O.STo)Ti
o]

0T,

Ca

_ A—JmineXx
=e 7C,

Time Shifting introduces a linear phase shift in the FS coefficients; their
magnitudes are not changed.

23
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b. y(t) = x(t)e!*®

Solution:

C: :Tij’ y(t)e—jZ;rnfotdt :Tij X(t)ejZ;rtfoe—jZ;rnfotdt
0T

0T,

_1 -~ jarty(n-1)
== j x(t)e dt

0T,

= C:—l
c. y(t)=x(at)

Solution:

1 —j2zn 1 —j2zn

c’ :f%[ y(t)e 2 fotdt:T_OJ;X(at)e 2ot 4
NNEAY

=_1T [ x(v)ejm(“] dv

0 oT,

= CnX
Time Scaling does not change FS coefficients but the FS itself has changed as the
2f, | 3f,

harmonic components are now at the frequencies+—=, + ,
o a a

2.16 Draw the one-sided power spectrum for the square wave in Figure P2.5 with duty cycle 50%.

Figure P2.5

x( 1)

oy e
=

Solution:
The FS expansion for the square wave is given by
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X(t) - Z CnejZﬂnfot

N=—o0

where

1 .
C =—| x(t)e *™!dt
=T j (®)

1 T2 To )
_ = Aj qu;rnfotdt_AJ- e*ﬂ””fotdt
To 0 T,/2
_ A { ~jzmnfyt|o/2 _ - janft o }
T, (—j2znf,) 0 To/2
__A (e‘j”” ~1-e "o i)
2zn
Therefore,
j2A
N Ly n odd
C.,=y 7zn
0, otherwise

Average power in the frequency component at f = nf_ equals |Cn|2 . Figure
displays the one-sided power spectrum for the square wave.

One-sided Power Spectrum of Square wave
0.9

08f 9 B
0.7} 1

0.6 B

0.4+ B

0.3+ i

One-sided Power Spectrum

0.2 q

0.1 R
0 T (P ® [ONNING Q o) Q L
5 10 15 20 25
Frequency (xfo)

a. Calculate the normalized average power.

Solution:
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The normalized average power for a periodic signal x (t) is given by

T, /2 2
Po=t | fdr="t = a
0 -T,/2 To

b. Determine the 98% power bandwidth of the pulse train.

Solution:

n | Total Power
including current
Fourier coefficient

0.8106

0.9006

0.9331

~N|o|w|-

0.9496

9

0.9596

11

0.9663

13

0.9711

15

0.9747

17

0.9775

19

0.9798

21

0.9816

2.17

Figure P2.6

98% Power bandwidth = 21x f,

Determine the Fourier transforms of the signals shown in Figure P2.6.

x(h
L]

.1.'2( )

cos(2t)

—0.25

a

(c)

1] 1

2

26
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Solution (a)
The pulse x,(t) can be expressed as
X (t) = A[TI(t+0.5)-T1(t-0.5)]
Now
I1(t)«—>sinc(f)
Applying the time-shifting property of the FT, we obtain

I1(t+0.5)«—=>sinc( f)e’’
[1(t-0.5)«——>sinc(f)e '

Adding

X,(f)= A[sinc( f)el" —sinc(f)e " ] = Asinc( f )[eiﬁf _e—jnf]
= Aj2sinc( f)sin(z )= j2r fA[sinc*(f)]

Solution (b)

The pulse x,(t) can be expressed as

X, (t) =I1(2t)cos(2xt)

Now

H(2t)<—3—>%sinc(f 12)

cos(2nt)<—3—>%[5(f 1)+ 65(f +1)]

X,(f)=3{I1(2t)} ® I{cos(2xt)} =%sinc(f /2)@%[5“ ~1)+5(f+1)]
=%[sinc[0.5(f ~1)J+sinc[05(f +1)]]

Solution (c)

The pulse x,(t) can be expressed as
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X (t) = p(t)+ p(-1)
where
p(t)=e"[u(t)-u(t-1)]

From Table 2.2, we have

eu(t) —— _1
1+ j2xf

Using the time-shifting property of the FT, we obtain

e—j27zf e—(l+j27tf)

