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CHAPTER 0
Preliminaries

1. {1, 2, 3, 4}; {1, 3, 5, 7}; {1, 5, 7, 11}; {1, 3, 7, 9, 11, 13, 17, 19};
{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}

2. a. 2; 10 b. 4; 40 c. 4: 120; d. 1; 1050 e. pq2; p2q3

3. 12, 2, 2, 10, 1, 0, 4, 5.

4. s = −3, t = 2; s = 8, t = −5

5. By using 0 as an exponent if necessary, we may write a = pm1
1 · · · p

mk

k and
b = pn1

1 · · · p
nk

k , where the p’s are distinct primes and the m’s and n’s are
nonnegative. Then lcm(a, b) = ps11 · · · p

sk
k , where si = max(mi, ni) and

gcd(a, b) = pt11 · · · p
tk
k , where ti = min(mi, ni) Then

lcm(a, b) · gcd(a, b) = pm1+n1
1 · · · pmk+nk

k = ab.

6. The first part follows from the Fundamental Theorem of Arithmetic; for
the second part, take a = 4, b = 6, c = 12.

7. Write a = nq1 + r1 and b = nq2 + r2, where 0 ≤ r1, r2 < n. We may
assume that r1 ≥ r2. Then a− b = n(q1 − q2) + (r1 − r2), where
r1 − r2 ≥ 0. If a mod n = b mod n, then r1 = r2 and n divides a− b. If n
divides a− b, then by the uniqueness of the remainder, we then have
r1 − r2 = 0. Thus, r1 = r2 and therefore a mod n = b mod n.

8. Write as+ bt = d. Then a′s+ b′t = (a/d)s+ (b/d)t = 1.

9. By Exercise 7, to prove that (a+ b) modn = (a′ + b′) modn and
(ab) modn = (a′b′) modn it suffices to show that n divides
(a+ b)− (a′ + b′) and ab− a′b′. Since n divides both a− a′ and n divides
b− b′, it divides their difference. Because a = a′modn and b = b′modn
there are integers s and t such that a = a′ + ns and b = b′ + nt. Thus
ab = (a′ + ns)(b′ + nt) = a′b′ + nsb′ + a′nt+ nsnt. Thus, ab− a′b′ is
divisible by n.

10. Write d = au+ bv. Since t divides both a and b, it divides d. Write
s = mq + r where 0 ≤ r < m. Then r = s−mq is a common multiple of
both a and b so r = 0.

11. Suppose that there is an integer n such that abmodn = 1. Then there is
an integer q such that ab− nq = 1. Since d divides both a and n, d also
divides 1. So, d = 1. On the other hand, if d = 1, then by the corollary of
Theorem 0.2, there are integers s and t such that as+ nt = 1. Thus,
modulo n, as = 1.
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12. 7(5n+ 3)− 5(7n+ 4) = 1

13. By the GCD Theorem there are integers s and t such that ms+ nt = 1.
Then m(sr) + n(tr) = r.

14. It suffices to show that (p2 + q2 + r2) mod 3 = 0. Notice that for any
integer a not divisible by 3, a mod 3 is 1 or 2 and therefore a2 mod 3 = 1.
So, (p2 + q2 + r2) mod 3 = p2 mod 3 + q2 mod 3 + r2 mod 3 = 3 mod 3=
0.

15. Let p be a prime greater than 3. By the Division Algorithm, we can write
p in the form 6n+ r, where r satisfies 0 ≤ r < 6. Now observe that
6n, 6n+ 2, 6n+ 3, and 6n+ 4 are not prime.

16. By properties of modular arithmetic we have
(71000) mod 6 = (7 mod 6)1000 = 11000 = 1. Similarly,
(61001) mod 7 = (6 mod 7)1001 = −11001 mod 7 = −1 = 6 mod 7.

17. Since st divides a− b, both s and t divide a− b. The converse is true when
gcd(s, t) = 1.

18. Observe that 8402 mod 5 = 3402 mod 5 and 34 mod 5 = 1. Thus, 8402 mod
5 = (34)10032 mod 5 = 4.

19. If gcd(a, bc) = 1, then there is no prime that divides both a and bc. By
Euclid’s Lemma and unique factorization, this means that there is no
prime that divides both a and b or both a and c. Conversely, if no prime
divides both a and b or both a and c, then by Euclid’s Lemma, no prime
divides both a and bc.

