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INTRODUCTION

This manual contains solutions for the selected exercises inComputer Algorithms: Introduction to Design and Analy-
sis, third edition, by Sara Baase and Allen Van Gelder.

Solutions manuals are intended primarily for instructors, but it is a fact that instructors sometimes put copies in
campus libraries or on their web pages for use by students. For instructors who prefer to have students work on
problems without access to solutions, we have chosen not to include all the exercises from the text in this manual. The
included exercises are listed in the table of contents. Roughly every other exercise is solved.

Some of the solutions were written specifically for this manual; others are adapted from solutions sets handed out
to students in classes we taught (written by ourselves, teaching assistants, and students).

Thus there is some inconsistency in the style and amount of detail in the solutions. Some may seem to be addressed
to instructors and some to students. We decided not to change these inconsistencies, in part because the manual will be
read by instructors and students. In some cases there is more detail, explanation, or justification than a student might
be expected to supply on a homework assignment.

Many of the solutions use the same pseudocode conventions used in the text, such as:

1. Block delimiters (“f” and “g”) are omitted. Block boundaries are indicated by indentation.

2. The keywordstatic is omitted from method (function and procedure) declarations. All methods declared in
the solutions arestatic .

3. Class name qualifiers are omitted from method (function and procedure) calls. For example,x = cons(z,
x) might be written when the Java syntax requiresx = IntList.cons(z, x) .

4. Keywords to control visibility,public , private , andprotected , are omitted.

5. Mathematical relational operators “6=,” “�,” and “�” are usually written, instead of their keyboard versions.
Relational operators are used on types where the meaning is clear, such asString , even though this would be
invalid syntax in Java.

We thank Chuck Sanders for writing most of the solutions for Chapter 2 and for contributing many solutions in
Chapter 14. We thank Luo Hong, a graduate student at UC Santa Cruz, for assisting with several solutions in Chapters
9, 10, 11, and 13.

In a few cases the solutions given in this manual are affected by corrections and clarifications to the text. These
cases are indicated at the beginning of each affected solution. The up-to-date information on corrections and clarifica-
tions, along with other supplementary materials for students, can be found at these Internet sites:

ftp://ftp.aw.com/cseng/authors/baase
http://www-rohan.sdsu.edu/faculty/baase
http://www.cse.ucsc.edu/personnel/faculty/avg.html

cCopyright 2000 Sara Baase and Allen Van Gelder. All rights reserved.

Permission is granted for college and university instructors to make a reasonable number of copies, free of charge,
as needed to plan and administer their courses. Instructors are expected to exercise reasonable precautions against
further, unauthorized copies, whether on paper, electronic, or other media.

Permission is also granted for Addison-Wesley-Longman editorial, marketing, and sales staff to provide copies
free of charge to instructors and prospective instructors, and to make copies for their own use.

Other copies, whether paper, electronic, or other media, are prohibited without prior written consent of the authors.
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Chapter 1

Analyzing Algorithms and Problems: Principles and Examples

Section 1.2: Java as an Algorithm Language

1.1
It is correct for instance fields whose type is an inner class to be declared before that inner class (as in Figure 1.2 in
the text) or after (as here). Appendix A.7 gives an alternative to spelling out all the instance fields in the copy methods
(functions).

class Personal
f
public static class Name

f
String firstName;
String middleName;
String lastName;
public static Name copy(Name n)

f
Name n2;
n2.firstName = n.firstName;
n2.middleName = n.middleName;
n2.lastName = n.lastName;
return n2;
g

g

public static class Address
f
String street;
String city;
String state;
public static Address copy(Address a) f/* similar to Name.copy() */ g
g

public static class PhoneNumber
f
int areaCode;
int prefix;
int number;
public static PhoneNumber copy(PhoneNumber n) f/* similar to Name.copy() */ g
g

Name name;
Address address;
PhoneNumber phone;
String eMail;

public static Personal copy(Personal p);
f
Personal p2;
p2.name = Name.copy(p.name);
p2.address = Address.copy(p.address);
p2.phone = PhoneNumber.copy(p.phone);
p2.eMail = p.eMail;
return p2;
g

g
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Section 1.3: Mathematical Background

1.2
For 0< k< n, we have �

n�1
k

�
=

(n�1)!
k!(n�1�k)!