1+ j2nf 1+ j2nf

e'u(t-1)=e'e Pu(t-1)«>e™

Combining

L o (i2nf) 1 |:1_e,(1+j27rf)j|

t)«——>P(f)= - =
PE) ()= Iri2et v j2ef Lrjoaf

By time-reversal property,

3 1 —(1-j2x
p(_t)(‘—)P(—f):m[l—e (1-j2 f):|

1 e 1 s
X (f)=P(f)+P(=f)=——[1—g Wi270) 1_ e (i)
2(f)=P(f)+P(-f) 1+j2ﬂf[ e ]+1_J_2ﬂf[ e ]

:ﬁ{(“ 27 f)[1-e 4 1 (14 jor f)[1-e 0
= ﬁ[l—e‘1 cos(2zf)+2xfesin(2x f )]

Solution (d)
The pulse x,(t) can be expressed as
X, (t) =TI(t/2)+T1(t/4)

Now
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I1(t/2)«—=—>2sinc(2f)
I1(t/4)«——>4sinc(4f)

Adding
X, (f)=2sinc(2f)+4sinc(4f)

2.18 Use properties of the Fourier transform to compute the Fourier transform of
following signals.

a. sinc®(Wt)
Solution:

At/ 7) <2 Lsinc? (ﬁ)
2 2

Using the duality property, we obtain
Wsinc?(Wt) «—=—>A(f /2W)

sincz(\Nt)<—3—>WiA(f 12W)

Thus the Fourier transform of a sinc? pulse is a triangular function in frequency.
b. TI(t/T)cos(2xft)
Solution:

II(t/T)«—=>Tsinc( fT)

cos(2r £ > [5(f - 1,)+5(f+1,)]

X (f)=3{T1(t/T)}® S{cos(2 f 1)} =Tsinc( fT)®%[5( fof)+o(f+1)]

:Tz{sinc[T(f —f,)]+sinc[T(f+ fC)]}

c. (e"cos10zt)u(t)

Solution:
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From Table 2.2,

e 'u(t) —— _1
1+ j2xf

Now

S{(e’tu(t))cosloﬂt} S{(e’tu(t))}(@s{coslom}

1

1
=W®EW ~5)+5(f +5)]

1 1 . 1
C 2|1+ j2x(f-5) 1+ j2z(f+5)

C 1)1+ j2z(f +5)+1+ j2z(f -5)
2| (1+jexf) —(jexs)

3 1+ j2x f
(1+ j2x )’ +10072

B 1+ )27 f
(1+1007% )+ jarx f —4x*
d. te''u(t)
Solution:

Applying the differentiation in frequency domain property in (2.85), we obtain

—t 3 iiw —t
te u(t)<——>27[ r S{etum)}
That is,
Cd| 1+ jorf)” -
3ftetu() = - [( ) L—ijzﬂ—z
27 df 2r (1+j2xf)
_ 1
(1+ j2rf)
e. e
Solution:
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X(f)=[e e dt= [t

—0

Multiplying the right hand side bye """ e*"" yields

X(F)=e " [ g — gt [ gy

—00

Substituting t+ jf =v, we obtain

X(f)=e"" je"’“zdv

[—
1

f.  4sinc®(t) cos(100xt)

Solution:

4sinc? (t)(L)4A(%j
cos(lOOﬁt)<—3—>%[5(f ~50)+5( f +50)]
X (f)=3{4sinc’ (t)} ® I{cos(100xt)} = 4A(%)®%[5( f —50)+5(f +50)]
=2{A[0.5(f-50)]+A[0.5( f -50)]}
2.19 Find the following convolutions:

a. sinc(Wt) ®sinc(2Wt)

Solution:
We use the convolution property of Fourier transform in (2.79).

