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Solutions Manual 

 

Chapter 2 
 

 
2.1 
 
The solution of Laplace’s equation is 

      





1

1sinhsin,
n

n ynxnAyxT    

To verify that the coefficient nA  given in Example 2.1 is correct, we can first use the boundary 

condition   00, TxT  . Multiply this equation by  sin n x , and  integrate from 0 to 1: 

 

 
 
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       

Using the trigonometry identity    sinh sinhx x   the coefficient becomes 
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 
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n

n

T
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n n 
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______________________________________________________________________________ 
 
 
2.2 
 

For this problem,  , 0bF r r r    , thus rF  i  and the boundary condition is

0r r ru
r

 
   


V i i  . Since rKrV /coscos    , we  have 






   2

cos
r

K
Vur  . The 

quantity in parenthesis must vanish on the cylinder  br r  so 2
bK r V  and the required 

velocity boundary condition is satisfied.  
______________________________________________________________________________ 
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2.3 
 

Classical separation of variable provides the general term    X x T t . Substituting into the wave 

equation xxtt yay 2 yields the following set of differential equations: 

02  XX      022  TaT   
The boundary and initial conditions are 
 

        0 0 0 sin 0
x

X X l T T t
l

      
 

 

 
This leads to a solution 
 

  , sin cosn

an t n x
y x t A

l l

        
   

  

 
In this case, only one term of the expansion is necessary to satisfy the specified initial 
displacement. Applying the boundary conditions eliminates all but the first term in the series. 
______________________________________________________________________________ 
 
 
2.5 
 
Applying the transformation to Equation 2.18a for the hyperbolic case results in the equation 
 

      
2

1 2

4
,

b ac
e d e d f g

a          
         

______________________________________________________________________________ 
 
 
2.6 
 

Let
a

b

22  and c1 . These selections provide transformed coordinates that are linearly 

independent. The coefficient of the  term is 

042
2

2
1  acbcba   

and the cross derivative coefficient is 
    0422 2

2121  acbcba   
and the correct form is obtained. 
______________________________________________________________________________ 
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2.7 
 

The divergence theorem is 2

D
B

u
udA dl

n


 

  .  Since the original equation is Laplace’s equation 

on the domain D, the integral must vanish and substituting 1r   on the boundary yields  

    1 0
B B

u
f d d

n
  

 
   

______________________________________________________________________________ 
 
 
2.8 
 

(a)  For the equation 2 2 0xx yyy u x u   we have 2 2 2 2 2, 0, , 4 4a y b c x b ac x y      .   

The discriminant is positive so the equation is always hyperbolic except when 0x   and 0y  .  
For this isolated case, the equation is parabolic. 
 
(b) Let 2 2 2 2andx y x y     .  The equation is transformed to 

  2 22 0u u u          

 
 
______________________________________________________________________________ 
 
 
2.9 
 
(a) 2 4 2 3 0xx xy yyu u u u      The discriminant is zero so the equation is parabolic. 

(b) ,y kx y x      assuming the second characteristic is a constant 1k . 

(c) 03242  uwwv yxx  

      0 yx vw  

Letting ( , )v wZ  

     x yA C F Z Z  

where    2 4 0 2
,

0 1 1 0
A C

   
       

 and  3

0

u
F

 
  
 

. 

(d)     2
4 4 2 2 0D     Therefore, the system of equations is parabolic. 

______________________________________________________________________________ 
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2.10 
 
Classify the system of equations: 

 8 0
u v

t x

 
 

 
 

 2 0
v u

t x

 
 

 
 

 1 1 1 11, 0, 0, 8a b c d     

 2 2 2 20, 1, 2, 0a b c d     

Since 0D , the system of equations is hyperbolic. 
______________________________________________________________________________ 
 
 
2.11 
 
Answer:  The equation is elliptic for all values of .0a  
______________________________________________________________________________ 

 
 
 
 
2.12 
 
Answer:  hyperbolic 
______________________________________________________________________________ 
 
 
2.13 
 
Answer:  elliptic, hyperbolic 
______________________________________________________________________________ 

 
 
2.18 
 
Answer:  elliptic, hyperbolic 
______________________________________________________________________________ 
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2.19 
 
(a)   ,sin xxf    x0  

Cosine series is     xnA
a

xf n cos
2

0  where 1n   .  In this series, all basis functions 

 cos n x    are orthogonal to the function that is to be expanded. Thus, all of the Fourier 

coefficients vanish except

2

0 a . For the prescribed function, this is the best that can be done 

with the cosine series. 
 
(b) In this case   xxf cos  is itself the cosine series and only one term of the Fourier series 
survives. 
______________________________________________________________________________ 
 
 
2.20 
 
(a) 1, 3, 2a b c    

2,1
dx

dy
 

 
(b) 1, 12, 2a b c    

1
dx

dy
 

This is a parabolic equation and the other characteristic may be chosen with the restriction that 
the two are linearly independent. 
______________________________________________________________________________ 
 
 
2.21 
 
(a) Hyperbolic 1 22, 1.    Let , 2 .y x y x      This transforms to .0u  

 
(b) Parabolic 1 1.    Let ,12    , .y x y x      This transforms to .0u  

______________________________________________________________________________ 
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2.22 
 
(a) Answer:  0u u    

(b) Answer:  0
4

u
u u 
     

______________________________________________________________________________ 
 
 
2.23 
 
(a) 1 3.    Let ,12  , 3 .y x y x       After transforming we have 

0316  xyeuuu   where  
4

3
,

4

 



 yx . 

______________________________________________________________________________ 
 
 
2.24 
 

Answer:       sin sin 2
, sinh 2sinh

sinh sinh 2

x x
u x y y y 

 
      

 
______________________________________________________________________________ 
 
 
2.25 
 

Answer:    sin 2sin 2
,

sinh sinh 2

x x
u x y

 
    

 
______________________________________________________________________________ 
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2.26 
 

Answer:       
1

, sinh sinn
n

u x y A n y nx




     

where 
 

 2
2 2 4 2 4

2cos2 5 12 10 24
2

sinhn

n
A

n n n n n n n n

 
 

           
    

 

 
______________________________________________________________________________ 
 
 
2.27 

Answer:     24, sin 2tT x y e x   

______________________________________________________________________________ 
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