20. If one of the primes did divide k = p1p2 · · · pn + 1, it would also divide 1.

21. Suppose that there are only a finite number of primes p1, p2, . . . , pn. Then,
by Exercise 20, p1p2 . . . pn + 1 is not divisible by any prime. This means
that p1p2 . . . pn + 1, which is larger than any of p1, p2, . . . , pn, is itself
prime. This contradicts the assumption that p1, p2, . . . , pn is the list of all
primes.

22. −758 + 3
58 i

23. −5+2i
4−5i = −5+2i

4−5i
4+5i
4+5i = −30

41 + −17
41 i

24. Let z1 = a+ bi and z2 = c+ di. Then z1z2 = (ac− bd) + (ad+ bc); |z1| =√
a2 + b2, |z2| =

√
c2 + d2, |z1z2| =

√
a2c2 + b2d2 + a2d2 + b2c2 = |z1||z2|.

25. x NAND y is 1 if and only if both inputs are 0; x XNOR y is 1 if and only
if both inputs are the same.

26. If x = 1, the output is y, else it is z.
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27. Let S be a set with n+ 1 elements and pick some a in S. By induction, S
has 2n subsets that do not contain a. But there is one-to-one
correspondence between the subsets of S that do not contain a and those
that do. So, there are 2 · 2n = 2n+1 subsets in all.

28. Use induction and note that
2n+132n+2 − 1 = 18(2n32n)− 1 = 18(2n33n − 1) + 17.

29. Consider n = 200! + 2. Then 2 divides n, 3 divides n+ 1, 4 divides
n+ 2, . . ., and 202 divides n+ 200.

30. Use induction on n.

31. Say p1p2 · · · pr = q1q2 · · · qs, where the p’s and the q’s are primes. By the
Generalized Euclid’s Lemma, p1 divides some qi, say q1 (we may relabel
the q’s if necessary). Then p1 = q1 and p2 · · · pr = q2 · · · qs. Repeating this
argument at each step we obtain p2 = q2, · · · , pr = qr and r = s.

32. 47. Mimic Example 12.

33. Suppose that S is a set that contains a and whenever n ≥ a belongs to S,
then n+ 1 ∈ S. We must prove that S contains all integers greater than or
equal to a. Let T be the set of all integers greater than a that are not in S
and suppose that T is not empty. Let b be the smallest integer in T (if T
has no negative integers, b exists because of the Well Ordering Principle; if
T has negative integers, it can have only a finite number of them so that
there is a smallest one). Then b− 1 ∈ S, and therefore b = (b− 1) + 1 ∈ S.
This contradicts our assumption that b is not in S.

34. By the Second Principle of Mathematical Induction,
fn = fn−1 + fn−2 < 2n−1 + 2n−2 = 2n−2(2 + 1) < 2n.

35. For n = 1, observe that 13 + 23 + 33 = 36. Assume that
n3 + (n+ 1)3 + (n+ 2)3 = 9m for some integer m. We must prove that
(n+ 1)3 + (n+ 2)3 + (n+ 3)3 is a multiple of 9. Using the induction
hypothesis we have that
(n+ 1)3 + (n+ 2)3 + (n+ 3)3 = 9m− n3 + (n+ 3)3 =
9m−n3+n3+3·n2 ·3+3·n·9+33 = 9m+9n2+27n+27 = 9(m+n2+3n+3).

36. You must verify the cases n = 1 and n = 2. This situation arises in cases
where the arguments that the statement is true for n implies that it is true
for n+ 2 is different when n is even and when n is odd.

37. The statement is true for any divisor of 83 − 4 = 508.

38. One need only verify the equation for n = 0, 1, 2, 3, 4, 5. Alternatively,
observe that n3 − n = n(n− 1)(n+ 1).

39. Since 3736 mod 24 = 16, it would be 6 p.m.
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40. 5

41. Observe that the number with the decimal representation a9a8 . . . a1a0 is
a9109 + a8108 + · · ·+ a110 + a0. From Exercise 9 and the fact that
ai10i mod 9 = ai mod 9 we deduce that the check digit is
(a9 + a8 + · · ·+ a1 + a0) mod 9. So, substituting 0 for 9 or vice versa for
any ai does not change the value of (a9 + a8 + · · ·+ a1 + a0) mod 9.