X() ® y(t) <2 X (F)Y ()

Now

sinc(2\Nt)<L>iH(f /2W)
2W
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Therefore,

) . <~ 1 1
sinc(Wt) ® sinc(2Wt) «—— —T1(f /W) x—TI(f / 2W
(Wt) ( )<——>W ( )sz ( )

1

2

TI(f /W)

b. sinc? (Wt) ®sinc(2Wt)
Solution:
Again using the convolution property of Fourier transform

sincz(\/\/t)®sinc(zwt)<L>ViVA(f /2W)xﬁl‘[(f W)

1
= A(f12W
2W? ( )

2.20 The FT of a signal x(t) is described by

1

X(f)=———
() 5+ j2xf

Determine the FT V () of the following signals:

a. v(t)=x(t-1)

Solution:
v(t) =x(5t-1) = X{5(t —%ﬂ
Let
- 1 f 1 1
t)=x(5t) «——>Y(f)==X| = |z=2——"T""——
y{t) =x() (D 5 (5) 5(j27zf/5)+5
B 1
j27rf+25

vit)=y|t—= |«—=>V(f)=Y(f)e 8 =—— ¢ 5
© y( 5] (=Yt j2rf +25
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b. v(t) = x(t) cos(100xt)
Solution:

[X(t)ejIOO;rt n X(t)e—jmom }

v(t) = x(t) cos(1007t) = .

Now

[X(t)ejloom n X(t)e—jlooﬂt ]
2

~

¢« \V(f)=%[x(f ~50)+ X (f +50)]

1 1
~j2n(f-50)+5  j2z(f+50)+5

After simplification, we get

V() =— j2zf+5
j207f +(7%10° +25-47°2)

c. v(t)=x(t)e™

Solution:

v(t) = x(t)e™ @V(f):x[f —ijz !

j27z(f —5j+5
T

d. V() :%

Solution:
Using the differentiation property of FT %x(t)eb j2A8X (), we obtain

. j2rf
V(f)= j2r X (f) =327
()J”()5+j27rf

e. v(t)=x()®u(t)
Solution:

Using the convolution property of FT x(t) ® y(t)«—— X (f)Y(f), we can write
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V(f):X(f)U(f)zﬁ(%ﬂijz%]

5
syt b
2 5+ j2xf jZﬂf(5+127zf)
1

1
o(f)+
10 (f) j27rf(5+j27zf)

2.21 Consider the delay element y(t) = x(t—3).

a. What is the impulse response h(t)?

Solution:

Since y(t) = h(t) ® x(t) = x(t —3), the impulse response of the delay element is
given from (2.16) as

h(t) = 5(t—3)

b. What is the magnitude and phase response function of the system?

Solution:

H(f)=3{s(t-3)}=e'*"
|H(f)|=1
LH(f)=-6xf

2.22 The periodic inputx(t) to an LTI system is displayed in Figure P2.7. The frequency
response function of the system is given by

2
H(f)=————
(f) 2+ j2xf
Figure P2.7
x(t)
F
[
3=
4 -3 -2-1 ("1 2 3 4 5
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a. Write the complex exponential FS of input x(t).

Solution:

The input x(t) is rectangular pulse train in Example 2.24 shifted by T, /4 and

duty cyclei =0.5. Thatis,

> [(t-nT,-T,/4)
X(t (t-T,/4)=> 1 °_o
=0 Z { 0.5T, }

The complex exponential FS of g, (t) from Example 2.24 with
T,=2(f,=0.5) and TL =0.5 is given by

0

gr (t)=05 i sinc(0.5n)e™

In Exercise 2.15(a), we showed that time shifting introduces a linear phase shift
in the FS coefficients; their magnitudes are not changed. The phase shift is equal

to e 12™™" for a time shift of u. The exponential FS coefficients x(t) are

C, =0.5sinc(0.5n)e *" (%) = g=12( Bginc(0.5n)

x(t) =0.5 i [e’j’”"zsinc(O.Sn)]e"””t

N=—o0

b. Plot the magnitude and phase response functions for H(f).

Solution:

H(f)=—2 -1
2+ j2xf 1+ jxf

1 1
1+ jzf 1+ jznf,

H(nf,)=
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c. Compute the complex exponential FS of the output y(t) .

