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where Bl(y) is the cost of sending data at rate y on link l. The primal congestion control
algorithm is a gradient ascent algorithm for solving the relaxed optimization problem:

ẋr = kr(xr)

(
U ′r(xr)−

∑
l:l∈r

fl

(∑
s:l∈s

xs

))
,

where fl(y) = B′l(y) can be regarded as the congestion price on link l.

• Dual congestion control algorithm: The dual solution is to consider the dual of the
network utility maximization problem:

min
p≥0

max
{xr≥0}

∑
r

Ur(xr)−
∑
l

pl

(∑
s:l∈s

xs − cl

)
,

where the pls are the Lagrange multipliers. The following dual congestion control algorithm
is the gradient descent solution of the dual problem:

xr = U ′r
−1

(qr) and ṗl = hl(
∑
s:l∈s

xs − cl)+
pl
.

• The Vickrey-Clarke-Groves (VCG) mechanism: The VCG mechanism is a pricing
scheme to ensure that users do not have an incentive to lie about their true utility functions.
Suppose that user r reveals its utility function as Ũr(·), which may or may not be its true
utility function Ur(·). The network planner allocates the optimal solution of maxx≥0

∑
r Ũr(xr)

as the rates to the users. Then, it charges user r a price

qr =
∑
s 6=r

Ũ(x̄s)−
∑
s 6=r

Ũ(x̃s),

where x̃s is the optimal solution to maxx≥0
∑

s:s 6=r Ũs(xs). The price represents the decrease
in the sum utility of other users due to the presence of user r. It can be shown that an optimal
strategy for each user to maximize its payoff is to reveal its true utility function.

2.9 Problems

Exercise 2.1 (Bottleneck links and max-min fair rate allocation) Let xr be the rate allo-
cated to user r in a network where users’ routes are fixed. Link l is called a bottleneck link for user
r if l ∈ r, and

yl = cl and xs ≤ xr ∀s such that l ∈ s,

i.e., link l is fully utilized and user r has the highest transmission rate among all users using link
l. Show that {xr} is a max-min fair rate allocation if and only if every source has at least one
bottleneck link.

Solution ⇒: proof by contradiction
Assume we have max-min fairness allocation {x̂r}. Assume that there exists a user r that does

not have a bottleneck link. Thus either yl < cl ∀l ∈ r, or for all link l ∈ r such that yl = cl, ∃s
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such that l ∈ s and x̂s > x̂r. In either cases, we can increase xr by a small amount ε > 0 either
without changing the rates for any other sources (first case) or by decreasing the rates of only those
users s such that they share a link with r and have x̂s > x̂r (second case). Thus, {x̂r} cannot be a
max-min fair allocation.
⇐: Let x̂r be an allocation such that each user has at least one bottleneck link. Thus, every

user r has a link l such that yl = cl and x̂s ≤ x̂r ∀s s.t. s ∈ l. We increase the rate x̂r and we look
at the effect on its bottleneck link. There will be a user s s.t. x̂s = x̂r and xs < x̂s, where xs is the
new rate for user s. This is by definition max-min allocation.

�

Exercise 2.2 (A max-min fair resource allocation algorithm) Show that the allocation {xr}
obtained from the algorithm below is a max-min fair allocation:

1. Let S0 be the set of all sources in the network, and c0
l = cl, i.e., the capacity of link l.

2. Set k = 0.

3. Let Skl ⊆ Sk be the set of sources whose routes include link l, and |Skl | be the cardinality of
this set. Define fkl = ckl /|Skl |, which is called the fair share on link l at the kth iteration.

4. For each source r ∈ Sk, let zir = minl:l∈r f
i
l , which is the minimum of the fair shares on its

route.

5. Let T k be the set of sources such that zkr = mins∈Sk z
k
s , and set xr = zkr ∀r ∈ T k. The sources

in T k are permanently allocated rate zkr .

6. Set Sk+1 = Sk \ T k, and

ck+1
l = ckl −

∑
r:l∈rand ∈T k

zkr

for all l. In other words, sources whose rate allocations are finalized are removed from from
the set of sources under consideration and the capacity of each link is reduced by the total
rate allocated to such sources.

7. Go to step (3).

Hint: Use the result in Exercise 2.1 above.

