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Chapter D2

Second-Order Differential Equations

D2.1 Basic Ideas

1.

11.

13.

15.

The order of a differential equation is the highest-order derivative that appears in the equation.
Thus for example y'(t) + y(t) = 0 is a first-order equation, while y”(t) 4+ y(t) = 0 is a second-
order equation.

A differential equation v (t) + p(t)y'(t) + q(t)y(t) = f(t) is homogeneous if f(t) = 0 for ¢ in the
domain we are interested in. It is nonhomogeneous if this is not the case. Thus for example y” (t) +
3ty(t) = 0 is homogeneous, while y” (t) + 3ty(t) = t? is nonhomogeneous.

Two functions f and g are linearly dependent on an interval [ if there is some nonzero constant
¢ such that for each x € I we have f(x) = cg(x). That is, they are linearly dependent if one is a
nonzero constant multiple of another.

The general solution of a second-order linear nonhomogeneous differential equation is the sum of
(a) any single particular solution of the nonhomogeneous equation, and (b) the general solution
of the homogeneous equation derived by setting f(t) = 0 in the nonhomogeneous equation. See
Theorems 16.3 and 16.4.

Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since y and its derivatives only appear in terms by themselves, not with other
derivatives of y, it is linear. Finally, since there is a nonzero term (10#?) that does not depend on y,
it is nonhomogeneous.

Since the highest order derivative appearing is the second derivative, this is a second-order differ-
ential equation. Since there is a term involving yy/, it is nonlinear. Finally, since there is a nonzero
term (e') that does not depend on y, it is nonhomogeneous.

. 2
Since ;?ekt = & (ke") = k%M, we have

y'(t) — 4y(t) = (3e* — 5e™ )" — 4(3e* — 5e~2) = 1262 — 20e~ % — (12¢*" —20e~ %) = 0.

. 2
Since ekt = 4 (kekt) = k2", we have

y'(t) = 9y(t) = (4€3t +3e73 — 2t)" — 9(4e3t 43073 2t)
= (36> +27¢73") — (36> +27¢73" — 18t)
= 18t.
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Second-Order Differential Equations

17. We have

y'(t) —y'(t) = 2y(t) = (Cre™" + Coe®)" — (Cre™" + Cae™')' —2(Cre™" + Cae™)
= (Cre~f +4Cpe®) — (—Cre™t 4+ 2Ce®) — (2C1e " 4 2Coe*)
0

19. We have

" /
y"(t) + 6y’ (t) + 25y(t) = (e‘3t(C1 sin4t + C, cos 4t)) +6 (e_3t(C1 sin 4t + C, cos 4t))
+25 (efgt(Cl sin4t + C; cos 4t))
!/
- (—3e*3f(cl sindt + Cy cos4t) + e 3 (4C; cos 4t — 4C, sin 4t))
+6 (—3e—3f(c1 sin4t + Cp cos 4t) + e~ (4Cy cos 4t — 4C, sin 4t))
+25 (e_3t(C1 sin4t + C; cos 4t))
/
- (e*3f((—3c1 — 4Cy) sin4t + (4C; — 3Cy) cos4t))
+6 (—3e*3f(c1 sin4t + Cy cos 4t) + e~ (4Cy cos 4t — 4C, sin 4t))
25 (e 3(Cy sin4t + C; cos 4t))
3f(( 3Cy — 4Cy) sin 4t + (4C; — 3C;) cos 4t)
e 3((— 12cl —16Cy) cos4t + (—16Cy + 12Cy) sin 4t)
+6 (—3e—3f(c1 sin4t + Cp cos 4t) + e~ (4Cy cos 4t — 4C, sin 4t))
+25 (e_3t(C1 sin4t + C; cos 4t))
= e ((9C; + 12C,) sin4t + (—12C; + 9C;) cos 4t)
+ e ((=16Cy 4+ 12Cy) sindt + (—12C; — 16C;) cos 4t)
+e73((—18Cy — 24C,) sin4t + (24C; — 18C;) cos 4t)

+ e731(25C; sin 4t + 25C; cos 4t)
=0.

