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Chapter D2

Second-Order Differential Equations

D2.1 Basic Ideas

1. The order of a differential equation is the highest-order derivative that appears in the equation.
Thus for example y′(t) + y(t) = 0 is a first-order equation, while y′′(t) + y(t) = 0 is a second-
order equation.

3. A differential equation y′′(t) + p(t)y′(t) + q(t)y(t) = f (t) is homogeneous if f (t) = 0 for t in the
domain we are interested in. It is nonhomogeneous if this is not the case. Thus for example y′′(t) +
3ty(t) = 0 is homogeneous, while y′′(t) + 3ty(t) = t2 is nonhomogeneous.

5. Two functions f and g are linearly dependent on an interval I if there is some nonzero constant
c such that for each x ∈ I we have f (x) = cg(x). That is, they are linearly dependent if one is a
nonzero constant multiple of another.

7. The general solution of a second-order linear nonhomogeneous differential equation is the sum of
(a) any single particular solution of the nonhomogeneous equation, and (b) the general solution
of the homogeneous equation derived by setting f (t) = 0 in the nonhomogeneous equation. See
Theorems 16.3 and 16.4.

9. Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since y and its derivatives only appear in terms by themselves, not with other
derivatives of y, it is linear. Finally, since there is a nonzero term (10t2) that does not depend on y,
it is nonhomogeneous.

11. Since the highest order derivative appearing is the second derivative, this is a second-order differ-
ential equation. Since there is a term involving yy′, it is nonlinear. Finally, since there is a nonzero
term (et) that does not depend on y, it is nonhomogeneous.

13. Since d2

dt2 ekt = d
dt (kekt) = k2ekt, we have

y′′(t)− 4y(t) = (3e2t − 5e−2t)′′ − 4(3e2t − 5e−2t) = 12e2t − 20e−2t − (12e2t − 20e−2t) = 0.

15. Since d2

dt2 ekt = d
dt (kekt) = k2ekt, we have

y′′(t)− 9y(t) = (4e3t + 3e−3t − 2t)′′ − 9(4e3t + 3e−3t − 2t)

= (36e3t + 27e−3t)− (36e3t + 27e−3t − 18t)
= 18t.
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2 Second-Order Differential Equations

17. We have

y′′(t)− y′(t)− 2y(t) = (C1e−t + C2e2t)′′ − (C1e−t + C2e2t)′ − 2(C1e−t + C2e2t)

= (C1e−t + 4C2e2t)− (−C1e−t + 2C2e2t)− (2C1e−t + 2C2e2t)

= 0.

19. We have

y′′(t) + 6y′(t) + 25y(t) =
(

e−3t(C1 sin 4t + C2 cos 4t)
)′′

+ 6
(

e−3t(C1 sin 4t + C2 cos 4t)
)′

+ 25
(

e−3t(C1 sin 4t + C2 cos 4t)
)

=
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)′
+ 6

(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
=
(

e−3t((−3C1 − 4C2) sin 4t + (4C1 − 3C2) cos 4t)
)′

+ 6
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
= −3e−3t((−3C1 − 4C2) sin 4t + (4C1 − 3C2) cos 4t)

+ e−3t((−12C1 − 16C2) cos 4t + (−16C1 + 12C2) sin 4t)

+ 6
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
= e−3t((9C1 + 12C2) sin 4t + (−12C1 + 9C2) cos 4t)

+ e−3t((−16C1 + 12C2) sin 4t + (−12C1 − 16C2) cos 4t)

+ e−3t((−18C1 − 24C2) sin 4t + (24C1 − 18C2) cos 4t)

+ e−3t(25C1 sin 4t + 25C2 cos 4t)
= 0.

21. We have

ty′′(t)− (t + 1)y′(t) + y(t) = t
(
C1et + C2(t + 1)

)′′ − (t + 1)
(
C1et + C2(t + 1)

)′
+
(
C1et + C2(t + 1)

)
= t

(
C1et + C2

)′ − (t + 1)
(
C1et + C2

)
+
(
C1et + C2(t + 1)

)
= tC1et − tC1et − tC2 − C1et − C2 + C1et + tC2 + C2

= 0.