=
(n�1)!(n�k)

k!(n�k)!�
n�1
k�1

�
=

(n�1)!
(k�1)!(n�k)!

=
(n�1)!(k)
k!(n�k)!

Add them giving:

(n�1)!(n)
k!(n�k)!

=

�
n
k

�
For 0< n� k we use the fact that

�a
b

�
= 0 whenevera< b. (There is no way to choose more elements than there are in

the whole set.) Thus
�n�1

k

�
= 0 in all these cases. Ifn< k,

�n�1
k�1

�
and

�n
k

�
are both 0, confirming the equation. Ifn= k,�n�1

k�1

�
and

�n
k

�
are both 1, again confirming the equation. (We need the fact that 0!= 1 whenn= k= 1.)

1.4
It suffices to show:

logc xlogbc= logbx:

Considerb raised to each side.

bleft side = blogb clogc x = (blogb c)logc x = clogc x = x

bright side = blogb x = x

So left side = right side.

1.6
Let x= dlg(n+1)e. The solution is based on the fact that 2x�1 < n+1� 2x.

x = 0;
twoToTheX = 1;
while (twoToTheX < n+1)

x += 1;
twoToTheX *= 2;

return x;

The values computed by this procedure for smalln and the approximate values of lg(n+1) are:

n x lg(n+1)
0 0 0.0
1 1 1.0
2 2 1.6
3 2 2.0
4 3 2.3
5 3 2.6
6 3 2.8
7 3 3.0
8 4 3.2
9 4 3.3
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1.8

Pr(Sj T) =
Pr(SandT)

Pr(T)
=

Pr(S)Pr(T)

Pr(T)
= Pr(S)

The second equation is similar.

1.10
We knowA< B andD <C. By direct counting:

Pr(A<C j A< B andD <C) =
Pr(A<C andA< B andD <C)

Pr(A< B andD <C)
=

5=24
6=24

=
5
6

Pr(A< D j A< B andD <C) =
Pr(A< D <C andA< B)

Pr(A< B andD <C)
=

3=24
6=24

=
3
6

=
1
2

Pr(B<C j A< B andD <C) =
Pr(A< B<C andD <C)

Pr(A< B andD <C)
=

3=24
6=24

=
3
6

=
1
2

Pr(B< D j A< B andD <C) =
Pr(A< B< D <C)

Pr(A< B andD <C)
=

1=24
6=24

=
1
6

1.12
We assume that the probability of each coin being chosen is 1/3, that the probability that it shows “heads” after being
flipped is 1/2 and that the probability that it shows “tails” after being flipped is 1/2. Call the coinsA, B, andC. Define
the elementary events, each having probability 1/6, as follows.

AH A is chosen and flipped and comes out “heads”.
AT A is chosen and flipped and comes out “tails”.
BH B is chosen and flipped and comes out “heads”.
BT B is chosen and flipped and comes out “tails”.
CH C is chosen and flipped and comes out “heads”.
CT C is chosen and flipped and comes out “tails”.

a) BH andCH cause a majority to be “heads”, so the probability is 1/3.

b) No event causes a majority to be “heads”, so the probability is 0.

c) AH, BH, CH andCT cause a majority to be “heads”, so the probability is 2/3.

1.13
The entry in rowi, column j is the probability thatDi will beatDj .0BBBB@

�
12
36
18
36
22
36

22
36

�
12
36
20
36

18
36
22
36

�
12
36

12
36
16
36
22
36

�

1CCCCA
Note thatD1 beatsD2, D2 beatsD3, D3 beatsD4, andD4 beatsD1.
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1.15
The proof is by induction onn, the upper limit of the sum. The base case isn= 0. Then∑0

i=1 i2 = 0, and2n3+3n2+n
6 = 0.