Solution:

Using (2.114), the output of an LTI system to the input

x(t) = i [O.Se‘j’”"zsinc(0.5n)]e"””t

n=—o0\

C

n

is given by

y =3 CHEsmer = 3 [ 95
Eae “~ |1+ jO5zn

FS coefficient of y (t)

sinc(0.5n) |e/™

2.23 The frequency response of an ideal LP filter is given by

Se 100t | £ <1000 Hz

H(f)=
0, | f|>1000 Hz
Determine the output signal in each of the following cases:

a. x(t)=5sin(400zt)+2cos(12007zt — 7 / 2) - cos (22007t + 7z / 4)
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Solution:

5, | f| <1000 Hz
M=

0, | f|>1000 Hz

-0.00257 f, |f|<1000 Hz
LH(f)=

0, | f|>1000 Hz

Since |H(200)| =5and «£H (200) = -7 /2, the output of the system for an input
5sin(400xt) can now be expressed using (2.117) as 25sin(400xt — 712).

Next |H (600)| =5and £H (600) =-3z/2 =72, the output of the system for
an input 2008(12007zt —7z/2) can now be expressed using (2.117) as
10c0s (12007t — 7 / 2+ 7/ 2) =10cos (12007t).

Now |H (1100)| = 0. So the LP filter doesn’t pass cos (2200t + / 4). The
output of the LP filter is therefore given by

y(t) = 25sin (4007t — 7/ 2)+10cos(12007t)

in (2200t
b, X(t) = 25in(400st) + ST (22007)

Solution:

Since |H(200)|=5and «H (200) = -7 /2, the output of the system for an input
2sin(400t) is 10sin(4007t — 7/2).

sin(22007t)

, we note that
st

To calculate the response to
sin (22007t )

t = 2200xsinc(2200t)<L>H(Lj
T

2200

sin(22007t)

st

In frequency domain, the output of LP filter to is

I (L) 5e-10002571 (Lj _5 ( f j o 10002571
2200 2000 2000
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Now

H( Zgoojeio-oozw «——2000sinc 2000(t -0.00125) ]

The output of the LP filter is therefore given by

y(t) =10sin (4007t — 7 / 2) +10000sinc| 2000(t—0.00125) |

in (10007t
C. x(t):cos(4007zt)+M

Solution:

Since |H(200)| =5and «H (200) = -z /2, the output of the system for an input
cos(4007t) is 5cos(400zt—7/2).
sin (10007t )

st

To calculate the response to , We note that

sin (10007t )

it

=1000x sinc (1000t ) «——>T1 (Lj
1000
sin (10007t )
st

In frequency domain, the output of LP filter to is

G- i0.0025rf H( f j _ SH[ f je—j0.00ZSzrf
1000 1000

Now

I (—1020 j g710%r! ¢ 3 51000sinc|1000(t —0.00125) ]

The output of the LP filter is therefore given by
y(t) =5cos (4007t — 7 / 2) +5000sinc| 1000(t —0.00125) |
d. x(t) =5cos(800xt)+25(t)

Solution:
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Since |H (400)| =5and «H (400) = -7 , the output of the system for an input
5c0s(8007t)is 25c0s(8007t — 7). The response of the system to &(t) is h(t).
The impulse response of the ideal LP filter is 10000sinc| 2000(t—0.00125) |.
Combining

y(t) = 25c0s (8007t — 7 )+ 2h(t)
= 2505 (8007t — ) + 20 x10%sinc| 2000(t —0.00125) |

2.24 The frequency response of an ideal HP filter is given by

4, | f|> 20 Hz,
H(f)=
0, | f|<20 Hz

Determine the output signal y(t) for the input
a. X(t)=5+2cos(50zt—7/2)—cos(75xt+7x/4)
Solution:
y(t) =8cos (507t — 7z / 2)—4cos(75xt+ 7/ 4)
b. x(t) =cos(207t —37z/4)+3cos(1007t + 7 /4)
Solution:
y(t) =12cos(1007t + 7 / 4)
2.25 The frequency response of an ideal BP filter is given by

2e 1000057t 900<|f| <1000 Hz,
H(f)= .
0, otherwise

Determine the output signal y(t) for the input
a. X(t)=2cos(18507t — 7 / 2)—cos (19007t + 7/ 4)

Solution:

|H(925)| =2 and |H (950)| = 2.
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£H(f)=-0.0005xf . Therefore,