23. The two given solutions are linearly independent, since for example at t = 0, 1
5 · 5e−6·0 = e6·0

while at t = 1 we see that 1
5 · 5e−6 = e−6 6= e6, so that the two solutions do not differ by a

constant multiple. Since the two given solutions are linearly independent, the general solution is
y(t) = C1e6t + C2e−6t. Note that the coefficient of 5 in the second solution has been subsumed into
the constant C2.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 3

25. The two solutions are linearly independent, since for example at t = 0, te−t = 0 · e−t, but this is not
true at t = 1, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = C1e−t + C2te−t.

27. y′′(t)− y(t) = (e−3t)′′ − e−3t = 9e−3t − e−3t = 8e−3t.

29. Substituting gives

y′′(t)− 4y′(t) + 4y(t) = (t2e2t)′′ − 4(t2e2t)′ + 4(t2e2t)

= (2te2t + 2t2e2t)′ − 4(2te2t + 2t2e2t) + 4t2e2t

= 2e2t + 4te2t + 4te2t + 4t2e2t − 8te2t − 8t2e2t + 4t2e2t

= 2e2t.

31. Substituting 1
2 e−t for y(t) gives

y′′(t)− 49y(t) =
(

1
2

e−t
)′′
− 49

(
1
2

e−t
)
=

1
2

e−t − 49
2

e−t = −24e−t.

Substituting 1
2 e−t + 3e7t for y(t) gives

y′′(t)− 49y(t) =
(

1
2

e−t + 3e7t
)′′
− 49

(
1
2

e−t + 3e7t
)
=

1
2

e−t + 147e7t− 49
2

e−t− 147e7t = −24e−t.

Thus both of the functions given are in fact particular solutions. Their difference is 3e7t; substitut-
ing this into the equation gives

y′′(t)− 49y(t) = (3e7t)′′ − 49(3e7t) = 147e7t − 147e7t = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

33. Substituting −et for y(t) gives

y′′(t)− y′(t)− 12y(t) = (−et)′′ − (−et)′ − 12(−et) = −et + et + 12et = 12et.

Substituting 6e4t − et for y(t) gives

y′′(t)− y′(t)− 12y(t) = (6e4t − et)′′ − (6e4t − et)′ − 12(6e4t − et)

= 96e4t − et − (24e4t − et)− 72e4t + 12et

= 12et.

Thus both of the functions given are in fact particular solutions. Their difference is 6e4t; substitut-
ing this into the equation gives

y′′(t)− y′(t)− 12y(t) = (6e4t)′′ − (6e4t)′ − 12(6e4t) = 96e4t − 24e4t − 72e4t = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

35. Evaluating the differential expression y′′(t) + 2y(t) for the three values given, we get:

(sin
√

2 t)′′ + 2 sin
√

2 t = −2 sin
√

2 t + 2 sin
√

2 t = 0

(et)′′ + 2et = et + 2et = 3et

(cos
√

2 t)′′ + 2 cos
√

2 t = −2 cos
√

2 t + 2 cos
√

2 t = 0.

Copyright © 2013 Pearson Education, Inc.



4 Second-Order Differential Equations

Thus sin
√

2 t and cos
√

2 t are solutions of the homogeneous equation and et is a solution of the
nonhomogeneous equation. Since sin

√
2 t and cos

√
2 t are linearly independent, the general so-

lution of the nonhomogeneous equation is

y(t) = c1 sin
√

2 t + c2 cos
√

2 t + et.

37. Evaluating the differential expression y′′(t)− 3y′(t) + 25
4 y(t) for the three values given, we get

(e3t/2 cos 2t)′′ − 3(e3t/2 cos 2t)′ +
25
4
(e3t/2 cos 2t)

=

(
3
2

e3t/2 cos 2t− 2e3t/2 sin 2t
)′
− 3

(
3
2

e3t/2 cos 2t− 2e3t/2 sin t
)
+

25
4
(e3t/2 cos 2t)

=

(
e3t/2

(
3
2

cos 2t− 2 sin 2t
))′
− 3

(
3
2

e3t/2 cos 2t− 2e3t/2 sin t
)
+

25
4
(e3t/2 cos 2t)

=
3
2

e3t/2
(

3
2

cos 2t− 2 sin 2t
)
+ e3t/2(−3 sin 2t− 4 cos 2t)

− 9
2

e3t/2 cos 2t + 6e3t/2 sin 2t +
25
4

e3t/2 cos 2t

= e3t/2
(

9
4

cos 2t− 3 sin 2t− 3 sin 2t− 4 cos 2t− 9
2

cos 2t + 6 sin 2t +
25
4

cos 2t
)