Solution First, we note the following simple fact. Consider a link with capacity c which is shared
by n users. The fair share on this link is C/n. Now, suppose that users 1 through m (where m < n)
are allocated rates x1 through xm, respectively such that each xi ≤ C/n. Next, remove these users
from the network, and reduce the link capacity to C−

∑m
i=1 xi. The new fair share for the remaining

users is
C −

∑m
i=1 xi

n−m
,

which is easily see to be greater than or equal to C/n. Thus, removing some users after allocating
less than the fair share to them clearly increases the fair share for the remaining users. We will use
this fact in the solution to this problem.
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Each iteration in the algorithm serves the network users with the lowest fair share. At the end
of the first iteration, users who receive the smallest fair share are assigned these rates and removed
from the network, with the link capacities appropriately diminished. Thus, some links will have
zero remaining capacity, and the users using these links are bottlenecked at these links.

Every subsequent iteration fixes the allocations of the users with the next lowest rates. Due
to the fact mentioned in the first paragraph, these rates will be greater than or equal to the rates
allocated to the users removed from the network in the previous iterations. Thus for ever whose
rate is fixed at the current iteration has a bottleneck, since every user r whose rate is fixed in the
current iteration because their fair share is the smallest in the network and is achieved at link l will
have xs≤xr ∀ s : l ∈ s and yl = cl. So, every user will have a bottleneck. The result then follows
from Exercise 2.1.

�

Exercise 2.3 (Different notions of fairness in a simple network) Consider a two-link, three-
source network as shown in Figure 2.10. Link A has a capacity of 2 (packets/time-slot) and link
B has a capacity of 1 packet/time-slot. The route of source 0 consists of both links A and B, the
route of source 1 consists of only link A, and the route of source 2 consists of only link B. Compute
the resource allocations under the proportional fairness, minimum potential delay fairness, and
max-min fairness.

Hint: For the max-min fair rate allocation, consider the algorithm in Exercise 2.2; and for the
other two resource allocations, use Lagrange multipliers and the KKT theorem.

source 0

source 1 source 2

Link A Link B

Figure 2.10: A two-link, three-source network

Solution The optimal solutions satisfy

x∗0 + x∗1 = 2 and x∗0 + x∗2 = 1. (2.63)

If not, e.g., assuming that x∗0 + x∗1 < 2, we can increase x∗1 to increase
∑

i Ui(x
∗
i ) without violating

the capacity constraints, which contradicts with the fact that x∗ is the optimal solution.

proportional fairness: Using the KKT condition, there exist λ∗1 and λ∗2 such that the optimal



44 CHAPTER 2. MATHEMATICS OF INTERNET ARCHITECTURE

solution satisfies

1

x∗0
= λ∗1 + λ∗2

1

x∗1
= λ∗1

1

x∗2
= λ∗2.

Substituting the equalities above into (2.63), we obtain

1

λ∗1 + λ∗2
+

1

λ∗1
= 2

1

λ∗1 + λ∗2
+

1

λ∗2
= 1.

Solving the equations above, we get

λ∗1 =
3−
√

3

2

λ∗2 =
√

3,

and

x∗0 =
3−
√

3

3

x∗1 =
3 +
√

3

3

x∗2 =

√
3

3
.

minimum potential delay fairness: Using the KKT condition, there exist λ∗1 and λ∗2 such
that the optimal solution satisfies

1

(x∗0)2 = λ∗1 + λ∗2

1

(x∗1)2 = λ∗1

1

(x∗2)2 = λ∗2.

Substituting the equalities above into (2.63), we obtain

1√
λ∗1 + λ∗2

+
1√
λ∗1

= 2

1√
λ∗1 + λ∗2

+
1√
λ∗2

= 1.
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Solving the equations above, we get

λ∗1 = 0.44

λ∗2 = 3.79,

and

x∗0 = 0.4863

x∗1 = 1.5077

x∗2 = 0.5137.

max-min fairness: x∗0 = 0.5, x∗1 = 1.5 and x∗2 = 1.

�

Exercise 2.4 (NUM in a simple network) Consider again the same two-link, three-user net-
work shown in Figure 2.10. Now assume that the link capacities are CA = CB = 1. Suppose that
the utility functions of the users are given as follows:

U0(x0) = log(x0)

U1(x1) = log(1 + x1)

U2(x2) = log(1 + x2)

Compute the data transmission rates of the three users, x0, x1, and x2, which maximize the sum
network utility.