£H(925) = -0.00057 f =—0.00057x925 = —0.4627
£H (950) = -0.00057 f =—-0.00057x950 = —0.4757

y(t) =4cos (18507rt —rl2- O.4627r) —2c0s (19007rt +7l4- 0.4757r)
b.  x(t) =sinc(60t)cos(1900xt)

Solution:

1 (). 1
X(f)=%1‘l(%)®§[5(f —~950)+5( f +950)]

=120 {H( : :sgsojﬂj( f E?Oﬂ
Y(f)=H(F)X(f)

:ze,jolooosﬂ.f x 1 % H( f _950j+n( f +950J
120 60 60

Now

i><1'[[f_950j/ = sinc(60t ) e’

60 60

g10.00057f 6_]6XH( f ;350)( 3 >SinC[GO(t_0.00025)]ej19007z(t—o.00025)
Similarly

i><1‘[ f+950 <« sinc(60t)e

60 60

g10.00057f 6_]6XH( f ;gSOj\ 3 >SinC|:60(t—0.00025)]e_jlgooﬂ(t_o'ooozs)
Therefore,

y(t) = sinc[60 (t _ 0.00025)] |:ej19007r(t—0.00025) n e—leOOﬂ(t—0.000ZS):|

= 2sinc[ 60(t—0.00025) |cos[ 19007 (t —0.00025) |
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c. x(t) =sinc?(30t)cos(1900xt)
Solution:

1 (f)_1
X(f)=%A(&j®§[§(f —~950) +5(  +950)]

:6_10[’\(1:;35())“\(1:2350)}
Y(f)=H(f)X(f)

_ 91000057 xi A( f —950)+A( f +950J
60 60 60

Now

£l A( f _%Oj(—)ﬁ sinc? (30t) e

30 60

o~ 1000057 f %XA( f ;350}( S s ginc? [30(,[_0.00025)]ej1900;r(t—o.00025)
Similarly

i><H( f +950j< > sinc’ (30t)e

30 60

eﬂ'o.ooos;:f %XH( f ‘235())( 3 ysinc? [30('[ _0_00025)] e—jlgoozr(t—o.ooozs)
Therefore,

y(t) = sin(:2 [30 (t _ 0_00025)] |:eil9007r(t70.00025) " e7j19007r(’[—0_00025):|
= 2sinc’ [ 30(t—0.00025) |cos| 19007 (t—0.00025) |

2.26 The signal 2e *'u(t)is input to an ideal LP filter with passband edge frequency

equal to 5 Hz. Find the energy density spectrum of the output of the filter. Calculate
the energy of the input signal and the output signal.

Solution:
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o0

o ) s et
E, = HZe’Z‘u(t)‘ dt :I4e"“dt =4=| =1

—oo 0 —4 0
2

x(t) = 2e%'u(t) «—— 27 izt

The energy density spectrum of the output y(t), |Y (f )|2 , IS related to the energy
density spectrum of the input x(t)

2

2 2 2 f 2
VO = e = 5 12
] 2 [
E — = | Y(f)df = P
J|Y(t)| dt = H ( )|d _.[0 10) 2+ j2rxf
5 5 1
= ZIﬁdf
51+Jﬁf 1+ﬂ f

Making change of variablesz f =u = df = ldu , We obtain
T

57
£, =2 [ = 2n () = 2

(1.507) =0.9594
1+u V4 T

y

Thus output of the LP filter contains 96% of the input signal energy.

2.27 Calculate and sketch the power spectral density of the following signals. Calculate
the normalized average power of the signal in each case.

a. X(t)=2cos(10007zt -7/ 2)—cos (18507t + 77/ 4)

% (t) %o (1)

Solution:

T/2

R,(7) = 'Lm% | xOx(t-0)dt =2, (2)+ R ()~ Ry, (7) - R, (2)

-T/2

Now
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TI2

#,@)=lin T | o5

~ lim = | 2cos(1ooo;zt—%jzcos[looon(t—r)—ﬂ dt

T—)ooT T

T/2

~2lim 2 [ {cos(100077)+ cos[ 10007 (2t -7) -7 |} dit

T—oow T i

= 2¢0s(100077 )

The second term is zero because it integrates a sinusoidal function over a
period. Similarly,

T/2

R, (r)= TlimoTl | xz(t)xz(t—r)dt:%005(1850m)