= 0

(e3t/2 sin 2t)′′ − 3(e3t/2 sin 2t)′ +
25
4
(e3t/2 sin 2t)

=

(
3
2

e3t/2 sin 2t + 2e3t/2 cos 2t
)′
− 3

(
3
2

e3t/2 sin 2t + 2e3t/2 cos t
)
+

25
4
(e3t/2 sin 2t)

=

(
e3t/2

(
3
2

sin 2t + 2 cos 2t
))′
− 3

(
3
2

e3t/2 sin 2t + 2e3t/2 cos t
)
+

25
4
(e3t/2 sin 2t)

=
3
2

e3t/2
(

3
2

sin 2t + 2 cos 2t
)
+ e3t/2(3 cos 2t− 4 sin 2t)

− 9
2

e3t/2 sin 2t− 6e3t/2 cos 2t +
25
4

e3t/2 sin 2t

= e3t/2
(

9
4

sin 2t + 3 cos 2t + 3 cos 2t− 4 sin 2t− 9
2

sin 2t− 6 cos 2t +
25
4

sin 2t
)

= 0

(48 + 100t)′′ − 3(48 + 100t)′ +
25
4
(48 + 100t) = 0− 300 + 300 + 625t = 625t.

Thus e3t/2 cos 2t and e3t/2 sin 2t are linearly independent solutions of the homogeneous equation,
and 48 + 100t is a particular solution of the nonhomogeneous equation. Thus the general solution
of the nonhomogeneous equation is

y(t) = c1e3t/2 cos 2t + c2e3t/2 sin 2t + 48 + 100t.

39. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 sin 0 + c2 cos 0 = y(0) = 4

3c1 cos 0− 3c2 sin 0 = y′(0) = 0
so that

c2 = 4
3c1 = 0.

Thus c1 = 0 and c2 = 4, and the solution to the initial value problem is y(t) = 4 cos 3t.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 5

41. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1e5·0 + c2e−4·0 = y(0) = −3

5c1e5·0 − 4c2e−4·0 = y′(0) = 3
so that

c1 + c2 = −3
5c1 − 4c2 = 3.

Thus c1 = −1 and c2 = −2, and the solution to the initial value problem is y(t) = −e5t − 2e−4t.

43. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1e4·0 + c2e−4·0 − 02 − 1
8
= y(0) = 0

4c1e4·0 − 4c2e−4·0 − 2 · 0 = y′(0) = 0
so that

c1 + c2 =
1
8

4c1 − 4c2 = 0.

Thus c1 = c2 = 1
16 , and the solution to the initial value problem is y(t) = 1

16 e4t + 1
16 e−4t − t2 − 1

8 .

45. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 · 1−2 + c2 · 12 = y(1) = 1

−2c1 · 1−3 + 2c2 · 1 = y′(1) = −1
so that

c1 + c2 = 1
−2c1 + 2c2 = − 1.

Thus c1 = 3
4 and c2 = 1

4 , and the solution to the initial value problem is y(t) = 3
4 t−2 + 1

4 t2.

47. (a) False. By Theorems 16.2 and 16.4, a second-order linear differential equation has two linearly
independent solutions, so that the general solution must involve two terms with arbitrary
constants. Note that 0 is linearly dependent with any nonzero function, so that these theorems
imply that neither linearly independent solution is everywhere zero.

(b) True. Substituting yp + cyh into the nonhomogeneous equation gives

y′′ + py′ + qy = (yp + cyh)
′′ + p(yp + cyh)

′ + q(yp + cyh)

= (y′′p + py′p + qyp) + c(y′′h + py′h + qyh)

= f + 0 = f ,

so that yp + cyh satisfies the nonhomogeneous equation. This is the content of Theorem 16.4.

(c) False. Since 1− cos2 x = sin2 x, this pair of function is {sin2 x, 5 sin2 x}, which are obviously
constant multiples of one another and thus linearly dependent.

(d) False. Substitute y1 + y2 into the formula to get

y′′ + yy′ = (y1 + y2)
′′ + (y1 + y2)(y1 + y2)

′

= y′′1 + y′′2 + y1y′1 + y2y′2 + y1y′2 + y2y′1
= (y′′1 + y1y′1) + (y′′2 + y2y′2) + y1y′2 + y2y′1
= y1y′2 + y2y′1

since both y1 and y2 satisfy the differential equation. Since there is no reason to expect y1y′2 +
y2y′1 to be zero, we see that y1 + y2 need not be a solution of the equation. This does not
violate Theorem 16.1 since the given equation is not linear.