21. We have

" (F) — (t+ 1)y () +y(t) = £ (Cre' + Ca(t + 1)) — (£ +1) (Cref + Ca(t + 1))
+ (Cre + Ca(t+ 1))
= t(Cret +C) = (t+1) (Cret + Ca) + (Cre' + Ca(t+1))
= tCye' — tCret — tCy — Cret — Co + Ciet +tCr + Gy
=0.
23. The two given solutions are linearly independent, since for example at t = 0, % - 5e 00 = 60

while at t = 1 we see that % -5e76 = ¢70 £ ¢ so that the two solutions do not differ by a
constant multiple. Since the two given solutions are linearly independent, the general solution is
y(t) = C1e® + Coe®. Note that the coefficient of 5 in the second solution has been subsumed into
the constant C.
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D2.1 Basic Ideas 3

25.

27.
29.

31.

33.

35.

The two solutions are linearly independent, since for example at t = 0, te™! = 0-e~!, but this is not
true at t = 1, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = Cre™! + Cate ™.

y”(t) _ y(t) — (e—3t)// — e 3t —Qgp3t _ p—3t _ gp—3t
Substituting gives
() — 4y (6) + 4y(e) = (P — 4(PY + 4(PE)

= (2te +212e%") — 4(2te® + 212e2) 4 412
= 2¢% + 4te? + 4te? 4 4t%e* — 8te* — 812 + 4t?e?!
= 2¢.

Substituting e~ for y(t) gives
1 1 1 4

y'(t) —49y(t) = <zet) —49 <26t) = Ee*t - 7967t = 24"

Substituting Je~! + 3¢”" for y(t) gives

1 " 1 1 49
y'(t) —49y(t) = <2e—t +3e7f> —49 <2e—f +3e7f> = Ee—f +147¢7 — 7e—f —147¢7t = —24¢7",

Thus both of the functions given are in fact particular solutions. Their difference is 3¢”’; substitut-
ing this into the equation gives
v (t) — 49y (t) = (3e”")" —49(3¢”") = 1477 — 1477 = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.
Substituting —e' for y(t) gives
y'(t) —y (1) — 12y(t) = (—e") — (—e') —12(—e') = —e' + &' + 12¢" = 12¢".
Substituting 6e* — ef for y(t) gives
v (1) =y (1) — 12y(t) = (6e* — ') — (6e* —e') —12(6e* — e')

= 96e* — of — (24e* — ¢') — 726* + 126!
= 12¢".

Thus both of the functions given are in fact particular solutions. Their difference is 6¢*; substitut-
ing this into the equation gives

v (1) —y'(t) — 12y(t) = (6e*)" — (6e*) —12(6e*) = 96 — 24¢ — 72e4 = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.

Evaluating the differential expression y” () + 2y(t) for the three values given, we get:

(sinv21)" +2sin V2t = —2sin V2t 4 2sin V2t = 0
(e')" +2¢" = ¢! + 2¢' = 3¢
(cosV21)" +2cos V2t = —2cos V2t +2cos V2t = 0.
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Second-Order Differential Equations

Thus sin /2t and cos v/2t are solutions of the homogeneous equation and ¢ is a solution of the

nonhomogeneous equation. Since sin /2t and cos v/2t are linearly independent, the general so-
lution of the nonhomogeneous equation is

y(t) = cysin V2t +cycos V2t + e

37. Evaluating the differential expression v () — 31/ (t) + 2v(t) for the three values given, we get
g P y Y 1Y g &

39.

