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Differential Equations

D1.1 Basic Ideas

D1.1.1 Second-order, because the highest-order derivative appearing in the equation is second order.
D1.1.3 The equation is second-order, so we expect two arbitrary constants in the general solution.
D1.1.5 Yes. Note that y"/(t) = 0 and y/(¢) = 2.

D1.1.7 Yes, it is a solution. Note that y'(t) = —5Ce™5¢, so y/(t) + 5y(t) = 0.

D1.1.9 Yes, it is a solution. ¢'(t) = 4Cycos4t — 4Cysindt, so y”(t) = —16C, sindt — 16C5 cos 4t, so
y"(t) + 16y(t) = 0.

D1.1.11 Yes, it is a solution. y/(t) = 322!, so y'(t) — 2y(t) = 32e* — (32¢* — 20) = 20. Also, y(0) =
16 — 10 = 6.

D1.1.13 Yes, it is a solution. y/(t) = 9sin 3¢, so y”’(t) = 27 cos 3t. Thus, y” (t)+9y(t) = 27 cos 3t—27 cos 3t =
0. Also, y'(0) = 0 and y(0) = —3.

D1.1.15 y(t) = [(3+e ) dt =3t — se > + C.
D1.1.17 y(z) = [(4tan2z — 3cosz) dz = —21In|cos 22| — 3sinz + C = 2In|sec2z| — 3sinx + C.

D1.1.19 y/(¢t) = [(60t* — 4 +12t73)dt = 12¢6° — 4t — 6t 2 + C. y(t) = [(12t> — 4t — 6172 + C)dt =
2t6 — 22 + 6t~ + Oyt + Cs.

Di1. 1 21 u'(z) = [(552° + 3627 — 212° + 10273) dx = 5.520 + 28 — Z26 — 5272 4 (4.
= [(5.5210 + 2a® — 228 — 5272 + O)dx = 22 + 12% — 227 + 5271 + Ciz + Co.
D1.1.23 y(t) = [(1+e')dt = t+e' + C. Because y(0) =4 = 1+ C, we have C = 3. Thus, y(t) =t +e'+3.

D1.1.25 y(z) = [(32% — 327 %) dx = 23 + 272 + C. Because y(1) =0 =141+ C, we have C = —2. So
y(z) =2 + 273 - 2.

D1.1.27 y/(t) = [(12t — 20t3)dt = 6t*> — 5t* + C;. Because y'(0) = 0 = 0+ Cy, we have C; = 0.
y(t) = f(6t2 5t4) dt = 2t3—1°+Cy. Because y(0) = 1 = 0—0+Cs, we have Co = 1. Thus, y(t) = 2t3—t°+1.

D1.1.29
a. v(t) = —9.8t +29.4. s5(t) = —4.9t> 4 29.4t + 30.

b. The object reaches its high point when —9.8¢ +29.4 =0, or t = 299%4 = 3. At that time its position is
s(3) =~ 74.1 meters.

D1.1.31 We have p(t) = (1500—20H )e'"*'+20H. The amount of resource is increasing when 1500—20H > 0,
which occurs for H < 75. The amount of resource is constant when 1500—20H = 0, which occurs for H = 75.
If H = 100, the resource is zero when (1500 — 2000)e%%* + 2000 = 0, which occurs for t = 201n 4 ~ 28.
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D1.1.33

The height function is given by h(t) =
2

(V96— 225 . £)" & (1.4-0.441)°. The tank

is empty when h(t) = 0, which occurs after about

3.16 seconds.

D1.1.35
a. False. That is a specific solution. The general solution is ¢ + C.
b. False. It is second order, but is not linear.

c. True. First find the general solution, and then find the specific solution which satisfies the initial
condition.

D1.1.37 u(z) = [ w§i4 de — [ z"’iﬂ dr = In(2? +4) — tan=!(z/2) + C.