42. No

43. For the case in which the check digit is not involved, the argument given
Exercise 41 applies to transposition errors. Denote the money order
number by a9a8 . . . a1a0c where c is the check digit. For a transposition
involving the check digit c = (a9 + a8 + · · ·+ a0) mod 9 to go undetected,
we must have a0 = (a9 + a8 + · · ·+ a1 + c) mod 9. Substituting for c yields
2(a9 + a8 + · · ·+ a0) mod 9 = a0. Then cancelling the a0, multiplying by
sides by 5, and reducing module 9, we have
10(a9 + a8 + · · ·+ a1) = a9 + a8 + · · ·+ a1 = 0. It follows that
c = a9 + a8 · · ·+ a1 + a0 = a0. In this case the transposition does not yield
an error.

44. 4

45. Say the number is a8a7 . . . a1a0 = a8108 + a7107 + · · ·+ a110 + a0. Then
the error is undetected if and only if (ai10i − a′i10i) mod 7 = 0.
Multiplying both sides by 5i and noting that 50 mod 7 = 1, we obtain
(ai − a′i) mod 7 = 0.

46. All except those involving a and b with |a− b| = 7.

47. 4

48. Observe that for any integer k between 0 and 8, k ÷ 9 = .kkk . . . .

50. 7

51. Say that the weight for a is i. Then an error is undetected if modulo 11,
ai+ b(i− 1) + c(i− 2) = bi+ c(i− 1) + a(i− 2). This reduces to the cases
where (2a− b− c) mod 11 = 0.

52. Say the valid number is a1a2 . . . a10 and ai and ai+1 were transposed.
Then, modulo 11, 10a1 + 9a2 + · · ·+ a10 = 0 and
10a1 + · · ·+ (11− i)ai+1 + (11− (i+ 1))ai+ · · ·+a10 = 5. Thus, 5 = 5−0 =
(10a1 + · · ·+ (11− i)ai+1 + (11− (i+ 1))ai + a10)− (10a1 + 9a2 + · · ·+ a10).
It follows that (ai+1 − ai) mod 11 = 5. Now look for adjacent digits x and
y in the invalid number so that (x− y) mod 11 = 5. Since the only pair is
39, the correct number is 0-669-09325-4.
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53. Since 10a1 + 9a2 + · · ·+ a10 = 0 mod 11 if and only if
0 = (−10a1 − 9a2 − · · · − 10a10) mod 11 = (a1 + 2a2 + · · ·+ 10a10) mod 11,
the check digit would be the same.

54. 7344586061

55. First note that the sum of the digits modulo 11 is 2. So, some digit is 2
too large. Say the error is in position i. Then
10 = (4, 3, 0, 2, 5, 1, 1, 5, 6, 8) · (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11 = 2i. Thus,
the digit in position 5 to 2 too large. So, the correct number is 4302311568.

56. An error in an even numbered position changes the value of the sum by an
even amount. However,
(9 · 1 + 8 · 4 + 7 · 9 + 6 · 1 + 5 · 0 + 4 · 5 + 3 · 2 + 2 · 6 + 7) mod 10 = 5.

57. 2. Since β is one-to-one, β(α(a1)) = β(α(a2)) implies that α(a1) = α(a2)
and since α is one-to-one, a1 = a2.

3. Let c ∈ C. There is a b in B such that β(b) = c and an a in A such that
α(a) = b. Thus, (βα)(a) = β(α(a)) = β(b) = c.

4. Since α is one-to-one and onto we may define α−1(x) = y if and only if
α(y) = x. Then α−1(α(a)) = a and α(α−1(b)) = b.

58. a− a = 0; if a− b is an integer k then b− a is the integer −k; if a− b is
the integer n and b− c is the integer m, then a− c = (a− b) + (b− c) is
the integer n+m. The set of equivalence classes is
{[k]| 0 ≤ k < 1, k is real}. The equivalence classes can be represented by
the real numbers in the interval [0, 1). For any real number a, [a] = {a+ k|
where k ranges over all integers}.

59. No. (1, 0) ∈ R and (0,−1) ∈ R but (1,−1) 6∈ R.

60. Obviously, a+ a = 2a is even and a+ b is even implies b+ a is even. If
a+ b and b+ c are even, then a+ c = (a+ b) + (b+ c)− 2b is also even. The
equivalence classes are the set of even integers and the set of odd integers.