25
(372 cos 2t)" — 3(e3/? cos 2t)" + T (32 cos 2t)
' 3 25
e3/2 cos 2t — 2¢*/2 sin Zt) -3 (263t/2 cos 2t — 2¢3/2 sin t) + Z(E3t/2 cos 2t)

3 ' 3 25
= (eSt/z (2 cos 2t — 25in2t>) -3 (2€3t/2 cos 2t — 262 sin t) + Z(e3t/2 cos 2t)
3
2

— 263”2 cos 2t + 6e3t/2 sin 2t + 24—563”2 cos 2t
312 (9 . . 9 . 25
=e¢ ZcosZt —3sin2t — 3sin2t — 4 cos 2t — Ec052t+6sm2t + ZcosZt
=0
2
(e/?sin2t)" — 3(e*/?sin2t)’ + Z5(e3t/ %sin2t)

!/
3 25
—e3/2sin 2t + 2¢%/2 cos Zt) -3 <2e3t/2 sin 2t + 2¢3/2 cos t) + Z(eg't/2 sin 2t)

N W

!
2
— <e3t/2 (; sin 2t + 2 cos 2t>) -3 (;€3t/2 sin 2t 4 2¢%/2 cos t> + 15(63t/2 sin 2t)
3
2

9 25
— §e3t/2 sin 2t — 6e/2 cos 2t + ZE3t/2 sin 2t

= ¢3t/2 <Zsin2t+3c052t + 3cos2t —4sin2t — gsinZt — 6c0s2t + % sin2t>

2
(48 +100t)" — 3(48 + 100t)" + ZS (48 +100¢t) = 0 — 300 + 300 + 625t = 625¢.

Thus ¢3/2 cos 2t and e!/2 sin 2t are linearly independent solutions of the homogeneous equation,
and 48 + 100t is a particular solution of the nonhomogeneous equation. Thus the general solution
of the nonhomogeneous equation is

y(t) = 1632 cos 2t + cpe>t/? sin 2t + 48 + 100¢.

Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1sin0+ cycos0= y(0) =4 =4
. , so that
3c1c0s0—3csin0=y'(0) =0 3c; =0.

Thus ¢; = 0 and ¢, = 4, and the solution to the initial value problem is y(t) = 4 cos 3t.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 5

41. Substituting the initial conditions into y(t) gives the system of simultaneous equations

1%+ e 0 = y(0) = -3 i+ c=-3
5.0 40 , so that
5c1e”" — 4coe =y (0)= 3 5¢1 —4cp = 3.
Thus ¢; = —1 and ¢, = —2, and the solution to the initial value problem is y(t) = —e> — 2¢~%.

43. Substituting the initial conditions into y(t) gives the system of simultaneous equations

4.0 —4.0 2
c1e”” + coe - 0°—
! so that

4e1e*0 — 4o — 2.0 =v'(0) =0 4c1 —4cp =
Thusc; =cy = 11—6, and the solution to the initial value problem is y(t) = fze

45. Substituting the initial conditions into y(t) gives the system of simultaneous equations

-1 24c-12=y1)= 1 a+ =1
3 , so that
—201-17420-1=y'(1) = -1 —2c1+2c) = — 1.

Thus ¢; = 3 and ¢, = 1, and the solution to the initial value problem is y(t) = 32 + 12,

47. (a) False. By Theorems 16.2 and 16.4, a second-order linear differential equation has two linearly
independent solutions, so that the general solution must involve two terms with arbitrary
constants. Note that 0 is linearly dependent with any nonzero function, so that these theorems
imply that neither linearly independent solution is everywhere zero.

(b) True. Substituting v, + cy;, into the nonhomogeneous equation gives

v +py +ay = (yp+eyn)” +plyp +cyn) +a9(yp +cyn)
= (yp +pyp +ayp) +clyy + py, -+ qyn)
= f+0=f,

so that y, + cy;, satisfies the nonhomogeneous equation. This is the content of Theorem 16.4.
(c) False. Since 1 — cos? x = sin? x, this pair of function is {sin? x,5sin’ x }, which are obviously
constant multiples of one another and thus linearly dependent.