(e) False. The general solution of this equation is y(t) = c1 sin
√

2 t + c2 cos
√

2 t. The condition
y(0) = 4 means that c2 = 4. We need a second condition in order to get a value for c1. Thus
there are multiple solutions.

Copyright © 2013 Pearson Education, Inc.



6 Second-Order Differential Equations

49. Substitution gives

y′′(t)− 12y′(t) + 36y(t) = (C1e6t + C2te6t + t2e6t)′′ − 12(C1e6t + C2te6t + t2e6t)′

+ 36(C1e6t + C2te6t + t2e6t)

= 36C1e6t + (C2e6t + 6C2te6t + 2te6t + 6t2e6t)′

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 36C1e6t + 6C2e6t + 6C2e6t + 36C2te6t + 2e6t + 12te6t + 12te6t + 36t2e6t

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 36C1e6t + 12C2e6t + 36C2te6t + 2e6t + 24te6t + 36t2e6t

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 2e6t.

51. Substitution gives

t2y′′(t)− 3ty′(t) + 4y(t) = t2(C1t2 + C2t2 ln t)′′ − 3t(C1t2 + C2t2 ln t)′ + 4(C1t2 + C2t2 ln t)

= t2(2C1) + t2(2C2t ln t + C2t)′ − 6C1t2 − 3t(2C2t ln t + C2t)

+ 4(C1t2 + C2t2 ln t)

= 2C1t2 + 2C2t2 ln t + 2C2t2 + C2t2 − 6C1t2 − 6C2t2 ln t− 3C2t2

+ 4C1t2 + 4C2t2 ln t
= 0.

Copyright © 2013 Pearson Education, Inc.
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53. Substitution gives

t2y′′(t) + ty′(t) +
(

t2 − 1
4

)
y(t) = t2

(
t−1/2(C1 cos t + C2 sin t)

)′′
+ t
(

t−1/2(C1 cos t + C2 sin t)
)′

+

(
t2 − 1

4

)(
t−1/2(C1 cos t + C2 sin t)

)
= t2

(
−1

2
t−3/2(C1 cos t + C2 sin t) + t−1/2(−C1 sin t + C2 cos t)

)′
+ t
(
−1

2
t−3/2(C1 cos t + C2 sin t) + t−1/2(−C1 sin t + C2 cos t)

)
+ C1t3/2 cos t + C2t3/2 sin t− 1

4
C1t−1/2 cos t− 1

4
C2t−1/2 sin t

= t2
(

3
4

t−5/2(C1 cos t + C2 sin t)− 1
2

t−3/2(−C1 sin t + C2 cos t)
)

+ t2
(
−1

2
t−3/2(−C1 sin t + C2 cos t) + t−1/2(−C1 cos t− C2 sin t)

)
− 1

2
C1t−1/2 cos t− 1

2
C2t−1/2 sin t− C1t1/2 sin t + C2t1/2 cos t

+ C1t3/2 cos t + C2t3/2 sin t− 1
4

C1t−1/2 cos t− 1
4

C2t−1/2 sin t

=
3
4

t−1/2(C1 cos t + C2 sin t)− 1
2

t1/2(−C1 sin t + C2 cos t)

− 1
2

t1/2(−C1 sin t + C2 cos t) + t3/2(−C1 cos t− C2 sin t)

− 1
2

C1t−1/2 cos t− 1
2

C2t−1/2 sin t− C1t1/2 sin t + C2t1/2 cos t

+ C1t3/2 cos t + C2t3/2 sin t− 1
4

C1t−1/2 cos t− 1
4

C2t−1/2 sin t

= 0.

55. (a) Substitution gives

y′′ − y = (et)′′ − et = (et)′ − et = et − et = 0

y′′ − y = (e−t)′′ − e−t = (−e−t)′ − e−t = e−t − e−t = 0.

(b) sinh t and cosh t are each linear combinations of the solutions et and e−t, so they are both
solutions. They are linearly independent since if a sinh t + b cosh t = 0, then

a
(

et − e−t

2

)
+ b

(
et + e−t

2

)
=

a + b
2

et +
b− a

2
e−t = 0.