61. a belongs to the same subset as a. If a and b belong to the subset A and b
and c belong to the subset B, then A = B, since the distinct subsets of P
are disjoint. So, a and c belong to A.

62. Suppose that n is odd prime greater than 3 and n+ 2 and n+ 4 are also
prime. Then n mod 3 = 1 or n mod 3 = 2. If n mod 3 = 1 then
n+ 2 mod 3 = 0 and so is not prime. If n mod 3 = 2 then n+ 4 mod 3 = 0
and so is not prime.
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63. The last digit of 3100 is the value of 3100 mod 10. Observe that 3100 mod
10 is the same as ((34 mod 10)25 mod 10 and 34 mod 10 = 1. Similarly,
the last digit of 2100 is the value of 2100 mod 10. Observe that 25 mod 10
= 2 so that 2100 mod 10 is the same as
(25 mod 10)20 mod 10 = 220 mod 10 = (25)4 mod 10 = 24 mod 10 = 6.

64. Suppose that there are integers a, b, c, and d with gcd(a, b) = 1 and
gcd(c, d) = 1 such that a2/b2 − c2/d2 = 1002. Then
a2d2 − c2b2 = 1002b2d2. If both b and d are odd, then modulo 4,
b2 = d2 = 1 and a2/b2 − c2/d2 = 1002 reduces to a2 − c2 = 2. This case is
handled in Example 7. If 2i (i > 0) divides b, then a is odd and
a2d2 − c2b2 = 1002b2d2 implies that 2i divides d also. It follows that if 2n

is the highest power of 2 that divides one of b or d, then 2n is the highest
power of 2 that divides the other. So dividing both sides of
a2d2 − c2b2 = 1002b2d2 by 2n we get an equation of the same form where
both b and d are odd. Taking both sides modulo 4 and recalling that for
odd x, x2 mod 4 = 1 we have that a2d2 − c2b2 = 1002b2d2 reduces
a2 − c2 = 2, which was done in Example 7.

65. Apply γ−1 to both sides of αγ = βγ.
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CHAPTER 1
Introduction to Groups

1. Three rotations: 0◦, 120◦, 240◦, and three reflections across lines from
vertices to midpoints of opposite sides.

2. Let R = R120, R2 = R240, F a reflection across a vertical axis, F ′ = RF
and F ′′ = R2F

R0 R R2 F F ′ F ′′

R0 R0 R R2 F F ′ F ′′

R R R2 R0 F ′ F ′′ F
R2 R2 R0 R F ′′ F F ′

F F F ′′ F ′ R0 R2 R
F ′ F ′ F F ′′ R R0 R2

F ′′ F ′′ F ′ F R2 R R0

3. a. V b. R270 c. R0 d. R0, R180, H, V,D,D
′ e. none

4. Five rotations: 0◦, 72◦, 144◦, 216◦, 288◦, and five reflections across lines
from vertices to midpoints of opposite sides.

5. Dn has n rotations of the form k(360◦/n), where k = 0, . . . , n− 1. In
addition, Dn has n reflections. When n is odd, the axes of reflection are
the lines from the vertices to the midpoints of the opposite sides. When n
is even, half of the axes of reflection are obtained by joining opposite
vertices; the other half, by joining midpoints of opposite sides.

6. A nonidentity rotation leaves only one point fixed – the center of rotation.
A reflection leaves the axis of reflection fixed. A reflection followed by a
different reflection would leave only one point fixed (the intersection of the
two axes of reflection) so it must be a rotation.

7. A rotation followed by a rotation either fixes every point (and so is the
identity) or fixes only the center of rotation. However, a reflection fixes a
line.

8. In either case, the set of points fixed is some axis of reflection.

9. Observe that 1 · 1 = 1; 1(−1) = −1; (−1)1 = −1; (−1)(−1) = 1. These
relationships also hold when 1 is replaced by a “rotation” and −1 is
replaced by a “reflection.”

10. reflection.
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11. Thinking geometrically and observing that even powers of elements of a
dihedral group do not change orentation we note that each of a, b and c
appears an even number of times in the expression. So, there is no change
in orentation. Thus, the expression is a rotation. Alternatively, as in
Exercise 9, we associate each of a, b and c with 1 if they are rotations and
−1 if they are reflections and we observe that in the product a2b4ac5a3c
the terms involving a represents six 1s or six −1s, the term b4 represents
four 1s or four −1s, and the terms involving c represents six 1s or six −1s.
Thus the product of all the 1s and −1s is 1. So the expression is a rotation.