(d) False. Substitute y; + y» into the formula to get

V4w = n+y)" + i +y2) v +v2)
= Y1 + Y2 + i yays T s yayi
= W1 +yh) + (V2 +y2y2) + 12 +yayi
= Y12+ yay
since both 1 and y; satisfy the differential equation. Since there is no reason to expect 115 +

Y2y} to be zero, we see that y; + y» need not be a solution of the equation. This does not
violate Theorem 16.1 since the given equation is not linear.

(e) False. The general solution of this equation is y(t) = ¢y sinv/2t + ¢ cos v/2t. The condition
y(0) = 4 means that c; = 4. We need a second condition in order to get a value for c¢;. Thus
there are multiple solutions.
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Second-Order Differential Equations

49. Substitution gives

y' (1) —12¢/(t) + 36y(t) = (Cre® + Cote® + t2e5)" — 12(C1e® + Cpte® + 1260

+36(C1e® 4 Cate® 4+ t2e5)

= 36C1e% + (Ce® 4 6Cyted + 2t + 6125’
— 72C;e% — 12C,e® — 72C,te® — 24t — 724260t
+36C;¢% + 36C,te® + 3620

= 36C;% + 6Coe® + 6Coe® + 36C,te + 26 + 12£% + 1218 + 3625
— 72C1e% — 12C,e% — 72C,te® — 2410 — 724260
+36C1e% + 36C,ted + 36120

= 36C;e% + 12C,e% + 36C,te® + 260 + 248 + 36120
— 72C1€% — 12C,e® — 72C, 1% — 2410 — 724260
+36C1e% 4 36C,te® + 36120

= 2¢%

51. Substitution gives

22y (1) — 3ty (t) + 4y(t) = 2(C1#? + Cot* Int)” — 3t(Cyt? 4+ Cot? Int)’ + 4(Cy#? + Cat* In't)
= t2(2Cy) + 2 (2Cot Int + Cat)' — 6C1#> — 3t(2Cot Int + Cyt)
+4(C1£% + Cof? Int)
= 2C11? 4+ 2Cot? Int + 2Cot? 4 Cot? — 6C1t* — 6Cot? Int — 3Cyt?
+4C11? +4Cyt% Int
=0.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 7

53. Substitution gives

1 7
2y (8) + 1y (1) + (t2 - 4) y(t) = 12 (t’l/z(Cl cost + G sint))
! 1
+t (t*l/Z(Cl cost+C sint)) + <t2 — 4) (Fl/Z(Cl cost+ Cp sin t))

1 !/
=2 (—zt_3/2(C1 cost + Cysint) 4+ t_l/Z(—Cl sint + C; cos t))

1
+t (—zt_3/2(C1 cost 4 Cysint) +t~/2(—Cy sint + C; cos t))
1 1
+ C1t3% cost 4 Cot* 2 sint — chfl/z cost — ZCZFUZ sin

1
= (Zt‘S/Z(Cl cost+ Cosint) — Et_3/2(—C1 sint + Cp cos 0)

1
+ 12 (2t_3/2(C1 sint 4+ Cycost) + +1/2(—Cycost — C, sint))
1 1
— §C1t_1/2 cost — ECzt_l/2 sint — C1tl/2 sint + Cztl/2 cost

1 1
+ C1if3/2 cost+ Czif3’/2 sint — 1C1t*1/2 cost — 1c2t*1/2 sint

3 1
= 115_1/2(C1 cost+ Cysint) — Etl/z(—Cl sint 4+ Cycost)

1
- Etl/z(—Q sint + Cycost) + t3/2(—Cj cost — Cysint)

1 1
— §C1t71/2 cost — §C2t71/2 sint — Cltl/2 sint + Cztl/2 cost
1 1
+ C1t3/2 cost+ C2t3/2 sint — 7C1t_1/2 cost — 7C2t_1/2 sin t
4 4
=0.

55. (a) Substitution gives
y//_y:(et)//_et:(et)/_etzet_etzo
y// —y= (eft)// _ €7t —_ (—eit)/ _ €7t — eft _ eft =0.