Solution

max
x≥0

log x0 + log(1 + x1) + log(1 + x2)

s.t. x0 + x1 ≤ 1

x0 + x2 ≤ 1

Let pA and pB denote the Lagrange multipliers corresponding to the capacity constraints of the
links A and B respectively. Then the Lagrangian is

max
x≥0

log x0 + log(1 + x1) + log(1 + x2)− pA(x0 + x1 − 1)− pB(x0 + x2 − 1)

Differentiating w.r.t x0, x1, x2, pA, pB, and equating to zero, we get

x0 =
1

pA + pB

x1 =

(
1

pA
− 1

)+

x2 =

(
1

pB
− 1

)+

x0 + x1 = 1

x0 + x2 = 1
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From these, we get

1

pA + pB
+

1

pA
− 1 = 1

1

pA + pB
+

1

pB
− 1 = 1

Thus, we have pA = pB. So,

1

2pA
+

1

pA
= 2

3

2pA
= 2

pA = pB =
3

4

x1 =
4

3
− 1 =

1

3

x2 =
1

3

x0 =
2

3

�

Exercise 2.5 (The utility function of a primal congestion controller) Consider the follow-
ing primal congestion control algorithm.

ẋr = kr [(1− qr)− qrxr] ,

where qr is the sum of the link prices on route r, xr is the transmission rate of user r and kr > 0
is some constant. Identify the utility function of user r.

Hint: Recall the form of the primal congestion control algorithm, and compare it to the above
differential equation.

Solution

ẋr = kr(1− qr(1 + xr))

= (1 + xr)kr

[
1

1 + xr
− qr

]
U ′r(xr) =

1

1 + xr

This means that Ur(xr) = log(1 + xr)+ constant.

�

Exercise 2.6 (An alternative proof of the stability of the primal algorithm) Consider the
primal congestion controller with κr(x) = 1 ∀x and ∀r. Using the Lyapunov function∑

r

(xr − x̂r)2,
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to prove that the controller is globally, asymptotically stable, where x̂ is the global maximizer of

W (x) =
∑
r

Ur(xr)−
∑
l

Bl(yl).

Hint: Since x̂ is the global maximizer, it has the properties presented in Result 2.1.9.

Solution First note that

W̃ (x) ,
∑
r

(xr − x̂r)2

{
> 0, ∀x 6= x̂;
= 0, x = x̂.

(2.64)

Recall that W (x) =
∑
r

Ur(xr) −
∑
l

Bl(yl) and W (x̂) = max
x

W (x). Further, since W (x) is

concave, we know that:

W (x̂) ≤W (x) +∇W (x)(x̂− x),

which implies that

0 ≤W (x̂)−W (x) ≤ ∇W (x)(x̂− x), (2.65)

where equality holds only at x = x̂. Since ẋr = ∂W
∂xr

, we get that

˙̃W =
∑
r

2ẋr(xr − x̂r) = −2∇W T (x)(x̂− x) ≤ 0,

where the equality holds if and only if x = x̂. This shows that the controller is globally asymptoti-
cally stable.

�

Exercise 2.7 (The primal congestion controller with non-negligible pl) Assume link prices
pl(yl) ∈ [0, 1] and qr = 1−

∏
l:l∈r(1−pl). For example, if pl is the probability that a packet is marked

on link l, then qr is the probability that a packet is marked on route r. In this exercise, you will be
asked to prove that the primal congestion controller is globally, asymptotically stable under this
model, without the assumption that pl’s are really small.

1. First, show that the primal congestion controller in this case can be rewritten as

ẋr = kr(xr)

(∏
l:l∈r

(1− pl)− (1− U ′r(xr))

)
.

2. Show that W (x) given by

W (x) =
∑
l

∫ yl

0
log(1− pl(y))dy −

∑
r

∫ xr

0
log(1− U ′r(x))dx

is strictly concave.

Hint: Assume 1− U ′r(xr) > 0 so that log(1− U ′r(x)) is well defined. The following fact may
be useful: log is an increasing function.
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3. Use W (x̂) −W (x) as the Lyapunov function to show the global, asymptotic stability of the
primal congestion controller, where x̂ is the global maximizer of W (x).

Hint: Assume that Ur, kr and pl are such that W (x)→∞ as ||x|| → ∞, there exists a unique
equilibrium point and xr(t) can never go below zero.

Solution 1. Recalling the definition of the primal congestion controller, we obtain that

ẋ = kr(xr)(U
′
r(xr)− qr)

= kr(xr)(U
′
r(xr)− 1 + 1− qr)

= kr(xr)
(

1− qr −
(

1− U ′r(xr)
))

= kr(xr)

(∏
l:l∈r

(1− pl)− (1− U ′r(xr))

)
.