12. H, I, O, X. Rotations of 0◦, 180◦, horizontal reflection, and vertical
reflection.

13. In D4, HD = DV but H 6= V .

14. Dn is not commutative.

15. R0, R180, H, V

16. Rotations of 0◦ and 180◦; Rotations of 0◦ and 180◦ and reflections about
the diagonals.

17. R0, R180, H, V

18. Let the distance from a point on one H to the corresponding point on an
adjacent H be one unit. Then translations of any number of units to the
right or left are symmetries; reflection across the horizontal axis through
the middle of the H’s is a symmetry; reflection across any vertical axis
midway between two H’s or bisecting any H is a symmetry. All other
symmetries are compositions of finitely many of those already described.
The group is non-Abelian.

19. In each case the group is D6.

20. D28

21. First observe that X2 6= R0. Since R0 and R180 are the only elements in
D4 that are squares we have X2 = R180. Solving X2Y = R90 for Y gives
Y = R270.

22. X2 = F has no solutions; the only solution to X3 = F is F .

23. 180◦ rotational symmetry.

24. Z4, D5, D4, Z2

D4, Z3, D3, D16

D7, D4, D5, Z10

25. Their only symmetry is the identity.
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CHAPTER 2
Groups

1. c, d

2. c, d

3. none

4. a, c

5. 7; 13; n− 1; 1
3−2i = 1

3−2i
3+2i
3+2i = 3

13 + 2
13 i

6. a. −31− i b. 5 c.
1

12

[
2 −3
−8 6

]
d.

[
2 4
4 6

]
.

7. The set does not contain the identity; closure fails.

8. 1, 3, 7, 9, 11, 13, 17, 19.

9. Under multiplication modulo 4, 2 does not have an inverse. Under
multiplication modulo 5, {1, 2, 3, 4} is closed, 1 is the identity, 1 and 4 are
their own inverses, and 2 and 3 are inverses of each other. Modulo
multiplication is associative.

10.

[
1 1
0 1

] [
1 0
1 1

]
6=
[

1 0
1 1

] [
1 1
0 1

]
.

11. a11, a6, a4, a1

12. 5, 4, 8

13. (a) 2a+ 3b; (b) −2a+ 2(−b+ c); (c) −3(a+ 2b) + 2c = 0

14. (ab)3 = ababab and
(ab−2c)−2 = ((ab−2c)−1)2 = (c−1b2a−1)2 = c−1b2a−1c−1b2a−1.

15. Observe that a5 = e implies that a−2 = a3 and b7 = e implies that b14 = e
and therefore b−11 = b3. Thus, a−2b−11 = a3b3. Moreover,
(a2b4)−2 = ((a2b4)−1)2 = (b−4a−2)2 = (b3a3)2.

16. The identity is 25.

17. Since the inverse of an element in G is in G, H ⊆ G. Let g belong to G.
Then g−1 belongs to G and therefore (g−1)−1 = g belong to G. So, G ⊆ H.

18. K = {R0, R180}; L = {R0, R180, H, V,D,D
′}.
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19. The set is closed because det (AB) = (det A)(det B). Matrix

multiplication is associative.

[
1 0
0 1

]
is the identity.

Since

[
a b
c d

]−1
=

[
d −b
−c a

]
its determinant is ad− bc = 1.

20. 12 = (n− 1)2 = 1.

21. Using closure and trial and error, we discover that 9 · 74 = 29 and 29 is not
on the list.

22. Consider xyx = xyx.

23. For n ≥ 0, we use induction. The case that n = 0 is trivial. Then note
that (ab)n+1 = (ab)nab = anbnab = an+1bn+1. For n < 0, note that
e = (ab)0 = (ab)n(ab)−n = (ab)na−nb−n so that anbn = (ab)n. In a
non-Abelian group (ab)n need not equal anbn.

24. The “inverse” of putting on your socks and then putting on your shoes is
taking off your shoes then taking off your socks. Use D4 for the examples.
(An appropriate name for the property (abc)−1 = c−1b−1a−1 is
“Socks-Shoes-Boots Property.”)