So the equation holds for the base case. Forn> 0, assume the formula holds forn�1.

n

∑
i=1

i2 =
n�1

∑
i=1

i2+n2 =
2(n�1)3+3(n�1)2+n�1

6
+n2

=
2n3�6n2+6n�2+3n2�6n+3+n�1

6
+n2

=
2n3�3n2+n

6
+

6n2

6
=

2n3+3n2+n
6

1.18
Consider any two realsw< z. We need to show thatf (w)� f (z); that is, f (z)� f (w)� 0. Sincef (x) is differentiable,
it is continuous. We call upon theMean Value Theorem(sometimes called theTheorem of the Mean), which can be
found in any college calculus text. By this theorem there is some pointy, such thatw< y< z, for which

f 0(y) =
( f (z)� f (w))

(z�w)
:

By the hypothesis of the lemma,f 0(y)� 0. Also,(z�w)> 0. Therefore,f (z)� f (w)� 0.

1.20
Let� abbreviate the phrase, “is logically equivalent to”. We use the identity::A� A as needed.

:(8x(A(x)) B(x))) � 9x:(A(x)) B(x)) (by Eq. 1.24)

� 9x:(:A(x)_B(x)) (by Eq. 1.21)

� 9x(A(x)^:B(x)) (by DeMorgan’s law, Eq. 1.23):

Section 1.4: Analyzing Algorithms and Problems

1.22
The total number of operations in the worst case is 4n+2; they are:

Comparisons involvingK: n
Comparisons involvingindex : n+1
Additions: n
Assignments toindex : n+1

1.23

a)

if (a < b)
if (b < c)

median = b;
else if (a < c)

median = c;
else

median = a;
else if (a < c)

median = a;
else if (b < c)

median = c;
else

median = b;
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b) D is the set of permutations of three items.

c) Worst case = 3; average = 22
3.

d) Three comparisons are needed in the worst case because knowing the median of three numbers requires knowing
the complete ordering of the numbers.

1.25
Solution 1. Pair up the entries and find the larger of each pair; ifn is odd, one element is not examined(bn=2c
comparisons). Then find the maximum among the larger elements using Algorithm 1.3, including the unexamined
element ifn is odd (b(n+1)=2c�1 comparisons). This is the largest entry in the set. Then find the minimum among
the smaller elements using the appropriate modification of Algorithm 1.3, again including the unexamined element if
n is odd (b(n+1)=2c�1 comparisons). This is the smallest entry in the set. Whethern is odd or even, the total is
b3

2(n�1)c. The following algorithm interleaves the three steps.

/** Precondition: n > 0. */
if (odd(n))

min = E[n-1];
max = E[n-1];

else if (E[n-2] < E[n-1])
min = E[n-2];
max = E[n-1];

else
max = E[n-2];
min = E[n-1];

for (i = 0; i <= n-3; i = i+2)
if (E[i] < E[i+1])

if (E[i] < min) min = E[i];
if (E[i+1] > max) max = E[i+1];

else
if (E[i] > max) max = E[i];
if (E[i+1] < min) min = E[i+1];

Solution 2. When we assign this problem after covering Divide and Conquer sorting algorithms in Chapter 4, many
students give the following Divide and Conquer solution. (But most of them cannot show formally that it does roughly
3n=2 comparisons.)

If there are at most two entries in the set, compare them to find the smaller and larger. Otherwise, break the set in
halves, and recursively find the smallest and largest in each half. Then compare the largest keys from each half to find
the largest overall, and compare the smallest keys from each half to find the smallest overall.

Analysis of Solution 2 requires material introduced in Chapter 3. The recurrence equation for this procedure,
assumingn is a power of 2, is

W(n) = 1 for n= 2

W(n) = 2W(n=2)+2 for n> 2

The recursion tree can be evaluated directly. It is important that the nonrecursive costs in then=2 leavesof this tree
are 1 each. The nonrecursive costs in then=2�1 internal nodesare 2 each. This leads to the total of 3n=2�2 for the
special case thatn is a power of 2. More careful analysis verifies the resultd3n=2�2e for all n. The result can also be
proven by induction.

Section 1.5: Classifying Functions by Their Asymptotic Growth Rates

1.28

lim
n!∞

p(n)
nk

= lim
n!∞

�
ak+

ak�1

n
+

ak�2

n2 + : : :+
a1

nk�1 +
a0

nk

�
= ak > 0:
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1.31
The solution here combines parts (a) and (b). The functions on the same line are of the same asymptotic order.

lg lgn
lgn; lnn
(lgn)2
p

n
n
nlgn
n1+ε

n2; n2+ lgn
n3

n�n3+7n5

2n�1; 2n

en

n!

