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Chapter D2

Second-Order Differential Equations

D2.1 Basic Ideas

1. The order of a differential equation is the highest-order derivative that appears in the equation.
Thus for example y′(t) + y(t) = 0 is a first-order equation, while y′′(t) + y(t) = 0 is a second-
order equation.

2. A differential equation is linear if each additive term of the equation either does not depend on the
unknown function y (so that it is either constant or depends only on t), or is a multiple of y or one
of its derivatives by a constant or by a function of t only. In other words, a differential equation is
linear if it is of the form

y(n)(t) + pn−1(t)y(n−1)(t) + · · ·+ p1(t)y′(t) + p0(t)y(t) = f (t).

A nonlinear differential equation is one that is not linear.

3. A differential equation y′′(t) + p(t)y′(t) + q(t)y(t) = f (t) is homogeneous if f (t) = 0 for t in the
domain we are interested in. It is nonhomogeneous if this is not the case. Thus for example y′′(t) +
3ty(t) = 0 is homogeneous, while y′′(t) + 3ty(t) = t2 is nonhomogeneous.

4. The general form is y′′(t) + p(t)y′(t) + q(t)y(t) = f (t). If the original form of the equation has
a coefficient on y′′(t) other than 1, simply divide through by it to get an equation in this general
form.

5. Two functions f and g are linearly dependent on an interval I if there is some nonzero constant
c such that for each x ∈ I we have f (x) = cg(x). That is, they are linearly dependent if one is a
nonzero constant multiple of another.

6. By Theorem 16.2, there are two linearly independent solutions to a second-order linear homoge-
neous differential equation.

7. The general solution of a second-order linear nonhomogeneous differential equation is the sum of
(a) any single particular solution of the nonhomogeneous equation, and (b) the general solution
of the homogeneous equation derived by setting f (t) = 0 in the nonhomogeneous equation. See
Theorems 16.3 and 16.4.

8. If y′′(t) + p(t)y′(t) + q(t)y(t) = f (t) is a second-order linear nonhomogeneous differential equa-
tion with initial conditions y(0) = A and y′(0) = B, we solve it as follows: first find the general
solution of the corresponding homogeneous differential equation y′′(t) + p(t)y′(t) + q(t)y(t) = 0;
this will have the form c1y1(t) + c2y2(t) where y1(t) and y2(t) are linearly independent solutions

Copyright © 2013 Pearson Education, Inc.



2 Second-Order Differential Equations

to the homogeneous equation. Next, find any particular solution, say y3(t), to the original nonho-
mogeneous equation. By Theorem 16.4, the general solution to the nonhomogeneous equation is
then c1y1(t) + c2y2(t) + y3(t). Now use the initial conditions to construct the two equations

c1y1(0) + c2y2(0) = A− y3(0)

c1y′1(0) + c2y′2(0) = B− y′3(0)

and solve these for c1 and c2.

9. Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since y and its derivatives only appear in terms by themselves, not with other
derivatives of y, it is linear. Finally, since there is a nonzero term (10t2) that does not depend on y,
it is nonhomogeneous.

10. Since the highest order derivative appearing is the first derivative, this is a first-order differential
equation. Since there is a y3 term, it is nonlinear. Finally, since the term −4t is a nonzero term not
depending on y, it is nonhomogeneous.

11. Since the highest order derivative appearing is the second derivative, this is a second-order differ-
ential equation. Since there is a term involving yy′, it is nonlinear. Finally, since there is a nonzero
term (et) that does not depend on y, it is nonhomogeneous.

12. Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since z and its derivatives only appear in terms by themselves, not with other
derivatives of z, it is linear. Finally, since every nonzero term depends on z, it is homogeneous.

13. Since d2

dt2 ekt = d
dt (kekt) = k2ekt, we have

y′′(t)− 4y(t) = (3e2t − 5e−2t)′′ − 4(3e2t − 5e−2t) = 12e2t − 20e−2t − (12e2t − 20e−2t) = 0.

14. Since (sin at)′′ = (a cos at)′ = −a2 sin at and (cos at)′′ = (−a sin at)′ = −a2 cos at, we have

y′′(t) + 16y(t) = (10 sin 4t− 20 cos 4t)′′ + 16(10 sin 4t− 20 cos 4t)
= −160 sin 4t + 320 cos 4t + (160 sin 4t− 320 cos 4t)
= 0.