Since et and e−t are linearly independent, we must have a + b = b− a = 0, so that a = b = 0.
This proves that sinh t and cosh t are linearly independent as well.

(c) Since sinh′ = cosh and cosh′ = sinh, substitution gives

y′′ − y = (sinh t)′′ − sinh t = (cosh t)′ − sinh t = sinh t− sinh t = 0

y′′ − y = (cosh t)′′ − cosh t = (sinh t)′ − cosh t = cosh t− cosh t = 0.

(d) From part (a), the general solution is C1et + C2e−t. From part (c), the general solution is
C1 sinh t + C2 cosh t.

Copyright © 2013 Pearson Education, Inc.



8 Second-Order Differential Equations

(e) Substitution gives

y′′ − k2y = (ekt)′′ − k2ekt = (kekt)′ − k2ekt = k2ekt − k2ekt = 0

y′′ − k2y = (e−kt)′′ − k2e−kt = (−ke−kt)′ − k2e−kt = k2e−kt − k2e−kt = 0.

(f) In terms of exponentials, from part (e), the general solution is C1ekt + C2e−kt. Since cosh kt =
ekt+e−kt

2 and sinh kt = ekt−e−kt

2 , an identical argument to that in part (b) shows that cosh(kt)
and sinh(kt) are also solutions to y′′ − k2y and that they are linearly independent. So in terms
of hyperbolic functions, the general solution is C1 sinh kt + C2 cosh kt.

57. Note that (ekt)(iv) = k4ekt, (sin kt)(iv) = k4 sin kt, and (cos kt)(iv) = k4 cos kt. Thus with y =
C1e−2t + C2e2t + C3 sin 2t + C4 cos 2t, we have

y(iv) = 16C1e−2t + 16C2e2t + 16C3 sin 2t + 16C4 cos 2t = 16y(t).

59. (a) d
dt
(
y′(t)2) = 2y′(t) d

dt (y
′(t)) = 2y′(t)y′′(t).

(b) From part (a), y′′(t)y′(t) = 1
2 ·

d
dt (y

′(t)2) = 1, so that (y′(t)2)′ = 2.

(c) Integrating both sides with respect to t gives
∫
(y′(t)2)′ dt =

∫
2 dt, or y′(t)2 = 2t + C1 where

C1 is an arbitrary constant. Thus y′(t) = ±
√

2t + C1.

(d) Solving this equation simply involves integrating the right-hand side:

y(t) =
∫
±
√

2t + C1 dt =
∫
±(2t + C1)

1/2 dt = ±1
3
(2t + C1)

3/2 + C2.

Thus there are two families of solutions.

61. (a) With v = y′, we have v′ = 3v + 4, or v′ − 3v = 4. The integrating factor is e
∫
−3 dt = e−3t; this

gives e−3tv′ − 3e−3tv = (e−3tv)′ = 4e−3t. Integrate both sides to get e−3tv = − 4
3 e−3t + C1, so

that v = − 4
3 + C1e3t. This is the same as y′ = − 4

3 + C1e3t.

(b) Integrating once again gives y = − 4
3 t + C1

3 e3t + C2 = C2 − 4
3 t + C3e3t. As a check, note that

y′′ = (C2 −
4
3

t + C3e3t)′′ = 9C3e3t

3y′ + 4 = 3(C2 −
4
3

t + C3e3t)′ + 4 = −4 + 9C3e3t + 4 = 9C3e3t.

63. (a) With v = y′ we get v′ = 2tv2, so that v−2v′ = 2t. Integrating both sides gives−v−1 = t2 + C1,
so that v = − 1

t2+C1
. Substituting back gives y′ = − 1

t2+C1
.

(b) Integrating once again gives if C1 > 0

y = − 1√
C1

arctan
(

t√
C1

)
+ C2.

and if C1 < 0

y =
1

2
√
|C1|

ln

∣∣∣∣∣ t +
√
|C1|

t−
√
|C1|

∣∣∣∣∣+ C2.

As a check, note that for C1 > 0,

y′ = − 1√
C1
·
√

C1

t2 + C1
= −(t2 + C1)

−1

y′′ = 2t(t2 + C1)
−2
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so that indeed y′′ = 2t(y′)2, and for C1 < 0, regardless of the sign of t+
√
|C1|

t−
√
|C1|

,

y′ =
−1

t2 − |C1|
=

−1
t2 + C1

y′′ =
2t

(t2 + C1)2

and again y′′ = 2t(y′)2.