2. Let

W (x) =
∑
l

∫ yl

0
log(1− pl(y))dy −

∑
r

∫ xr

0
log(1− U ′r(x))dx

Since pl(y) is increasing in y, log(1 − pl(y)) is decreasing in y. Thus, the first term of the
summation is concave in x as it is a composition of a concave function with a linear function
of x. Similarly, U

′
r(x) is decreasing in x and hence log(1 − U ′r(x)) is increasing in x. This

implies that second term (with negative sign) is strictly concave in x.

3. Let x̂ be the global maximizer of W (x). Define V (x) = W (x̂) − W (x). Thus, V (x) > 0

for x 6= x̂ and zero when x = x̂. We use V (x) as Lyapunov function. With this,
∂V (x)

∂xr
=

−∂W (x)

∂xr
.

Now,

∂W (x)

∂xr
=
∑
l∈r

log(1− pl)− log
(

1− U ′r(xr)
)

= log

(∏
l∈r

(1− pl)

)
− log

(
1− U ′r(xr)

)
,

implying that at x̂,
∏
l∈r(1 − pl) = 1 − U ′r(x̂r), and hence x̂ is the stable point of the state

dynamics too.

This implies that,

V̇ = −
∑
r

kr(xr)

(
log

(∏
l∈r

(1− pl)

)
− log

(
1− U ′r(xr)

))(∏
l∈r

(1− pl)−
(

1− U ′r(xr)
))
≤ 0,

since for any a > 0, b > 0, (a− b)(log(a)− log(b)) ≥ 0, with equality holding only when a = b.

Thus, V̇ = 0 only if
∏
l∈r(1− pl) =

(
1− U ′r(xr)

)
, which is the equilibrium condition. Thus,

this system is asymptotically stable.
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For the analysis to make sense, we have to assume that 1− U ′r(xr) > 0. Also, kr(xr), U
′
r(xr)

and pl are such that if x > 0, then x
(
rt) 6= 0 ∀r, t, and that V (x)→∞ as ‖x‖ → ∞.

�

Exercise 2.8 (Multi-path routing) In this problem, we expand the scope of the utility max-
imization problem to include adaptive, multi-path routing. Let s denote a source and let R(s)
denote the set of routes used by source s. Each source s is allowed to split its packets along multi-
ple routes. Let zs denote the rate at which source s generates data and xr denote the rate on route
r. Thus, the penalty function formulation of the utility maximization problem becomes

max
x

∑
s

Us(zs)−
∑
l

∫ yl

0
fl(y)dy + ε

∑
r

log xr,

where
zs =

∑
r∈R(s)

xr, yl =
∑
r:l∈r

xr

and ε > 0 is a small number.

1. Even when Us is a strictly concave function, argue that the above objective need not be
strictly concave if ε = 0. (Thus, we have introduced the ε term only to ensure strict concavity.
But the impact of this term on the optimal solution will be small if ε is chosen to be small.)

2. Derive a congestion control (and rate-splitting across routes) algorithm and prove that it
asymptotically achieves the optimal rates which solve the above utility maximization problem.

Hint: Use the approach used to derive the primal congestion control algorithm.

Solution 1. We establish this by showing that the composition of a strictly concave function
with a linear function needs not be strictly concave.

Lemma 2.9.1 Let G(t) : D ⊆ R 7→ R be a strictly concave function. For t = (t1, t2, . . . , tn)
such that

∑n
i=1 ti ∈ D, define H(t) =

∑n
i=1 ti. Then G ◦ H(t) = G(H(t)) is concave with

respect to t but not strictly concave.

Proof Concavity of G ◦ H(t) with respect to t follows from the standard result that com-
position of a concave function with an affine function is still concave. We just need to
show that this is not strictly concave. Consider vectors t and s such that t 6= s, but∑n

i=1 ti =
∑n

i=1 si ∈ D. Clearly, we can find such t, s. Then G ◦ H(t) = G ◦ H(s). Let
λ ∈ (0, 1). Then,

G ◦H(λt+ (1− λ)s) = G

(
n∑
i=1

(λti + (1− λ)si)

)
,

= G

(
λ

(
n∑
i=1

ti

)
+ (1− λ)

(
n∑
i=1

si

))
,

= G

(
n∑
i=1

ti

)
= G

(
n∑
i=1

si

)
= G ◦H(t) = G ◦H(s).
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Thus, G ◦H(λt+ (1− λ)s) = λG ◦H(t) + (1− λ)G ◦H(s). But, for strict concavity, we need
G ◦ H(λt + (1 − λ)s) > λG ◦ H(t) + (1 − λ)G ◦ H(s), ∀λ ∈ (0, 1). Thus, G ◦ H(t) is not a
strict concave function of t.