(b) sinht and cosht are each linear combinations of the solutions ¢! and e, so they are both
solutions. They are linearly independent since if asinh t + bcosht = 0, then

et —et el +et a+b, b—a _,
u( 5 )+b< 5 >— 2e+ze =0.

Since ¢! and ¢! are linearly independent, we must havea +b =b —a = 0,so thata = b = 0.
This proves that sinh t and cosh ¢ are linearly independent as well.

(c) Since sinh’ = cosh and cosh’ = sinh, substitution gives
y" —y = (sinht)” —sinht = (cosht)’ —sinht = sinht — sinht = 0
y" —y = (cosht)” — cosht = (sinht)’ — cosht = cosht — cosh t = 0.
t

(d) From part (a), the general solution is Cie! + Cre ™.
Cq sinht 4+ Cp cosh t.

From part (c), the general solution is

Copyright © 2013 Pearson Education, Inc.



Second-Order Differential Equations

(e) Substitution gives

y/l _ ka _ (ekt)ll _ kZekt _ (kekt) k2 kt k2 kt kzekt =0
]/// _ ka _ (efkt)// _ k2€7kt — (_kefkt) _ k2€7 _ kZefkt _ k2€7kt =0.
(f) In terms of exponentials, from part (e), the general solution is C; ekt + Cpe~ k. Since cosh kt =

Kt ok . K _p—k . . .
et*&iet and sinhkt = et_Zief, an identical argument to that in part (b) shows that cosh(kt)

and sinh(kt) are also solutions to y” — k?y and that they are linearly independent. So in terms
of hyperbolic functions, the general solution is C; sinh kt 4+ C; cosh kt.

57. Note that (ekt)(V) = kekt, (sinkt)(V) = k*sinkt, and (coskt)™¥) = k*coskt. Thus with y =
Cye 2t + Cpe?t + Casin2t + C4 cos 2t, we have

y¥) = 16C;e % 4 16Coe% + 16C3 sin 2t + 16C4 cos 2t = 16y(1).

59. @ & (V' (1)?) =20/ ()4 (v (t) =2/ ()y" (1)
(b) From part (a), y" (t)y'(t) = & - £ (y/'(t)?) =1, s0 that (y ( ) ) =2.

(c) Integrating both sides with respect to t gives [ (1/( = [2dt, ory/'(t)? = 2t + C; where
Cy is an arbitrary constant. Thus i/ (t) = +/2t + Cl.

(d) Solving this equation simply involves integrating the right-hand side:

/i\/mdt /i 2t +Cp)V2dt = (2t+C1)3/2+C2

Thus there are two families of solutions.

61. (a) Witho =/, we have v/ = 30+ 4, or v/ — 3v = 4. The integrating factor is e/ ~39" = ¢3¢, this
gives e 30/ — 3e73ty = (e73v)! = 4¢3 Integrate both sides to get e =0 = —%e73 + C, s0
that v = —3 + Cye®. This is the same as y’ = —3§ + Cye’.

(b) Integrating once again gives y = 4t +3 Q4 C=C - %t + Cze*. As a check, note that
4
}/N = (Cz — gt + C3€3t)// = 9C3€3t

4
3y +4=3(C, — St C3e¥) +4 = —449C3e% +4 = 9Cze%.

63. (a) Withv =y we get v/ = 2tv?, so that v =20/ = 2t. Integrating both sides gives —v~! = 12 + Cy,
so that v = — ﬁ Substituting back gives y' = — ﬁ
(b) Integrating once again gives if C; > 0

arctan ( + Cs.

o f )
AN N
andif C; <0

1

In
AWy

As a check, note that for C; > 0,

t+ 4/ |C1
— VG|

! 1 \@ 2
y= /G 21C —(E+c)”

Y = 2K 1 Cy) 2
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D2.1 Basic Ideas

that indeed y” = 2¢(y/)2, and for C; < 0, regardless of the sign of V%1
SO at mdee ]/ (y) an or Cq regar €ess O e51gn0 tf\/ﬁ
R S|
y_tz—‘C1|_f2+C1
, 2
_(t2+C1)2

and again y" = 2t(y')2.