15. Since d2

dt2 ekt = d
dt (kekt) = k2ekt, we have

y′′(t)− 9y(t) = (4e3t + 3e−3t − 2t)′′ − 9(4e3t + 3e−3t − 2t)

= (36e3t + 27e−3t)− (36e3t + 27e−3t − 18t)
= 18t.

16. Using the derivatives of sin at and cos at from Exercise 14, we have

y′′(t) + 25y(t) =
(

2 sin 5t− 6 cos 5t +
1
2

cos t
)′′

+ 25
(

2 sin 5t− 6 cos 5t +
1
2

cos t
)

=

(
−50 sin 5t + 150 cos 5t− 1

2
cos t

)
+

(
50 sin 5t− 150 cos 5t +

25
2

cos t
)

= 12 cos t.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 3

17. We have

y′′(t)− y′(t)− 2y(t) = (C1e−t + C2e2t)′′ − (C1e−t + C2e2t)′ − 2(C1e−t + C2e2t)

= (C1e−t + 4C2e2t)− (−C1e−t + 2C2e2t)− (2C1e−t + 2C2e2t)

= 0.

18. We have

y′′(t) + 2y′(t)− 3y(t) = (C1e−3t + C2et + e2t)′′ + 2(C1e−3t + C2et + e2t)′ − 3(C1e−3t + C2et + e2t)

= (9C1e−3t + C2et + 4e2t) + (−6C1e−3t + 2C2et + 4e2t)

− (3C1e−3t + 3C2et + 3e2t)

= 5e2t.

19. We have

y′′(t) + 6y′(t) + 25y(t) =
(

e−3t(C1 sin 4t + C2 cos 4t)
)′′

+ 6
(

e−3t(C1 sin 4t + C2 cos 4t)
)′

+ 25
(

e−3t(C1 sin 4t + C2 cos 4t)
)

=
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)′
+ 6

(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
=
(

e−3t((−3C1 − 4C2) sin 4t + (4C1 − 3C2) cos 4t)
)′

+ 6
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
= −3e−3t((−3C1 − 4C2) sin 4t + (4C1 − 3C2) cos 4t)

+ e−3t((−12C1 − 16C2) cos 4t + (−16C1 + 12C2) sin 4t)

+ 6
(
−3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)

)
+ 25

(
e−3t(C1 sin 4t + C2 cos 4t)

)
= e−3t((9C1 + 12C2) sin 4t + (−12C1 + 9C2) cos 4t)

+ e−3t((−16C1 + 12C2) sin 4t + (−12C1 − 16C2) cos 4t)

+ e−3t((−18C1 − 24C2) sin 4t + (24C1 − 18C2) cos 4t)

+ e−3t(25C1 sin 4t + 25C2 cos 4t)
= 0.

Copyright © 2013 Pearson Education, Inc.



4 Second-Order Differential Equations

20. We have

y′′(t) + 8y′(t) + 25y(t) =
(

e−4t(C1 sin 3t + C2 cos 3t) + 2
)′′

+ 8
(

e−4t(C1 sin 3t + C2 cos 3t) + 2
)′

+ 25
(

e−4t(C1 sin 3t + C2 cos 3t) + 2
)

=
(
−4e−4t(C1 sin 3t + C2 cos 3t) + e−4t(3C1 cos 3t− 3C2 sin 3t)

)′
+ 8(−4e−4t(C1 sin 3t + C2 cos 3t) + e−4t(3C1 cos 3t− 3C2 sin 3t))

+ 25
(

e−4t(C1 sin 3t + C2 cos 3t) + 2
)

=
(

e−4t((−4C1 − 3C2) sin 3t + (3C1 − 4C2) cos 3t)
)′

e−4t(−32C1 sin 3t− 32C2 cos 3t) + e−4t(24C1 cos 3t− 24C2 sin 3t))

+ e−4t(25C1 sin 3t + 25C2 cos 3t) + 50

=
(
−4e−4t((−4C1 − 3C2) sin 3t + (3C1 − 4C2) cos 3t)

)
+ e−4t((−12C1 − 9C2) cos 3t + (−9C1 + 12C2) sin 3t)

+ e−4t((−32C1 − 24C2) sin 3t + (24C1 − 32C2) cos 3t)

+ e−4t(25C1 sin 3t + 25C2 cos 3t) + 50

= e−4t((16C1 + 12C2) sin 3t + (−12C1 + 16C2) cos 3t)

+ e−4t((−9C1 + 12C2) sin 3t + (−12C1 − 9C2) cos 3t)

+ e−4t((−32C1 − 24C2) sin 3t + (24C1 − 32C2) cos 3t)

+ e−4t(25C1 sin 3t + 25C2 cos 3t) + 50
= 50.