�

Now, let V (x) =
∑

s Us(zs)−
∑

l

∫ yl
0 fl(y)dy, where x is the vector of all routes for all users.

Thus, we need to show that V (x) need not be a strict concave function. Now, for each s,
Us(zs) = Us(

∑
r∈R(s) xr) is a composition of Us(.) with a linear function of x, and hence not

a strict concave function of x. Similarly, for each l, if Fl(t) =
∫ t

0 fl(s)ds then
∫ yl

0 fl(s)ds =
Fl(
∑

r:l∈r xr) is a composition of a convex function F (.) with a linear function of x, and hence
not a strict convex function of x. Thus, V (x) being a sum of concave functions of x that are
not strictly concave need not be a strict concave function.

2. Let

V (x) =
∑
s

Us(zs)−
∑
l

∫ yl

0
fl(y)dy + ε

∑
r

log xr,

where zs =
∑

r∈R(s) xr and yl =
∑

r:l∈r xr. V (x) is strictly concave. Thus, there exists a
unique maximizer x̂. Since x̂ is the maximizer of V (x), it must satisfy

∂V (x)

∂xr
= 0 at x = x̂, ∀r.

Now,
∂V (x)

∂xr
= U

′
s(zs)−

∑
l:l∈r

fl(yl) +
ε

xr
.

For each source s and each r ∈ R(s), let the state dynamics be

ẋr = kr(xr)

(
U
′
s(zs)−

∑
l:l∈r

fl(yl) +
ε

xr

)
, (2.66)

where kr(xr) > 0. Let W (x) , V (x̂) − V (x). Thus, W (x) > 0 for all x 6= x̂, and is equal to
zero at x = x̂. We use W (x) as a Lyapunov function for showing that state dynamics (2.66)
converges to x̂. We assume that Us(.), kr(.) and fl(.) are such that W (x)→∞ as ‖x‖ → ∞.

Ẇ =
∑
r

(
∂W (x)

∂xr
kr(xr)

(
U
′
s(zs)−

∑
l:l∈r

fl(yl) +
ε

xr

))
,

=
∑
r

(
−kr(xr)

∂V (x)

∂xr

∂V (x)

∂xr

)
,

= −
∑
r

kr(xr)

(
∂V (x)

∂xr

)2

≤ 0

where, Ẇ = 0 implies ∂V (x)
∂xr

= 0, which is true only when x = x̂. Thus, system dynamics
given by (2.66) converges to x̂.
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�

Exercise 2.9 (The global stability of the dual algorithm) Recall the dual algorithm

xr = U ′r
−1

(qr)

ṗl = hl(yl − cl)+
pl
.

Prove that the dual algorithm is globally, asymptotically stable when the routing matrix R has full
row rank, i.e., given q, there exists a unique p which satisfies q = RT p.

Solution The equilibrium point of the system satisfies

(ŷl − cl)+ = 0

U ′r(x̂r) = q̂r.

Since q = RT p, we have a unique p̂ when R has full row rank. Now consider Lyapunov function

V (t) = D(p(t))−D(p̂),

so

V̇ = Ḋ =
∑
l

∂D

∂pl
ṗl

=
∑
l

(
∂D

∂pl

)(
−∂D
∂pl

)+

pl

=
∑
l

(cl − yl)(yl − cl)+
pl

≤ 0.

The equality holds if yl = cl, or pl = 0 and yl ≤ cl, which is the equilibrium point of the system.
Note that if qr = 0, then xr =∞. So we also have to show that qr(t) 6= 0 for all t if qr(0) > 0.

This can be shown by observing that if qr → 0 and xr →∞, then pl becomes large at all l ∈ r, so
qr(t) cannot approach 0.

�

Exercise 2.10 (The primal-dual algorithm for congestion control) Consider the following
congestion control algorithm:

ẋr = κr

(
wr
xr
− qr

)
,

ṗl = hl (yl − cl)+
pl
,

where qr =
∑

l:l∈r pl, yl =
∑

r:l∈r xr, and κr and hl are positive constants. This algorithm is called
the primal-dual algorithm for congestion control.