25. Suppose that G is Abelian. Then by Exercise 24,
(ab)−1 = b−1a−1 = a−1b−1. If (ab)−1 = a−1b−1 then by Exercise 24
e = aba−1b−1. Multiplying both sides on the right by ba yields ba = ab.

26. By definition, a−1(a−1)−1 = e. Now multiply on the left by a.

27. The case where n = 0 is trivial. For n > 0, note that
(a−1ba)n = (a−1ba)(a−1ba) · · · (a−1ba) (n terms). So, cancelling the
consecutive a and a−1 terms gives a−1bna. For n < 0, note that
e = (a−1ba)n(a−1ba)−n = (a−1ba)n(a−1b−na) and solve for (a−1ba)n.

28. (a1a2 · · · an)(a−1n a−1n−1 · · · a
−1
2 a−11 ) = e

29. By closure we have {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45}.

30. Z105; Z44 and D22.

31. Suppose x appears in a row labeled with a twice. Say x = ab and x = ac.
Then cancellation gives b = c. But we use distinct elements to label the
columns.

32. 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1
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33. Proceed as follows. By definition of the identity, we may complete the first
row and column. Then complete row 3 and column 5 by using Exercise 31.
In row 2 only c and d remain to be used. We cannot use d in position 3 in
row 2 because there would then be two d’s in column 3. This observation
allows us to complete row 2. Then rows 3 and 4 may be completed by
inserting the unused two elements. Finally, we complete the bottom row
by inserting the unused column elements.

34. (ab)2 = a2b2 ⇔ abab = aabb⇔ ba = ab.
(ab)−2 = b−2a−2 ⇔ b−1a−1b−1a−1 = b−1b−1a−1a−1 ⇔ a−1b−1 =
b−1a−1 ⇔ ba = ab.

35. axb = c implies that x = a−1(axb)b−1 = a−1cb−1; a−1xa = c implies that
x = a(a−1xa)a−1 = aca−1.

36. Observe that xabx−1 = ba is equivalent to xab = bax and this is true for
x = b.

37. Since e is one solution it suffices to show that nonidentity solutions come
in distinct pairs. To this end note that if x3 = e and x 6= e, then
(x−1)3 = e and x 6= x−1. So if we can find one nonidentity solution we can
find a second one. Now suppose that a and a−1 are nonidentity elements
that satisfy x3 = e and b is a nonidentity element such that b 6= a and
b 6= a−1 and b3 = e. Then, as before, (b−1)3 = e and b 6= b−1. Moreover,
b−1 6= a and b−1 6= a−1. Thus, finding a third nonidentity solution gives a
fourth one. Continuing in this fashion we see that we always have an even
number of nonidentity solutions to the equation x3 = e.

To prove the second statement note that if x2 6= e, then x−1 6= x and
(x−1)2 6= e. So, arguing as in the preceding case we see that solutions to
x2 6= e come in distinct pairs.

38. In D4, HR90V = DR90H but HV 6= DH.

39. Observe that aa−1b = ba−1a. Cancelling the middle term a−1 on both
sides we obtain ab = ba.

40. X = V R270D
′H.

41. If F1F2 = R0 then F1F2 = F1F1 and by cancellation F1 = F2.

42. Observe that F1F2 = F2F1 implies that (F1F2)(F1F2) = R0. Since F1 and
F2 are distinct and F1F2 is a rotation it must be R180.

43. Since FRk is a reflection we have (FRk)(FRk) = R0. Multiplying on the
left by F gives RkFRk = F .

44. Since FRk is a reflection we have (FRk)(FRk) = R0. Multiplying on the
right by R−k gives FRkF = R−k. If Dn were Abelian, then
FR360◦/nF = R360◦/n. But (R360◦/n)−1 = R360◦(n−1)/n 6= R360◦/n when
n ≥ 3.
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45. a. R3 b. R c. R5F

46. Closure and associativity follow from the definition of multiplication;
a = b = c = 0 gives the identity; we may find inverses by solving the
equations a+ a′ = 0, b′ + ac′ + b = 0, c′ + c = 0 for a′, b′, c′.