21. We have

ty′′(t)− (t + 1)y′(t) + y(t) = t
(
C1et + C2(t + 1)

)′′ − (t + 1)
(
C1et + C2(t + 1)

)′
+
(
C1et + C2(t + 1)

)
= t

(
C1et + C2

)′ − (t + 1)
(
C1et + C2

)
+
(
C1et + C2(t + 1)

)
= tC1et − tC1et − tC2 − C1et − C2 + C1et + tC2 + C2

= 0.

22. We have

t2y′′(t) + 2ty′(t)− 2y(t) = t2
(

C1t−2 + C2t +
1
2

t3
)′′

+ 2t
(

C1t−2 + C2t +
1
2

t3
)′

− 2
(

C1t−2 + C2t +
1
2

t3
)

= t2
(
−2C1t−3 + C2 +

3
2

t2
)′

+ 2t
(
−2C1t−3 + C2 +

3
2

t2
)

− 2
(

C1t−2 + C2t +
1
2

t3
)

= t2
(

6C1t−4 + 3t
)
− 4C1t−2 + 2C2t + 3t3 − 2C1t−2 − 2C2t− t3

= 6C1t−2 + 3t3 − 4C1t−2 + 2C2t + 3t3 − 2C1t−2 − 2C2t− t3

= 5t3.

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 5

23. The two given solutions are linearly independent, since for example at t = 0, 1
5 · 5e−6·0 = e6·0

while at t = 1 we see that 1
5 · 5e−6 = e−6 6= e6, so that the two solutions do not differ by a

constant multiple. Since the two given solutions are linearly independent, the general solution is
y(t) = C1e6t + C2e−6t. Note that the coefficient of 5 in the second solution has been subsumed into
the constant C2.

24. The two given solutions are linearly independent, since for example at t = 0, sin
√

5 t = 0 · cos
√

5 t,
but this is not true at t = π

2 , so that the two solutions do not differ by a constant multiple. Since
the two given solutions are linearly independent, the general solution is y(t) = C1 cos

√
5 t +

C2 sin
√

5 t.

25. The two solutions are linearly independent, since for example at t = 0, te−t = 0 · e−t, but this is not
true at t = 1, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = C1e−t + C2te−t.

26. The two solutions are linearly independent, since for example at t = 1, t = 1 · t−1, but this is not
true at t = 2, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = C1t + C2t−1.

27. y′′(t)− y(t) = (e−3t)′′ − e−3t = 9e−3t − e−3t = 8e−3t.

28. Substituting gives

y′′(t) + y(t) = (2 sin t− cos 2t)′′ + (2 sin t− cos 2t)

= (2 cos t + 2 sin 2t)′ + 2 sin t− cos 2t
= −2 sin t + 4 cos 2t + 2 sin t− cos 2t
= 3 cos 2t.

29. Substituting gives

y′′(t)− 4y′(t) + 4y(t) = (t2e2t)′′ − 4(t2e2t)′ + 4(t2e2t)

= (2te2t + 2t2e2t)′ − 4(2te2t + 2t2e2t) + 4t2e2t

= 2e2t + 4te2t + 4te2t + 4t2e2t − 8te2t − 8t2e2t + 4t2e2t

= 2e2t.

30. Substituting gives

t2y′′(t) + ty′(t)− 4y(t) = t2(−2t + t2)′′ + t(−2t + t2)′ − 4(−2t + t2)

= t2(−2 + 2t)′ + t(−2 + 2t) + 8t− 4t2

= 2t2 − 2t + 2t2 + 8t− 4t2 = 6t.

31. Substituting 1
2 e−t for y(t) gives

y′′(t)− 49y(t) =
(

1
2

e−t
)′′
− 49

(
1
2

e−t
)
=

1
2

e−t − 49
2

e−t = −24e−t.