1. Show that the equilibrium point of the above congestion control algorithm solves a utility
maximization problem, which allocates rates in a weighted proportionally-fair manner.
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2. Assume that the equilibrium point is unique and show that the congestion controller is globally
asymptotically stable by using the Lyapunov function

V (x, p) =
∑
r

(xr − x̂r)2

κr
+

∑
l(pl − p̂l)2

hl
,

where (x̂, p̂) denotes the equilibrium point. To do this, show that (i) V̇ ≤ 0 and (ii) that
V̇ = 0 implies (x(t), p(t)) = (x̂, p̂). The result then follows from LaSalle’s invariance principle
(see Section 2.3, Theorem 2.3.3).

Note: In this problem, we have derived a third type of congestion control algorithm, called the
primal-dual algorithm. As in the case of the primal algorithm and the dual algorithm, one can
design window flow control algorithms that mimic the behavior of this algorithm. The question of
which one of these algorithms is best is debatable. Clearly all of the algorithms lead to the same
steady-state rate allocation.

Solution 1. At the equilibrium:

ẋr = 0⇒ xr = wr/qr

and

ṗl = 0

which yields

(i) pl = 0 if yl ≤ cl
(ii) pl > 0 if yl = cl.

If we choose Ur(xr) = wr log xr, then, from the first condition, we get

U ′(xr) = qr,

and the second condition is equivalent to

pl(yl − cl) = 0, for all l.

Therefore, the pair (x, p) satisfies the KKT conditions for the utility maximization problem
with Ur(xr) = wr log xr, which is a proportional fairness resource allocation.

2. i)

V̇ =
∑
r

∂V

∂xr
ẋr +

∑
l

∂V

∂pl
ṗl

=
∑
r

2(xr − x̂r)(
wr
xr
− qr) +

∑
l

2(pl − p̂l)(yl − cl)+
pl

≤
∑
r

2(xr − x̂r)(
wr
xr
− qr) +

∑
l

2(pl − p̂l)(yl − cl)
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But, if p̂l > 0, ŷl = cl, and therefore (pl− p̂l)(yl− cl) = (pl− p̂l)(yl− ŷl), and if p̂l = 0, ŷl ≤ cl
and hence (pl − p̂l)(yl − cl) ≤ (pl − p̂l)(yl − ŷl). So

V̇ ≤
∑
r

2(xr − x̂r)(
wr
xr
− qr) +

∑
l

2(pl − p̂l)(yl − ŷl)

=
∑
r

2(xr − x̂r)(
wr
xr
− qr) +

∑
r

2(qr − q̂r)(xr − x̂r)

=
∑
r

2(xr − x̂r)(
wr
xr
− q̂r)

=
∑
r

2(xr − x̂r)(
wr
xr
− wr
x̂r

)

= 2
∑
r

wr
−(xr − x̂r)2

xrx̂r
< 0.

ii) Note that V̇ < 0 (strictly negative) for xr 6= x̂r, and V̇ = 0 iff xr(t) = x̂r which results in
yl(t) = ŷl, and consequently pl(t) = p̂l.

�

Exercise 2.11 (A discrete-time version of the dual algorithm) Consider the following discrete-
time version of the dual congestion control algorithm: at each time slot k, each source chooses a
transmission rate xr(k) which is the solution to

max
0≤xr≤Xmax

Ur(xr)− qr(k)xr,

where Xmax is the maximum rate at which any user can transmit. Each link l computes its
price pl(k) according to the following update rule which is a discretization of the continuous-time
algorithm:

pl(k + 1) = (pl(k) + ε(yl − cl))+ ,

where ε > 0 is a small step-size parameter. The variables yl and qr are defined as usual:

qr(k) =
∑
l:l∈r

pl(k), yl(k) =
∑
r:l∈r

xr(k).

We will show that, on average, the above discrete-time algorithm is nearly optimal in the sense
that it approximately solves the utility maximization problem.

1. Consider the Lyapunov function

V (k) =
1

2

∑
l

p2
l (k).

Show that

V (k + 1)− V (k) ≤ Kε2 + ε
∑
r

qr(k)(xr(k)− x̂r),
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for some constant K > 0, where x̂ is an optimal solution to the utility maximization problem

max
x≥0

∑
r

Ur(xr), subject to
∑
r:l∈r

xr ≤ cl.

