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Differential Equations

D1.1 Basic Ideas

D1.1.1 Second-order, because the highest-order derivative appearing in the equation is second order.
D1.1.2 Linear, because the unknown function and its derivatives appear only to the first power.
D1.1.3 The equation is second-order, so we expect two arbitrary constants in the general solution.
D1.1.4 We have y(0) = C + 10 = 5, so C' = —5. The solution is y(t) = —5e 3! + 10.

D1.1.5 Yes. Note that y"/(t) = 0 and y/(¢) = 2.

D1.1.6 No. y(0) =6 # 3.

D1.1.7 Yes, it is a solution. Note that y/(t) = —5Ce =5, so y'(t) + by(t) = 0.

D1.1.8 Yes, it is a solution. y/(t) = —3Ct™ 4, so ty/(t) + 3y(t) = —3Ct=3 +3Ct =3 = 0.

D1.1.9 Yes, it is a solution. ¢'(t) = 4Cycos4t — 4Csysindt, so y”(t) = —16C, sindt — 16C5 cos 4t, so
Yy (t) + 16y(t) = 0.

D1.1.10 Yes, it is a solution. y'(x) = —Cre™* + C2e®, s0 y"(z) = Cre™™ + C2e”, so ¥’ (z) — y(z) = 0.

D1.1.11 Yes, it is a solution. y/(t) = 32e2, so 3/ (t) — 2y(t) = 322" — (32¢2* — 20) = 20. Also, y(0) =
16 — 10 = 6.

D1.1.12 Yes, it is a solution. y/(t) = 485, so ty'(t) — 6y(t) = 48t% — 48t6 + 18 = 18. Also, y(1) =8 —3 = 5.

D1.1.13 Yes, it is a solution. y'(t) = 9sin 3¢, so y”’(t) = 27 cos 3t. Thus, y"(t)+9y(t) = 27 cos 3t—27 cos 3t =
0. Also, 3/(0) = 0 and y(0) = —3.

D1.1.14 Yes, it is a solution. y'(z) = $(2e2* +2¢72*) and y”(x) = ;(4¢* — 4e727). So y(x) — 4y(x) = 0.
Also, y(0) = 0 and ¢'(0) = 1.

D1.1.15 y(t) = [(3+e ) dt =3t — Je ' + C.

D1.1.16 y(t) = [(12t> — 20t* +2 — 6t 2) dt = 25 —4t° + 2t + & + C.

D1.1.17 y(z) = [(4tan2z — 3cosz) dz = —21In|cos 22| — 3sinz + C = 2In|sec2z| — 3sinx + C.
D1.1.18 p(z) = [(1627° — 5+ 1425) dz = —2278 — o + 227 + C.

D1.1.19 y/(t) = [(60t* — 4 + 12t73)dt = 12¢° — 4t — 6t 2 + C. y(t) = [(12t> — 4t — 6t 2 + C)dt =
266 — 2t2 + 6t~ + C1t + Co.

D1.1.20 y/(t) = [(15¢3 + sindt)dt = 53 — Lcosdt + C1. y(t) = [(5e3 — cosdt + Cy)dt = Ze’ —
% sin4t + Cit + Cs.
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D1.1.21 «'(z) = [(552° + 3627 21:105 +10273) dx = 5 5210 + 928 — 126 — 5272 4 (4.
u(x):f(5.5m10+%x8 220 =522+ C)dx = 32" + 4 9—% + 5z~ —I—C'lac—i—C’g.
D1.1.22 v'(z) = [ze®dx = ze” — e” + C1. v(x) = [(we® — e + C1)dx = ze” —e” —e” + Chz + Cy =

ze® — 2e” —1—0133—1—02
D1.1.23 y(t) = [(1+€")dt =t+e'+ C. Because y(0) =4 =1+ C, we have C' = 3. Thus, y(t) = t+e' + 3.

D1.1.24 y(t) = f(sint + cos2t)dt = —cost + 3sin2t + C. Because y(0) = 4 = —1 4 C, we have C = 5.
Thus, y(t) = —cost + & sin 2t + 5.

D1.1.25 y(z) = [(32% — 327 *)dx = 23 + 272 + C. Because y(1) =0 =141+ C, we have C = —2. So
y(z) =2+ 273 - 2.

D1.1.26 y(z) = [4sec?2zxdr = 2tan2x + C. Because y(0) = 8 = 0+ C, we have C = 8. Thus,
y(x) = 2tan2m +8.

D1.1.27 y'(t) = [( 12t - 20t3)dt = 6t> — 5t* + C;. Because 3'(0) = 0 = 0 + Oy, we have C; = 0.
y(t) = f(61f2 5t4) dt = 2t3—1°+Cy. Because y(0) = 1 = 0—0+Cs, we have Cy = 1. Thus, y(t) = 26> —t°+1.

D1.1.28 v/(z) = [(4€>*® —8e~27) dx = 26275—1—46*29”—1—01. Because v/ (0) = 3 = 2+44 C4, we have Cy = —
u(z) = [(2e** +4e72" — 3) dx = €>* —2e72* — 3z + (5. Because u(0) =1 =1—2—0+ Cs, we have Cy = 2.
Thus, u(z) = €2* — 2e=2¢ — 3z + 2.