47. Since a2 = b2 = (ab)2 = e, we have aabb = abab. Now cancel on left and
right.

48. If a satisfies x5 = e and a 6= e, then so does a2, a3, a4. Now, using
cancellation we have that a2, a3, a4 are not the identity and are distinct
from each other and distinct from a. If these are all of the nonidentity
solutions of x5 = e we are done. If b is another solution that is not a power
of a, then by the same argument b, b2, b3 and b4 are four distinct
nonidentity solutions. We must further show that b2, b3 and b4 are distinct
from a, a2, a3, a4. If b2 = ai for some i, then cubing both sides we have
b = b6 = a3i, which is a contradiction. A similar argument applies to b3

and b4. Continuing in this fashion we have that the number of nonidentity
solutions to x5 = e is a multiple of 4. In the general case, the number of
solutions is a multiple of 4 or is infinite.

49. The matrix

[
a b
c d

]
is in GL(2, Z2) if and only if ad 6= bc. This happens

when a and d are 1 and at least 1 of b and c is 0 and when b and c are 1
and at least 1 of a and d is 0. So, the elements are[

1 0
0 1

] [
1 1
0 1

] [
1 0
1 1

] [
1 1
1 0

] [
0 1
1 1

] [
0 1
1 0

]
.[

1 1
0 1

]
and

[
1 0
1 1

]
do not commute.

50. If n is not prime, we can write n = ab, where 1 < a < n and 1 < b < n.
Then a and b belong to the set {1, 2, . . . , n− 1} but 0 = abmodn does not.

51. Let a be any element in G and write x = ea. Then
a−1x = a−1(ea) = (a−1e)a = a−1a = e. Then solving for x we obtain
x = ae = a.

52. Suppose that ab = e and let b′ be the element in G with the property that
bb′ = e. Then observe that
ba = (ba)e = ba(bb′) = b(ab)b′ = beb′ = (be)b′ = bb′ = e.
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CHAPTER 3
Finite Groups; Subgroups

1. |Z12| = 12; |U(10)| = 4; |U(12)| = 4; |U(20)| = 8; |D4| = 8.
In Z12, |0| = 1; |1| = |5| = |7| = |11| = 12; |2| = |10| = 6; |3| = |9| = 4; |4| =
|8| = 3; |6| = 2.
In U(10), |1| = 1; |3| = |7| = 4; |9| = 2.
In U(20), |1| = 1; |3| = |7| = |13| = |17| = 4; |9| = |11| = |19| = 2.
In D4, |R0| = 1; |R90| = |R270| = 4; |R180| = |H| = |V | = |D| = |D′| = 2.
In each case, notice that the order of the element divides the order of the
group.

2. In Q, 〈1/2〉 = {n(1/2)| n ∈ Z} = {0,±1/2,±1,±3/2, . . .}. In Q∗,
〈1/2〉 = {(1/2)n| n ∈ Z} = {1, 1/2, 1/4, 1/8, . . . ; 2, 4, 8, . . .}.

3. In Q, |0| = 1. All other elements have infinite order since
x+ x+ · · ·+ x = 0 only when x = 0.

4. Suppose |a| = n and |a−1| = k. Then (a−1)n = (an)−1 = e−1 = e. So
k ≤ n. Now reverse the roles of a and a−1 to obtain n ≤ k. The infinite
case follows from the finite case.

5. In Z30, 2 + 28 = 0 and 8 + 22 = 0. So, 2 and 28 are inverses of each other
and 8 and 22 are inverses of each other. In U(15), 2 · 8 = 1 and 7 · 13 = 1.
So, 2 and 8 are inverses of each other and 7 and 13 are inverses of each
other.

6. a. |6| = 2, |2| = 6, |8| = 3; b. |3| = 4, |8| = 5, |11| = 12 ;
c. |5| = 12, |4| = 3, |9| = 4. In each case |a+ b| divides lcm(|a|, |b|).

7. (a4c−2b4)−1 = b−4c2a−4 = b3c2a2.

8. If a subgroup of D3 contains R240 and F it also contains
R0, R

2
240 = R120, R240F, and R120F , which is all six elements of D3. If F

and F ′ are distinct reflections in a subgroup of D3, then FF ′ = R240 is
also in the subgroup. Thus the subgroup must be D3.

9. If a subgroup of D4 contains R270 and a reflection F , then it also contains
the six other elements R0, (R270)2 = R180, (R270)3 = R90, R270F,R180F
and R90F . If a subgroup of D4 contains H and D, then it also contains
HD = R90 and DH = R270. But this implies that the subgroup contains
every element of D4. If it contains H and V then it contains HV = R180

and R0.