Assume that Xmax > maxr x̂r.

2. Next, show that

V (k + 1)− V (k) ≤ Kε2 + ε
∑
r

(Ur(xr)− Ur(x̂r)).

3. Finally, show that ∑
r

Ur(x̂r) ≤
∑
r

Ur(x̄r) +Kε,

where

x̄r := lim
N→∞

1

N

N∑
k=1

xr(k).

Note: For this problem, we assume Ur is concave, but it does not have to be strictly concave for
the results of this problem to hold. If Ur is not strictly concave, then there may be multiple optimal
solutions x̂. In this case, Xmax is assumed to be greater than maxr x̂r for all possible x̂.

Solution 1.

V (k + 1)− V (k) =
1

2

∑
l

p2
l (k + 1)− p2

l (k)

=
1

2

∑
l

((pl(k) + ε(yl − cl))+)2 − p2
l (k)

≤ 1

2

∑
l

(pl(k) + ε(yl − cl))2 − p2
l (k)

=
1

2

∑
l

2pl(k)ε(yl − cl) + ε2(yl − cl)2

=
ε2

2

∑
l

(yl − cl)2 + ε
∑
l

pl(k)(yl − cl)

Noting that xr ≤ Xmax, and y∗ ≤ cl, for any feasible solution x∗r , yields

V (k + 1)− V (k) ≤ Kε2 + ε
∑
l

pl(k)(yl − y∗l )

= Kε2 + ε
∑
r

qr(k)(xr − x∗r)

where K is chosen to be a constant greater than
∑

l(ylmax−cl)2, where ylmax =
∑

r:l∈rXmax.
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2. Choose x∗ = x̂. Since xr is the maximizer of Ur(xr)− qr(k)xr,

Ur(xr)− qr(k)xr ≥ Ur(x̂r)− qr(k)x̂r,

or equivalently

qr(k)(xr − x̂r) ≤ Ur(xr)− Ur(x̂r).

Replacing the above expression in the result of part (a) yields

V (k + 1)− V (k) ≤ Kε2 + ε
∑
r

Ur(xr)− Ur(x̂r).

3. Summing the inequality of part (b) for k = 0, 1, ..., N yields

V (N)− V (0) ≤ NKε2 + ε

N∑
k=1

∑
r

Ur(xr)− Ur(x̂r)

Dividing the both sides by N , we get

V (N)− V (0)

N
≤ Kε2 + ε

1

N

N∑
k=1

∑
r

Ur(xr)− Ur(x̂r)

But V (0) is finite and V (N) ≥ 0, so limN→∞
V (N)−V (0)

N ≥ 0, and thus

0 ≤ Kε+ lim
N→∞

1

N

N∑
k=1

∑
r

Ur(xr)− Ur(x̂r)

Therefore

∑
r

Ur(x̂r) ≤ Kε+ lim
N→∞

1

N

N∑
k=1

∑
r

Ur(xr(k))

≤ Kε+
∑
r

Ur( lim
N→∞

N∑
k=1

xr(k))

= Kε+
∑
r

Ur(x̄r)

where the last inequality follows from concavity of Ur(.).

�

Exercise 2.12 (An example illustrating the VCG algorithm) Consider the network shown
in Figure 2.11, where the four links are owned by four different players. Suppose that the network
wants to establish a communication path from node 1 to node 3. If a link is selected for the
transmission, then it incurs a cost of pl, where l ∈ {a, b, c, d}. The social welfare is to find the
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minimum cost path. Define xl to be a variable such that xl = 0 if link l is selected and xl = 1
otherwise. Therefore, the utility function associated with player l is

Ul(xl) =

{
−pl, if xl = 0 i.e., link l is selected
0, if xl = 1 i.e., link l is not selected

.

The utility function revealed by player l is

Ũl(xl) =

{
−p̃l, if xl = 0
0, if xl = 1

,

where p̃l is the cost claimed by player l. The objective of the network is

max
∑
l

Ul(xl)

subject to xa + xc = 1 (2.67)

xb + xd = 1 (2.68)

xa, xb, xc, xd ∈ {0, 1},

where equalities (2.67) and (2.68) guarantee that there is a feasible path from node 1 to node 3.
Assume pa > pc and pb > pd. Let wl denote the price charged to link l. Write the value of wl

under the VCG pricing mechanism.
Note: You will find that the prices are nonpositive. In fact, −wl can be interpreted as the

payment link l receives when it is selected by the network.