D1.1.29
a. v(t) = —9.8t +29.4. s(t) = —4.9t% 4 29.4¢ + 30.

b. The object reaches its high point when —9.8¢ +29.4 =0, or t = % = 3. At that time its position is
5(3) ~ 74.1 meters.

D1.1.30
a. v(t) = —9.8t +49. s(t) = —4.9t> + 49t + 60.

b. The object reaches its high point when —9.8t +49 = 0, or t = % = 5. At that time its position is
s(b) = 182.5 meters.

D1.1.31 We have p(t) = (1500—20H )e'"'+20H. The amount of resource is increasing when 1500—20H > 0,
which occurs for H < 75. The amount of resource is constant when 1500—20H = 0, which occurs for H = 75.
If H = 100, the resource is zero when (1500 — 2000)e%%* + 2000 = 0, which occurs for t = 201n 4 ~ 28.

D1.1.32 We have p(t) = (po—10000)e***+10000. The amount of resource is decreasing when pg—10000 < 0,
or pg < 10,000. The amount of resource is constant when py = 10,000. If pg = 9000, the resource vanishes
when —1000e%%* = —10000, or t = 201n 10 ~ 46.

D1.1.33

The height function is given by h(t) =
2
(V96— 29295 . )7 & (1.4-0.441)2. The tank

is empty when h(t) = 0, which occurs after about
3.16 seconds.
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D1.1.34

The height function is given by h(t) =
2
(V235 — 2295 )" ~ (1.5~ 553t)%. The tank

is empty when h(t) = 0, which occurs after about
2.71 seconds.

D1.1.35
a. False. That is a specific solution. The general solution is ¢ + C.
b. False. It is second order, but is not linear.

c. True. First find the general solution, and then find the specific solution which satisfies the initial
condition.

D1.1.36 y(t) = [(tlnt+1)dt =t+ [tIntdt. Let u=Int and dv = ¢, so that du = % and v = t?/2. Then
y(t) :t+(t21nt)/2—ft/zdt:t+(t21nt)/2—t2/4+0.

D1.1.37 u(x) = [ #%5 do — [ g doe = In(2® +4) — tan~" (2/2) + C.

D1.1.38 Note that - = 15 — t+2 Thus, v(t) = [z dt = [ (ﬁ t+2) dt =

t—2
t+2 ‘ +C.

D1.1.39 y'(z) = [ W dr. Let u =1 — 22, so that du = —2x dx. Substituting gives
y(x) =S [u2du=u"? 4 Cy = 2 + Crde. y(a) = | (ﬁ + C’l) dz = sin~!(z) + C1z + Cs.

D1.1.40 Let u = ¢ and dv = e'dt. Then du = dt and v = e'. Thus, y(t) = [te'dt = te! — [e'dt =
te! —e' + C. Because y(0) = —1=0—1+ C, we have C = 0. Thus y(t) = te — el

D1.1.41 u(z) = [ (T}MQ - 4) dr =+ tan™!(z/4) — 4z + C. Because u(0) =2 = 0—0+ C, we have C' = 2.
Thus, u(z) = ; tan™!(z/4) — 4z + 2.

D1.1.42 p(x) :fﬁdaj: S (% - x%_l) dr =2In| 5
C = —-2In(1/2) = 2In2. Thus, p(z) = 2In | 5

(1) =0=2In(1/2)+C, we have

D1.1.43 Using the result of number 40 above, We have y ( ) te! —e'+C1, and because y'(0) = 1 = 0—1+C1,
we have C7 = 2. Thus y/(t) = te' —e' +2. y(t) = [y (t)dt = [(te' —e' +2)dt =te' —e' —e' +2t+Cy =
el — 2e' + 2t + Cy. Because y(0) =0=0—2 + 0+ CQ, we have Cy = 2. Thus, y(t) = te' — 2’ + 2t + 2.

D1.1.44 u/(t) = Cel/(4t4)_74t_5 = _1;5(’5). Thus v/ (t) + % _u(t) + u(t) =0.

D1.1.45 v/(t) = Crel + Cael + Cotel, and u” (t) = Chet + Czet + Cael + Cotet = Cret 4 205t + Cytet. Thus,
u(t) — 20/ (t) + u(t) = (Cret + 2C2e! + Cate') — 2(Cret + Caet + Catel) + Cret + Catet = 0.

D1.1.46 ¢'(z) = —2C1e 2+ Che 2" +—2Come™ 2%, 50 g" (v) = 40 1e72" —2Ce 2+ —20e 2% +4Coze™ 2" =
4C1e72" —4Coe 2 +4Coze2%. Thus, ¢"(z)+4g' (z)+4g(x) = 4C1e™ 2% —4Coe 2" +4Come 22 +4(—2C e 2" +
Coe™2® + —2Cywe™2%) + 4(Cre™ 2% + Coze™2% + 2) = 8.

D1.1.47 u/(t) = 2C1t + 3Cot?, so u” (t) = 2C; + 6Cyt. Thus,

20 (t) — 4t (t) + 6u(t) = 2C11% 4+ 6Cot® — 4(2C112 + 3Cot3) + 6C11% + 6Cot® = 0.