-T/2

The cross-correlation term

T/2 T/2
R, () :Tliig%_{[/z&(t)xz(t—r) :TIiLPO%_J/ZZCOS(loooﬂt—ﬂ/2)005[18507z(t—r)+7r/4]dt

T/2

~lim [ {cos(8507t ~185077 + 37 / 4) +sin (28507t ~ 185077 — 7 / 4)|dt

T T i

IS zero because it integrates a sinusoidal function over a period in each case.
Similarly, it can be shown that all other cross-correlation terms are zero.
Therefore,

R () =R, (r)+ R, (r) =2c0s(100077) + % cos(185077)

G (f)=3{R(r)} = 3{2 cos(100077) +%cos (185072'2')}

—[5(f —500)+5( f +500)]+%[5(f —925)+5(f +925)]

The normalized average power is obtained by using (2.172) as
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P = T@(f)df - T[a(f ~500)+5( f +500)]df +% T [5(f —925)+ 5(f +925)] df

—00

1 1 5
=1+1+—+—=—
4 4 2
1+
2 08}
c
a
B
S 0.6
I3
)
9]
0.2
0 L L L L a L L L L
-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Frequency (kHz)

b.  x(t) =[1+sin(2007t)]cos(2000xt)

Solution:
X(t) =[1+5sin(2007t)]cos(2000t)
= c05(20007t) +sin(200t) cos(2000t)

=¢0s(20007t) + 1sin (22007t) —lsin (1800t)
x (1) 2 2

%a (1) %3 (t)

Now
R (r) = lim %I XOX(t-7)dt = R, () + R, (7) + R, (7)
where

R, (7)= %008(20007[1)
R, (7)= %COS (220072'2')

R, ()= %COS (18007rr)
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Therefore,

R (r) = %COS(ZOOO%’Z') +%cos(2200m) + % cos(180077)

G(f)=3{R ()} = S{%COS(ZOOOﬁT)+%COS(22007ZT)+%COS(18007ZT)}

=%[5(f —1000) +o(f +1000)]+%[5(f ~1100) +&(f +1100)]

+%[5(f ~900) + 5( f +900)]

The normalized average power is obtained by using (2.172) as

o0

—00

, _17 _ 1
P, = [ 7 (f)f _4j[5(f 1000) +5(f +1000)]df + -
1

[5(f —900)+5(f +900)]df

T[5(f ~1100) + 5( f +1100)]df

—00

1 1 3
==
8 8 4

025 o

0.2

0.15

Power Spectral Density

0.1r

pill

@

|

| | | | | | | |
-1 -08 -06 -04 -02 0 0.2 04 06 08

Frequency (kHz)

1

C. X(t) =cos?(200xt)sin(1800t)

Solution:
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X(t) = %[u cos(4007t) |sin (18007t ) = %sin (18007t)+ %sin (1800t )cos (4007t)
= %sin (1800t) +%sin (14007t) + %sin (22007t)
Now

R (D) =R, () + R, (1) + R, (7)

where

R, (7)= %COS (18007[7)
R (7)= % cos (14007rr)

R, ()= % COS(ZZOO;U)
Therefore,

R (1) = %cos(lSOOm) + 3—12005(1400m) + 3—12005(2200m)

G(f)=3{R ()} = S{% cos(1800m)+3—12003(1400m) +écos(2200m)}
1 1
ZE[§(f -900)+o(f +900)]+6—4[5(f —700)+o(f +700)]
+é[5(f —1100) +o(f +1100)]

The normalized average power is obtained by using (2.172) as

sz]otcx(f)df =

1, 1.3

[5(f —900)+5(f +900)[df + 64j [5(f —700)+5(f +700)]df
1
8

o(f -1100)+45(f +1100 =
[( Jrolt+ ) ) +32+32 16

s e—38 §—38

_?2|H 'C_D‘||—\
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0.1

0.09 B

0.08+ i

0.07 B

0.06 - B

0.05 B

0.04 B

Power Spectral Density

0.03 4

0.02 - B

0.01+ i

I @ I

1 1 1 1
-1 -08 -06 -04 -0.2 0O 02 04 06 08 1
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