1.33
Let f (n) = n. For simplicity we show a counter-example in which a nonmonotonic function is used. Consider the
functionh(n):

h(n) =

�
n for oddn
1 for evenn

Clearlyh(n) 2O( f (n)). But h(n) 62Ω( f (n)), soh(n) 62Θ( f (n)). Therefore,h(n) 2O( f (n))�Θ( f (n)). It remains to
show thath(n) 62 o( f (n)). But this follows by the fact thath(n)= f (n) = 1 for odd integers.

With more difficultyh(n) can be constructed to be monotonic. For allk� 1, leth(n) be constant on the intervalkk�
n� ((k+1)k+1�1) and leth(n) = kk on this interval. Thus whenn= kk, h(n)= f (n) = 1, but whenn= (k+1)k+1�1,
h(n)= f (n) = kk=((k+1)k+1�1), which tends to 0 asn gets large.

1.35
Property 1: Supposef 2 O(g). There arec > 0 andn0 such that forn � n0, f (n) � cg(n). Then forn � n0,
g(n)� (1=c) f (n). The other direction is proved similarly.

Property 2: f 2 Θ(g) meansf 2O(g)\Ω(g). By Property 1,g2Ω( f )\O( f ), sog2 Θ( f ).

Property 3: Lemma 1.9 of the text gives transitivity. Property 2 gives symmetry. Since for anyf , f 2 Θ( f ), we have
reflexivity.

Property 4: We showO( f +g)�O(max( f ;g)). The other direction is similar. Leth2O( f +g). There arec> 0 and
n0 such that forn� n0, h(n)� c( f +g)(n). Then forn� n0, h(n)� 2cmax( f ;g)(n).

1.37
We will use L’Hôpital’s Rule, so we need to differentiate 2n. Observe that 2n = (eln2)

n
= enln2. Let c = ln2� 0.7.

The derivative ofen is en, so, using the chain rule, we find that the derivative of 2n is c2n. Now, using L’Hôpital’s Rule
repeatedly,

lim
n!∞

nk

2n = lim
n!∞

knk�1

c2n = lim
n!∞

k(k�1)nk�2

c22n = � � � = lim
n!∞

k!
ck2n

= 0

sincek is constant.

1.39

f (n) =

�
1
n

for odd n
for even n

g(n) =

�
n
1

for odd n
for even n

There are also examples using continuous functions on the reals, as well as examples using monotonic functions.
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Section 1.6: Searching an Ordered Array

1.42
The revised procedure is:

int binarySearch(int[] E, int first, int last, int K)
1. if (last < first)
2. index = -1;
3. else if (last == first)
4. if (K == E[first])
5. index = first;
6. else
7. index = -1;
8. else
9. int mid = (first + last) / 2;

10. if (K � E[mid])
11. index = binarySearch(E, first, mid, K);
12. else
13. index = binarySearch(E, mid+1, last, K);
14. return index;

Compared to Algorithm 1.4 (Binary Search) in the text, this algorithm combines the tests of lines 5 and 7 into one test
on line 10, and the left subrange is increased from mid�1 to mid, because mid might contain the key being searched
for. An extra base case is needed in lines 3–7, which tests for exact equality when the range shrinks to a single entry.

Actually, if we can assume the precondition first� last, then lines 1–2 can be dispensed with. This procedure
propagates that precondition into recursive calls, whereas the procedure of Algorithm 1.4 does not, in certain cases.

1.44
The sequential search algorithm considers only whetherx is equal to or unequal to the element in the array being
examined, so we branch left in the decision tree for “equal” and branch right for “unequal.” Each internal node
contains the index of the element to whichx is compared. The tree will have a long path, withn internal nodes, down
to the right, labeled with indexes 1; : : : ;n. The left child for a node labeledi is an output node labeledi. The rightmost
leaf is an output node for the case whenx is not found.