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.
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D1.1.48 u/(t) = 5C1t* — 405t =5 — 3t2, so v (t) = 20C1t3 + 2005t~ — 6t. Thus,
2" (t) — 20u(t) = 20C1t° + 2005t~ — 6% — 20 (C1t° + Cot™* — 7)) = 14¢%

D1.1.49 2/(t) = —Cre~ ! + 202" — 3C3e73t — !, So 2”(t) = Cre™t + 4Cee?" + 9C5e 3 — €!, and 2"(t) =
—Chre t 4+ 8C5e? — 27C5e™ %t — ef. Thus

27(t) + 22" (t) — 52/ (t) — 62(t) = —Cre™ " + 8Cye* — 27C3e 73" — ¢!
+2C1e™" + 8Ce* + 18C3e ™% — 2¢!
+5C e —10C2¢*" + 15C5e " + be'
—6C1e”" — 6Ce* — 6C3e ™" + 6e’
= 8¢

D1.1.50
a. y'(t) = Cre! — Cae™ ", so y"(t) = Cre' + Cae~*. Thus, y"(t) — y(t) = 0.
b. i (t) = 2C1€?" — 2C2e7% s0 " (t) = 4Cqe?t + 4Ce~2!. Thus, y'(t) — 4y(t) = 0.

c. It appears that a general solution should be Cjeft + Coe™*. Then y/(t) = kCeF — kCye™", and
y"(t) = k2CreM + k2Coe™*t. Thus, y"(t) — k?y(t) = 0.

d. If y(t) = C;coshkt + Cysinh kt, then y/(t) = kCysinh kt + kCy cosh kt and y”(t) = k*Cy cosh kt +
k*Cysinh kt. Thus y”(t) — k?y(t) = 0.

D1.1.51
a. y'(t) = Crcost — Caysint, so 3y’ (t) = —Cysint — Cy cost. Thus, vy’ (t) + y(t) = 0.
b. y'(t) = 203 cos 2t — 2Cy sin 2t, so y" (t) = —4Cs sin 2t — 4C4 cos 2t. Thus, y”(t) + 4y(t) = 0.

c. A general solution appears to be y(t) = Cy sinkt + Cy coskt. Then y/(t) = kC; cos kt — kCy sin kt, so
y"(t) = —k?Cy sinkt — k?Cy cos kt. And then 3" (t) + k?y(t) = 0.

D1.1.52
a. Let m(t) = £(1 — e~*). Note that m(0) = 0. Then m’(t) = £ (ke~**). Therefore,

I kI
m/(t) + km(t) = E(k:efkt) + ?(1 —e My =Te M T —Te M =1

b. We have m(t) = 200(1 — e~05%). s

c. It appears that lim; ., m(t) = 200.

D1.1.53
a. Let p(t) = HC‘% Note that 1 — % =1- 1+Cle,,.t = 155;1, We have
" KCre™ "t K Ce™"t . (1 D )
= =7 . — — = .
P (1+ Cert)? 1+Cert 1+Cert  PUTK

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.
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b. If p(0) = 50 = 1+C,then 50 + 50C = K, so C' = £=20,

¢. We have p(t) = %.

d. lim; .o H_ggig“ = % = 300, which is consistent with the graph from part c.
D1.1.54
a. Let v(t) = £(1 — e~""). Then v(0) = 0, and
V'(t) = %~be*bt =g =g—b. Z(l —e =g —bu.
b. With b= 0.1, we have v(t) = 98(1 — e~1%).

c. limy o0 v(t) = 98.

D1.1.55
a. If y(t) = yoe ™, then y(0) = yo, and y/(t)

= —kyoe ™, so y/(t) = —ky(t).

.2
b. Let y(t) = -4~ Then y(0) = yo, and y'(t) = e = —k(y(t)*.

c. The first order reaction decays more quickly.

60

30 40 50

50 60

M(t)/K) = e~ In(My/K).

a. Let M(t) = K (%)e . Note that In(
n(M(t)/K). Also, M(0) = K(My/K) = M.

M'(t) =K (52)°  Wn(Mo/K) (=re™"") =
Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.
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Using K = 200, My = 100, and r = .05, we
rt — .05t

P have M(t) = K (M) = 200(1/2)¢ "

504

c. limyoo M(t) =200 = K.

D1.2 Direction Fields and Euler’s Method

D1.2.1 Choose a regular grid of points in the ty-plane, and for each point P, make a small line segment
with slope f(t,y).

D1.2.2 It will have slope 32 — 3(1)% = 6.
D1.2.3 up = y(3) = 1. ug = uo + £(3,1)(.1) = 1 + .6 = 1.6.

D1.2.4 Because the differential equation is giving the slope at a given point, we can approximate the
solution to the differential equation by starting at the initial point, and using the slope to guide where
the next iteration should be. In essence, we are numerically ”following the direction field” to estimate the
solution to the differential equation.

D1.2.5 D1.2.6

~

D1.2.7
a. This matches with D.
b. This matches with B.
c. This matches with A.

d. This matches with C.
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