65. (a) Computing derivatives gives
(e73/2sin2t) = — %e*m/z sin 2t + 2¢73t/2 cos 2t = ¢ 3t/2 (2 cos 2t — g sin Zt)
(e73/2sin2t)" = (—ie?’t/z sin 2t 4 2¢ /2 cos Zt) ,
= Ze_g't/z sin2t — 3e /2 cos 2t — 3¢73/2 cos 2t — 4e /2 sin 2t
=¢3/2 <—6 cos 2t — Z sin 2t>
(e73/2cos2t) = — %f?’t/z cos2t — 2e3/2sin 2t = ¢~3/2 (—i cos 2t — 2sin 2t>
(e73/2 cos2t)" = (26_3t/2 cos 2t — 2¢ 732 sin Zt) /
= Ze*?’t/z cos 2t 4 3e /2 sin 2t + 3¢73/2 sin 2t — 4e3/2 cos 2t
= 73/2 (Z cos 2t + 6sin 2t>

—3t/2 —3t/2

Substituting e sin2t and e cos 2t gives

2 2
y'+3y + ZSy = (e7%/2sin2t)" +3(e73/2sin2t)’ + 15(673”2 sin 2t)
= ¢3/2 (—6 cos 2t — Zsin 2t> +3e73t/2 (2 cos 2t — gsin 2t>
2
+ 15(673”2 sin 2t)

7 9 25
— e 3/2 (—6 cos2f — 1 sin2t + 6.cos 2t — > sin 2t + T sin2t>
=0
I DR 1y " —3t/2 125 i
Y 3y Yy = (e cos2t)" 4+ 3(e cos 2t)" + 1 (e cos 2t)
7 3
— 7 3t/2 (—4 cos 2t + 6sin2t> + 3e3t/2 (—2 cos2t — 2 sinZt)
25
+ 1(673”2 cos 2t)

7 2
= ¢ 3t/2 (—4 cos 2t + 6sin2t — gcos% — 6sin2t + Z5 cosZt)

=0
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10 Second-Order Differential Equations

so that e3/2sin 2t and e~3/2 cos 2t are linearly independent solutions, so that the general
solution is y(t) = e~3/2(Cy sin 2t + C; cos 2t).

(b) Since

3
Y (t) = —Ee_3t/2(C1 sin 2t + Cp cos 2t) + e~2/2(2C; cos 2t — 2C, sin 2t)

3
= 3t/2 <<2 cos 2t — 5 sin2t> Ci+ (—2 sin 2t — gcos 2t> C2> ,

substituting the initial conditions into y(t) gives the system of simultaneous equations

e=302(sin(2- 0)Cy + cos(2-0)Cy) = y(0) =4
e~ 30/2 ((2coso — zsin0> C1 + (—ZSinO — §COSO> c2> =1/(0) =0
so that
Cr=4
2C; — gcz =0.

Thus C; = 3 and C; = 4, and the solution to the initial value problem is
y(t) = e73/2(3sin 2t + 4 cos 2t).

(c) A plot of the solution for 0 < t < 27 is

4

67. (a) Computing derivatives gives

(e~ sin4t)’ = —3¢~% sin4t + 4¢3 cos 4t = e 3 (—3sin 4t + 4 cos 4t)
(e 3 sin4t)” = (e 3 (—3sin4t + 4cos4t))’
= 3¢~ (—3sin4t +4cosdt) +e ¥ (—12cos 4t — 16sin 4t)
= ¢ 3 (—7sin4t — 24 cos 4t)
(673 cos4t)’ = —3e 3 cos 4t — e~ sindt = e 3 (—3 cos 4t — 4sin 4t)
(e3 cos4t)” = (e 3 (—3cos4t — 4sin4t))’
= —3e 3 (—3cos4t — 4sin4t) + e 3 (12sin4t — 16 cos 4t)
= ¢~ (24sin4t — 7 cos 4t)
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