Substituting 1
2 e−t + 3e7t for y(t) gives

y′′(t)− 49y(t) =
(

1
2

e−t + 3e7t
)′′
− 49

(
1
2

e−t + 3e7t
)
=

1
2

e−t + 147e7t− 49
2

e−t− 147e7t = −24e−t.

Copyright © 2013 Pearson Education, Inc.



6 Second-Order Differential Equations

Thus both of the functions given are in fact particular solutions. Their difference is 3e7t; substitut-
ing this into the equation gives

y′′(t)− 49y(t) = (3e7t)′′ − 49(3e7t) = 147e7t − 147e7t = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

32. Substituting 2 sin t for y(t) gives

y′′(t) + 16y(t) = (2 sin t)′′ + 16(2 sin t) = −2 sin t + 32 sin t = 30 sin t.

Substituting 2 sin t− 8 cos 4t for y(t) gives

y′′(t) + 16y(t) = (2 sin t− 8 cos 4t)′′ + 16(2 sin t− 8 cos 4t)
= −2 sin t + 128 cos 4t + 32 sin t− 128 cos 4t
= 30 sin t.

Thus both of the functions given are in fact particular solutions. Their difference is 8 cos 4t; substi-
tuting this into the equation gives

y′′(t) + 16y(t) = (8 cos 4t)′′ + 16(8 cos 4t) = −128 cos 4t + 128 cos 4t = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

33. Substituting −et for y(t) gives

y′′(t)− y′(t)− 12y(t) = (−et)′′ − (−et)′ − 12(−et) = −et + et + 12et = 12et.

Substituting 6e4t − et for y(t) gives

y′′(t)− y′(t)− 12y(t) = (6e4t − et)′′ − (6e4t − et)′ − 12(6e4t − et)

= 96e4t − et − (24e4t − et)− 72e4t + 12et

= 12et.

Thus both of the functions given are in fact particular solutions. Their difference is 6e4t; substitut-
ing this into the equation gives

y′′(t)− y′(t)− 12y(t) = (6e4t)′′ − (6e4t)′ − 12(6e4t) = 96e4t − 24e4t − 72e4t = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

34. Substituting − t2

2 for y(t) gives

t2y′′(t) + 2ty′(t)− 30y(t) = t2
(
− t2

2

)′′
+ 2t

(
− t2

2

)′
− 30

(
− t2

2

)
= −t2 − 2t2 + 15t2

= 12t2.

Substituting 3t5 − t2

2 for y(t) gives

t2y′′(t) + 2ty′(t)− 30y(t) = t2
(

3t5 − t2

2

)′′
+ 2t

(
3t5 − t2

2

)′
− 30

(
3t5 − t2

2

)
= t2(60t3 − 1) + 2t(15t4 − t)− 90t5 + 15t2

= 60t5 − t2 + 30t5 − 2t2 − 90t5 + 15t2

= 12t2.

Copyright © 2013 Pearson Education, Inc.
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Thus both of the functions given are in fact particular solutions. Their difference is 3t5; substituting
this into the equation gives

t2y′′(t) + 2ty′(t)− 30y(t) = t2(3t5)′′ + 2t(3t5)′ − 30(3t5) = 60t5 + 30t5 − 90t5 = 0,

so that the two particular solutions differ by a solution of the homogeneous equation.

35. Evaluating the differential expression y′′(t) + 2y(t) for the three values given, we get:

(sin
√

2 t)′′ + 2 sin
√

2 t = −2 sin
√

2 t + 2 sin
√

2 t = 0

(et)′′ + 2et = et + 2et = 3et

(cos
√

2 t)′′ + 2 cos
√

2 t = −2 cos
√

2 t + 2 cos
√

2 t = 0.

Thus sin
√

2 t and cos
√

2 t are solutions of the homogeneous equation and et is a solution of the
nonhomogeneous equation. Since sin

√
2 t and cos

√
2 t are linearly independent, the general so-

lution of the nonhomogeneous equation is

y(t) = c1 sin
√

2 t + c2 cos
√

2 t + et.

36. Evaluating the differential expression y′′(t)− 4y(t) for the three values given, we get:

(5e2t)′′ − 4(5e2t) = 20e2t − 20e2t = 0

(e−2t)′′ − 4(e−2t) = 4e−2t − 4e−2t = 0

(− cos t)′′ − 4(− cos t) = cos t + 4 cos t = 5 cos t.