1.46
The probability thatx is in the array isn=m.

Redoing the average analysis for Binary Search (Section 1.6.3) with the assumption thatx is in the array (i.e.,
eliminating the terms for the gaps) gives an average of approximatelydlgne�1. (The computation in Section 1.6.3
assumes thatn= 2k�1 for somek, but this will give a good enough approximation for the average in general.)

The probability thatx is not in the array is 1�n=m. In this case (again assuming thatn= 2k�1), dlgne comparisons
are done. So the average for all cases is approximately

n
m
(dlgne�1)+(1� n

m
)dlgne= dlgne� n

m
� dlgne:

(Thus, under various assumptions, Binary Search does roughly lgn comparisons.)

1.47
We examine selected elements in the array in increasing order until an entry larger thanx is found; then do a binary
search in the segment that must containx if it is in the array at all. To keep the number of comparisons inO(logn), the
distance between elements examined in the first phase is doubled at each step. That is, comparex to E[1], E[2], E[4],
E[8]; : : : ;E[2k]. We will find an element larger thanx (perhapsmaxint ) after at mostdlgne+1 probes (i.e.,k�dlgne).
(If x is found, of course, the search terminates.) Then do the Binary Search in the rangeE[2k�1+ 1]; : : : ;E[2k� 1]
using at mostk�1 comparisons. (IfE[1]> x, examineE[0].) Thus the number of comparisons is at most 2k= 2dlgne.

1.48
Forx> 0, write�xlnx as

lnx

(�1
x )

. By L’H ôpital’s rule the limit of this ratio asx! 0 is the same as the limit of
1
x

( 1
x2 )

= x.
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1.50
The strategy is to divide the group of coins known to contain the fake coin into subgroups such that, after one more
weighing, the subgroup known to contain the fake is as small as possible, no matter what the outcome of the weighing.
Obviously, two equal subgroups would work, but we can do better by makingthreesubgroups that are as equal as
possible. Then weigh two of those subgroups that have an equal number of coins. If the two subgroups that are
weighed have equal weight, the fake is in the third subgroup.

Round 1 23, 23, 24
Round 2 8, 8, 8 (or 8, 8, 7)
Round 3 3, 3, 2 (or 3, 2, 2)
Round 4 1, 1, 1 (or 1, 1, 0)

So four weighings suffice.



Chapter 2

Data Abstraction and Basic Data Structures

Section 2.2: ADT Specification and Design Techniques

2.2
Several answers are reasonable, provided that they bring out that looking at the currentimplementationof the ADT is
a bad idea.

Solution 1. GorpTester.java would be preferable because thejavadoc utility (with an html browser) permits
the ADT specifications and type declarations to be inspected without looking at the source code ofGorp.java .
Trying to infer what the ADT operations do by looking at the implementation inGorp.java is not reliable. How-
ever, even if the implementation inGorp.java changes, as long as the ADT specifications do not change, then the
behavior ofGorpTester.java will remain unchanged, so it is a reliable source of information.

Solution 2. Gorp.java would be preferable because the javadoc comments in it should contain the preconditions
and postconditions for each operation.

Section 2.3: Elementary ADTs — Lists and Trees

2.4
The proof is by induction ond, the depth of the node. For a given binary tree, letnd denote the number of nodes at
depthd. Ford = 0, there is only 1 root node and 1= 20.

Ford > 0, assume the formula holds ford�1. Because each node at depthd�1 has at most 2 children,

nd � 2nd�1 � 2(2d�1) � 2d

2.6
A tree of heightdlg(n+1)e�2 would, by Lemma 2.2, have a t most 2dlg(n+1)e�1�1 nodes. But

2dlg(n+1)e�1�1 < 2lg(n+1)�1 = n+1�1 = n

Because that expression is less thann, any tree withn nodes would have to have height at leastdlg(n+1)e�1.

2.8
The point of the exercise is to recognize that a binary tree in which all the left subtrees are nil is logically the same
as a list. We would give full credit, or almost full credit, to any solution that brings out that idea, without worrying
too much about details specific to Java, which can get somewhat complicated. (It is also possible to make all the right
subtrees nil and use the left subtrees to contain the elements, but this is less natural.) We will give several solutions to
demonstrate the range of possibilities. Solutions 2 and 3 have been compiled and tested in Java 1.2.