1 2 3
a b

c d

Figure 2.11: A simple network

Solution Since the VCG pricing mechanism is a truthful, all players reveal their true utilities.
Further recall that

wa =
∑
s 6=a

Us(x̄s)−
∑
s 6=a

Us(x̃s) = pc + pd − pc − pd = 0

wb =
∑
s6=b

Us(x̄s)−
∑
s 6=b

Us(x̃s) = pc + pd − pc − pd = 0

wc =
∑
s 6=c

Us(x̄s)−
∑
s 6=c

Us(x̃s) = pd − pa − pd = −pa

wd =
∑
s 6=d

Us(x̄s)−
∑
s 6=d

Us(x̃s) = pc − pc − pb = −pb.

�
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Exercise 2.13 (An example illustrating the PoA) Consider a network with two strategic users
sharing a same link with capacity c = 1. The utility function of user i is αi− αi

(xi+1) , where xi is the
rate allocated to user i. Each user bids an amount that it is willing to pay, say wi for user i, and
user i is allocated a data rate given by xi = wi/(w1 +w2). Thus, the payoff to user i is αi− αi

xi
−wi.

We assume α1 = 1 and α2 = 2.

1. Write down the NE for the bids (w1, w2) for these strategic users.

2. Compute the PoA.

Solution 1. Following the definition of NE, we have

1(
w1

w1+w2
+ 1
)2

(
1− w1

w1 + w2

)
= w1 + w2

2(
w2

w1+w2
+ 1
)2

(
1− w2

w1 + w2

)
= w1 + w2,

which can be simplified to

w2 = (2w1 + w2)2

2w1 = (w1 + 2w2)2 .

Solving the equalities above, we obtain

w1 = 0.1227 and w2 = 0.1863.

2. Under the NE,
x1 = 0.3970 and x2 = 0.6030.

The sum utility is

1− 1

x1 + 1
+ 2− 2

x2 + 1
= 3− 1

1.3970
− 2

1.6030
= 1.0365.

Solving the following utility maximization problem

max
x1+x2≤1

1− 1

x1 + 1
+ 2− 2

x2 + 1
(2.69)

yields
x1 = 0.2426 and x2 = 0.7574.

The sum utility is

1− 1

x1 + 1
+ 2− 2

x2 + 1
= 3− 1

1.3970
− 2

1.6030
= 1.0572.

So the PoA is 1.0365/1.0572 = 0.9804.

�
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2.10 Notes

The utility maximization framework for studying resource allocation in communication networks
was introduced in [?]. Max-min fairness was originally developed in the context of political philoso-
phy [?], and was extensively studied in the context of communication networks in [?,?]. Log utilities
were introduced in the solution of a game where players bargain over the allocation of a common
resource [?]. It is called the Nash bargaining solution in economics. It was studied under the name
proportional fairness in the context of communication networks in [?]. Minimum potential delay
fairness was introduced in [?]. The α-fair utility functions have been studied by economists under
the name isoelastic utility functions [?]. They were proposed as a common framework to study
many notions of fairness in communication networks in [?,?].

The primal and dual algorithms for solving the network utility maximization problem were
presented in [?]. The version of the dual algorithm presented in this chapter is a continuous-time
version of the algorithms proposed in [?, ?]. The multi-path algorithm was also proposed in [?],
while the addition of the ε term was proposed in [?].

The primal-dual algorithm for Internet congestion control was introduced in [?] and its conver-
gence was proved in [?] although the algorithm at the nodes to compute the Lagrange multipliers is
different from the computations presented in the Problems section in this chapter. The version of
the primal-dual algorithm presented here is in [?,?]. The block diagram view of the relationships
between the primal and dual variables was suggested in [?].

One bit feedback for congestion control was proposed in [?, ?]. The idea of using exponential
functions to convert price information to one-bit information is in [?]. The crude approximation
for the DropTail price function was proposed in [?], as a limit of more accurate queueing-theoretic
models.

A game-theoretic view of network resource allocation was presented in [?]; see also [?]. The
price of anarchy result presented here is due to [?]. A survey of game theory in networks can be
found in [?].

Several surveys of resource allocation in the Internet using the utility function framework are
available in [?,?,?,?].

Excellent sources for the background material on optimization include [?,?,?]. An introduction
to differential equation models of dynamical systems and their stability can be found in [?]. Delay
differential equations and stability are treated in [?].


	title
	2t
	2