This 5e2t and e−2t are solutions of the homogeneous equation and − cos t is a solution of the non-
homogeneous equation. Since 5e2t and e−2t are linearly independent, the general solution of the
nonhomogeneous equation is

y(t) = c1e2t + c2e−2t − cos t.

Notice that the coefficient 5 of e2t was subsumed into the constant c1. Writing y(t) = 5c1e2t +
c2e−2t − cos t is equally correct but unnecessarily complicated.

37. Evaluating the differential expression y′′(t)− 3y′(t) + 25
4 y(t) for the three values given, we get

(e3t/2 cos 2t)′′ − 3(e3t/2 cos 2t)′ +
25
4
(e3t/2 cos 2t)

=

(
3
2

e3t/2 cos 2t− 2e3t/2 sin 2t
)′
− 3

(
3
2

e3t/2 cos 2t− 2e3t/2 sin t
)
+

25
4
(e3t/2 cos 2t)

=

(
e3t/2

(
3
2

cos 2t− 2 sin 2t
))′
− 3

(
3
2

e3t/2 cos 2t− 2e3t/2 sin t
)
+

25
4
(e3t/2 cos 2t)

=
3
2

e3t/2
(

3
2

cos 2t− 2 sin 2t
)
+ e3t/2(−3 sin 2t− 4 cos 2t)

− 9
2

e3t/2 cos 2t + 6e3t/2 sin 2t +
25
4

e3t/2 cos 2t

= e3t/2
(

9
4

cos 2t− 3 sin 2t− 3 sin 2t− 4 cos 2t− 9
2

cos 2t + 6 sin 2t +
25
4

cos 2t
)

= 0

Copyright © 2013 Pearson Education, Inc.



8 Second-Order Differential Equations

(e3t/2 sin 2t)′′ − 3(e3t/2 sin 2t)′ +
25
4
(e3t/2 sin 2t)

=

(
3
2

e3t/2 sin 2t + 2e3t/2 cos 2t
)′
− 3

(
3
2

e3t/2 sin 2t + 2e3t/2 cos t
)
+

25
4
(e3t/2 sin 2t)

=

(
e3t/2

(
3
2

sin 2t + 2 cos 2t
))′
− 3

(
3
2

e3t/2 sin 2t + 2e3t/2 cos t
)
+

25
4
(e3t/2 sin 2t)

=
3
2

e3t/2
(

3
2

sin 2t + 2 cos 2t
)
+ e3t/2(3 cos 2t− 4 sin 2t)

− 9
2

e3t/2 sin 2t− 6e3t/2 cos 2t +
25
4

e3t/2 sin 2t

= e3t/2
(

9
4

sin 2t + 3 cos 2t + 3 cos 2t− 4 sin 2t− 9
2

sin 2t− 6 cos 2t +
25
4

sin 2t
)

= 0

(48 + 100t)′′ − 3(48 + 100t)′ +
25
4
(48 + 100t) = 0− 300 + 300 + 625t = 625t.

Thus e3t/2 cos 2t and e3t/2 sin 2t are linearly independent solutions of the homogeneous equation,
and 48 + 100t is a particular solution of the nonhomogeneous equation. Thus the general solution
of the nonhomogeneous equation is

y(t) = c1e3t/2 cos 2t + c2e3t/2 sin 2t + 48 + 100t.

38. Evaluating the differential expression t2y′′(t) + 2ty′(t)− 6y(t) for the three values given, we get

t2(t−3)′′ + 2t(t−3)′ − 6(t−3) = 12t−3 − 6t−3 − 6t−3 = 0

t2
(

t4

2

)′′
+ 2t

(
t4

2

)′
− 6

(
t4

2

)
= 6t4 + 4t4 − 3t4 = 7t4

t2(t2)′′ + 2t(t2)′ − 6(t2) = 2t2 + 4t2 − 6t2 = 0.

Thus t−3 and t2 are linearly independent solutions of the homogeneous equation, and t4

2 is a partic-
ular solution of the nonhomogeneous equation. Thus the general solution of the nonhomogeneous
equation is

y(t) = c1t−3 + c2t2 +
t4

2
.

39. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 sin 0 + c2 cos 0 = y(0) = 4

3c1 cos 0− 3c2 sin 0 = y′(0) = 0
so that

c2 = 4
3c1 = 0.