Solution 1. This solution merely uses theBinTree functions and does not even return objects in theList class,
so all the objects are in the classBinTree . Therefore, this solution doesn’t really meet the specifications of the List
ADT. Its virtue is simplicity. (In C, the type discrepancy can be solved with a type cast; Java is more strict.)

public class List
{

public static final BinTree nil = BinTree.nil;

public static Object first(BinTree aList) { return BinTree.root(aList); }

public static BinTree rest(BinTree aList) { return BinTree.rightSubtree(aList); }

public static BinTree cons(Object newElement, BinTree oldList)
{ return BinTree.buildTree(newElement, BinTree.nil, oldList); }

}
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Solution 2. This solution creates objects in the List class, but each List object has a single instance field, which is the
binary tree that represents that list. This solution uses only Java features covered in the first two chapters of the text.
However, it has a subtle problem, which is pointed out after the code.

public class List
{

BinTree listAsTree;

public static final List nil = makeNil();

private static
List makeNil()

{
List newL = new List();
newL.listAsTree = BinTree.nil;
return newL;

}

public static
Object first(List aList)

{
return BinTree.root(aList.listAsTree);

}

public static
List rest(List aList)

{
List newL = new List();
newL.listAsTree = BinTree.rightSubtree(aList.listAsTree);
return newL;

}

public static
List cons(Object newElement, List oldList)

{
List newL = new List();
BinTree oldTree;
if (oldList == List.nil)

oldTree = BinTree.nil;
else

oldTree = oldList.listAsTree;
newL.listAsTree = BinTree.buildTree(newElement, BinTree.nil,

oldTree);
return newL;

}
}

The problem with this implementation is thatrest creates a new object instead of simply returning information
about an existing object, so the following postcondition does not hold:

rest( cons(newElement, oldList)) == oldList.

There is no reasonable way to get around this problem without using subclasses, which are covered in the appendix.

Solution 3. This solution is the “most correct” for Java, but the fine points of Java are tangential to the purpose of
the exercise. This solution is included mainly to confirm the fact that itis possible to do sophisticated data abstraction
with type safety, encapsulation, and precise specifications in Java.

The technique follows appendix Section A.6 in which the classIntList is extended toIntListA . Here we
extendBinTree to List . We assume that theBinTree class has been defined to permit subclasses with the
appropriateprotected nondefault constructor, in analogy with the nondefaultIntList constructor in Fig. A.11.
The nondefaultBinTree constructor is accessed bysuper in the code below.
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public class List extends BinTree
{

public static final List nil = (List)BinTree.nil;

public static
Object first(List aList)

{
return BinTree.root(aList);

}

public static
List rest(List aList)

{
return (List)BinTree.rightSubtree(aList);

}

public static
List cons(Object newElement, List oldList)

{
List newList = new List(newElement, oldList);

return newList;
}

protected
List(Object newElement, List oldList)

{
super(newElement, BinTree.nil, oldList);

}
}

2.10

Tree t = Tree.buildTree("t", TreeList.nil);

Tree u = Tree.buildTree("u", TreeList.nil);

TreeList uList = TreeList.cons(u, TreeList.nil);

TreeList tuList = TreeList.cons(t, uList);

Tree q = Tree.buildTree("q", tuList);

Tree r = Tree.buildTree("r", TreeList.nil);

Tree v = Tree.buildTree("v", TreeList.nil);

TreeList vList = TreeList.cons(v, TreeList.nil);

Tree s = Tree.buildTree("s", vList);

TreeList sList = TreeList.cons(s, TreeList.nil);

TreeList rsList = TreeList.cons(r, sList);

TreeList qrsList = TreeList.cons(q, rsList);

Tree p = Tree.buildTree("p", qrsList);
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2.12
A newly created node has one node (itself) in its in-tree, so use 1 for the initial node data.