65. (a) Computing derivatives gives

(e−3t/2 sin 2t)′ = −3
2

e−3t/2 sin 2t + 2e−3t/2 cos 2t = e−3t/2
(

2 cos 2t− 3
2

sin 2t
)

(e−3t/2 sin 2t)′′ =
(
−3

2
e−3t/2 sin 2t + 2e−3t/2 cos 2t

)′
=

9
4

e−3t/2 sin 2t− 3e−3t/2 cos 2t− 3e−3t/2 cos 2t− 4e−3t/2 sin 2t

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t

)
(e−3t/2 cos 2t)′ = −3

2
e−3t/2 cos 2t− 2e−3t/2 sin 2t = e−3t/2

(
−3

2
cos 2t− 2 sin 2t

)
(e−3t/2 cos 2t)′′ =

(
−3

2
e−3t/2 cos 2t− 2e−3t/2 sin 2t

)′
=

9
4

e−3t/2 cos 2t + 3e−3t/2 sin 2t + 3e−3t/2 sin 2t− 4e−3t/2 cos 2t

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t

)
Substituting e−3t/2 sin 2t and e−3t/2 cos 2t gives

y′′ + 3y′ +
25
4

y = (e−3t/2 sin 2t)′′ + 3(e−3t/2 sin 2t)′ +
25
4
(e−3t/2 sin 2t)

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t

)
+ 3e−3t/2

(
2 cos 2t− 3

2
sin 2t

)
+

25
4
(e−3t/2 sin 2t)

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t + 6 cos 2t− 9

2
sin 2t +

25
4

sin 2t
)

= 0

y′′ + 3y′ +
25
4

y = (e−3t/2 cos 2t)′′ + 3(e−3t/2 cos 2t)′ +
25
4
(e−3t/2 cos 2t)

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t

)
+ 3e−3t/2

(
−3

2
cos 2t− 2 sin 2t

)
+

25
4
(e−3t/2 cos 2t)

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t− 9

2
cos 2t− 6 sin 2t +

25
4

cos 2t
)

= 0
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so that e−3t/2 sin 2t and e−3t/2 cos 2t are linearly independent solutions, so that the general
solution is y(t) = e−3t/2(C1 sin 2t + C2 cos 2t).

(b) Since

y′(t) = −3
2

e−3t/2(C1 sin 2t + C2 cos 2t) + e−3t/2(2C1 cos 2t− 2C2 sin 2t)

= e−3t/2
((

2 cos 2t− 3
2

sin 2t
)

C1 +

(
−2 sin 2t− 3

2
cos 2t

)
C2

)
,

substituting the initial conditions into y(t) gives the system of simultaneous equations

e−3·0/2(sin(2 · 0)C1 + cos(2 · 0)C2) = y(0) = 4

e−3·0/2
((

2 cos 0− 3
2

sin 0
)

C1 +

(
−2 sin 0− 3

2
cos 0

)
C2

)
= y′(0) = 0

so that

C2 = 4

2C1 −
3
2

C2 = 0.

Thus C1 = 3 and C2 = 4, and the solution to the initial value problem is

y(t) = e−3t/2(3 sin 2t + 4 cos 2t).

(c) A plot of the solution for 0 ≤ t ≤ 2π is

Π

2
Π

3 Π

2
2 Π

1

2

3

4

67. (a) Computing derivatives gives

(e−3t sin 4t)′ = −3e−3t sin 4t + 4e−3t cos 4t = e−3t(−3 sin 4t + 4 cos 4t)

(e−3t sin 4t)′′ = (e−3t(−3 sin 4t + 4 cos 4t))′

= −3e−3t(−3 sin 4t + 4 cos 4t) + e−3t(−12 cos 4t− 16 sin 4t)

= e−3t(−7 sin 4t− 24 cos 4t)

(e−3t cos 4t)′ = −3e−3t cos 4t− 4e−3t sin 4t = e−3t(−3 cos 4t− 4 sin 4t)

(e−3t cos 4t)′′ = (e−3t(−3 cos 4t− 4 sin 4t))′

= −3e−3t(−3 cos 4t− 4 sin 4t) + e−3t(12 sin 4t− 16 cos 4t)

= e−3t(24 sin 4t− 7 cos 4t)
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