D1.1.39 y/(z) = [ W dr. Let u =1 — 22, so that du = —2x dx. Substituting gives
y(z)=7F [v?2du=u"V24C = ﬁ +Crdz. y(x) = [ (ﬁ + C’l) dr = sin!(z) + Cyz + Cs.

D1.1.41 u(z) = [ (ﬁ - 4) dz = Ltan=!(2/4) — 4z + C. Because u(0) =2 = 0—0+ C, we have C' = 2.
Thus, u(z) = 1 tan~!(z/4) — 4z + 2.

D1.1.43 Using the result of number 40 above, we have y/(t) = te! —e'+C4, and because y'(0) = 1 = 0—1+C1,
we have C; = 2. Thus y/(t) = te! —e' +2. y(t) = [y (t)dt = [(te! —e' +2)dt =te' —e' —e' +2t+ Cy =
te! — 2et + 2t + Cy. Because y(0) =0 =0 — 2+ 0+ Cy, we have Cy = 2. Thus, y(t) = te! — 2e* + 2t + 2.

D1.1.45 u/(t) = Cret + Coel + Cotel, and u”(t) = Cret + Czet + Coel + Cotet = Cret +205et + Ostet. Thus,
u”(t) — 2u’(t) + u(t) = (Clet + 2026t + Ogtet) — Q(Olet + Oget + Ogtet) + Olet + Ogtet =0.

D1.1.47 o/(t) = 201t + 3Cat?, so u” (t) = 2Cy + 6Cat. Thus,
120 (t) — 4t (t) + 6u(t) = 2C1% 4+ 6Cot® — 4(2C112 + 3Cot3) + 6C11% + 6Cot® = 0.

D1.1.49 2/(t) = —Cre ! 4+ 2Cqe? — 3C3e73" — el So 2'(t) = Cre~! + 4Cqe?t + 9C3e73" — et and 2" (t) =
—Cre t 4+ 8Che?t — 27Cqe™ 3t — ¢t. Thus

27(t) + 22" (t) — 52/ (t) — 62(t) = —Cre™ " + 8Ce* — 27C3e 73" — ¢!
+2C1e7" 4 8Ce*" + 18C5e " — 2¢
+5C1e™" — 10C2e*" 4 15C5e™ + Be'
—6C1e" — 6Ce*" — 6C3¢ " + 6e
= 8e'
D1.1.51

a. y'(t) = Crcost — Cysint, so y”(t) = —Cysint — Cycost. Thus, () + y(t) = 0.

b. y'(t) = 2C5 cos 2t — 2Cy sin 2t, so y” (t) = —4C5 sin 2t — 4C5 cos 2¢. Thus, vy (t) + 4y(t) = 0.

c. A general solution appears to be y(t) = Cy sinkt + Cq cos kt. Then y'(t) = kCy cos kt — kCq sin kt, so

y"(t) = —k*Cy sinkt — k*Cy cos kt. And then y”(t) + k%y(t) = 0.
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D1.2. DIRECTION FIELDS AND EULER’S METHOD 5

D1.1.53

a. Let p(t) = HC‘% Note that 1 — % =1- 1+clefrt = 155;7,., We have

L T
Pv= (14Cer)2 " 14+Cert 1+ Ce "t b K/’
b. If p(0) = 50 = HLC’ then 50 + 50C = K, so C' = K57050.

¢. We have p(t) = %.

10 20 30 40 50 60

d. limy_y o H_g’?% = f’_%% = 300, which is consistent with the graph from part c.

D1.1.55
. TF y(t) = yoe ™, then y(0) = yo, and y'(£) = —kyoe ™, s0 /(1) = —ky(t).

b. Let y(t) = ;5. Then y(0) = yo, and y/(t) = i = —k(y(t)>.

T Yo

c. The first order reaction decays more quickly.

D1.2 Direction Fields and Euler’s Method

D1.2.1 Choose a regular grid of points in the ty-plane, and for each point P, make a small line segment
with slope f(t,y).

D1.2.3 up = y(3) = 1. uy = ug+ f(3,1)(.1) = 1+ .6 = 1.6.
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