InTreeNode makeSizedNode()
{

return InTreeNode.makeNode(1);
}

When setting the parent of a node, we must first remove it from its current parent’s tree. This decreases the size of
our parent, our parent’s parent, and so on all the way up the tree. Similarly, when attaching to the new parent, we must
add to the sizes of the new parent and all of its ancestors.

void setSizedParent(InTreeNode v, InTreeNode p)
{

InTreeNode ancestor = InTreeNode.parent(v);
while (ancestor != InTreeNode.nil) {

int ancestorData = InTreeNode.nodeData(ancestor);
ancestorData -= InTreeNode.nodeData(v);
InTreeNode.setNodeData(ancestor, ancestorData);

}

InTreeNode.setParent(v, p);
ancestor = InTreeNode.parent(v);
while (ancestor != InTreeNode.nil) {

int ancestorData = InTreeNode.nodeData(ancestor);
ancestorData += InTreeNode.nodeData(v);
InTreeNode.setNodeData(ancestor, ancestorData);

}
}

Section 2.4: Stacks and Queues

2.14

public class Stack
{

List theList;

public static
Stack create()
{

Stack newStack = new Stack();
newStack.theList = List.nil;
return newStack;

}

public static
boolean isEmpty(Stack s)
{

return (s.theList == List.nil);
}

public static
Object top(Stack s)
{

return List.first(s.theList);
}

public static
void push(Stack s, Object e)
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{
s.theList = List.cons(e, s.theList);

}

public static
void pop(Stack s)
{

s.theList = List.rest(s.theList);
}

}

Each Stack operation runs inO(1) time because it uses at most 1 List operation plus a constant number of steps.

2.16

a) The precondition forenqueue would be that the total number of enqueues minus the total number of dequeues
must be less thann.

b) An array ofn elements is used because there can never be more thann elements in the queue at a time. The
indices for the front and back of the queue are incremented modulon to circle back to the front of the array once
the end is reached. It is also necessary to keep a count of the number of elements used, becausefrontIndex
== backIndex both when the queue is empty and when it hasn elements in it. It could also be implemented
without the count of used elements by making the array sizen+ 1 becausefrontIndex would no longer
equalbackIndex when the queue was full.

public class Queue
{

Object[] storage;
int size, frontIndex, backIndex, used;

public static
Queue create(int n)
{

Queue newQueue = new Queue();
newQueue.storage = new Object [n];
newQueue.size = n;
newQueue.front = newQueue.back = newQueue.used = 0;
return newQueue;

}

public static
boolean isEmpty(Queue q)
{

return (q.used == 0);
}

Object front(Queue q)
{

return q.storage[frontIndex];
}

public static
void enqueue(Queue q, Object e)
{

storage[backIndex] = e;
backIndex = (backIndex + 1) % size;
used++;

}
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public static
void dequeue(Queue q)
{

frontIndex = (frontIndex + 1) % size;
used--;

}
}

c) IncrementingfrontIndex and backIndex modulo n would be unnecessary, because they could never
wrap around. Also, storingused would be unnecessary, asisEmpty could just return(frontIndex ==
backIndex) .

Additional Problems

2.18
The main procedure,convertTree , breaks the task up into two subtasks: finding the node degrees and building the
out-tree.

Tree convertTree(InTreeNode[] inNode, int n)
{

// initialize remaining to be the number of children for each node
int[] remaining = getNodeDegrees(inNode, n);

// construct the out-tree bottom-up, using remaining for bookkeeping
return buildOutTree(inNode, n, remaining);

}

void getNodeDegrees(InTreeNode[] inNode, int n)
{

int[] nodeDegrees = new int [n+1];

for (int i = 1; i <= n; ++i) {
nodeDegrees[i] = 0;

}

// calculate nodeDegrees to be the number of children for each node
for (int i = 1; i <= n; ++i) {

if (! InTreeNode.isRoot(inNode[i])) {
InTreeNode parent = InTreeNode.parent(inNode[i]);
int parentIndex = InTreeNode.nodeData(parent);
nodeDegrees[parentIndex]++;

}
}
return nodeDegrees;

}

Tree buildOutTree(InTreeNode[] inNode, int n, int[] remaining)
{

Tree outputTree;
TreeList[] subtrees = new TreeList [n+1];

for (int i = 1; i <= n; ++i) {
subtrees[i] = TreeList.nil;

}

// nodes with no children are already "done" and
// can be put into the sources stack
Stack sources = Stack.create();
for (int i = 1; i <= n; ++i) {

if (remaining[i] == 0) {