Thus c1 = 0 and c2 = 4, and the solution to the initial value problem is y(t) = 4 cos 3t.

40. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1e0 + c2e−0 = y(0) = 2

c1e0 − c2e−0 = y′(0) = −2
so that

c1 + c2 = 2
c1 − c2 = −2.

Thus c1 = 0 and c2 = 2, and the solution to the initial value problem is y(t) = 2e−t.
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41. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1e5·0 + c2e−4·0 = y(0) = −3

5c1e5·0 − 4c2e−4·0 = y′(0) = 3
so that

c1 + c2 = −3
5c1 − 4c2 = 3.

Thus c1 = −1 and c2 = −2, and the solution to the initial value problem is y(t) = −e5t − 2e−4t.

42. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 sin 0 + c2 cos 0− cos 0 = y(0) = 4

2c1 cos 0− 2c2 sin 0 + 3 sin 0 = y′(0) = 2
so that

c2 = 5
2c1 = 2.

Thus c1 = 1 and c2 = 5, and the solution to the initial value problem is y(t) = sin 2t + 5 cos 2t−
cos 3t.

43. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1e4·0 + c2e−4·0 − 02 − 1
8
= y(0) = 0

4c1e4·0 − 4c2e−4·0 − 2 · 0 = y′(0) = 0
so that

c1 + c2 =
1
8

4c1 − 4c2 = 0.

Thus c1 = c2 = 1
16 , and the solution to the initial value problem is y(t) = 1

16 e4t + 1
16 e−4t − t2 − 1

8 .

44. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 · 1−2 + c2 · 1 = y(1) = 3

−2c1 · 1−3 + c2 = y′(1) = 0
so that

c1 + c2 = 3
−2c1 + c2 = 0 .

Thus c1 = 1 and c2 = 2, and the solution to the initial value problem is y(t) = t−2 + 2t.

45. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1 · 1−2 + c2 · 12 = y(1) = 1

−2c1 · 1−3 + 2c2 · 1 = y′(1) = −1
so that

c1 + c2 = 1
−2c1 + 2c2 = − 1.

Thus c1 = 3
4 and c2 = 1

4 , and the solution to the initial value problem is y(t) = 3
4 t−2 + 1

4 t2.

46. Using the facts that

(e−4t sin 3t)′ = −4e−4t sin 3t + 3e−4t cos 3t = e−4t(3 cos 3t− 4 sin 3t)

(e−4t cos 3t)′ = −4e−4t cos 3t− 3e−4t sin 3t = −e−4t(4 cos 3t + 3 sin 3t),

substitute the initial conditions into y(t) to get the system of simultaneous equations

c1e−4·0 sin 0 + c2e−4·0 cos 0 = y(0) = 1

c1(e−4·0(3 cos 0− 4 sin 0))− c2(e−4·0(4 cos 0 + 3 sin 0)) = y′(0) = −1

so that

c2 = 1
3c1 − 4c2 = −1.

Thus c1 = c2 = 1, and the solution to the initial value problem is y(t) = e−4t(sin 3t + cos 3t).
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47. (a) False. By Theorems 16.2 and 16.4, a second-order linear differential equation has two linearly
independent solutions, so that the general solution must involve two terms with arbitrary
constants. Note that 0 is linearly dependent with any nonzero function, so that these theorems
imply that neither linearly independent solution is everywhere zero.

(b) True. Substituting yp + cyh into the nonhomogeneous equation gives

y′′ + py′ + qy = (yp + cyh)
′′ + p(yp + cyh)

′ + q(yp + cyh)

= (y′′p + py′p + qyp) + c(y′′h + py′h + qyh)

= f + 0 = f ,

so that yp + cyh satisfies the nonhomogeneous equation. This is the content of Theorem 16.4.

(c) False. Since 1− cos2 x = sin2 x, this pair of function is {sin2 x, 5 sin2 x}, which are obviously
constant multiples of one another and thus linearly dependent.

(d) False. Substitute y1 + y2 into the formula to get

y′′ + yy′ = (y1 + y2)
′′ + (y1 + y2)(y1 + y2)

′

= y′′1 + y′′2 + y1y′1 + y2y′2 + y1y′2 + y2y′1
= (y′′1 + y1y′1) + (y′′2 + y2y′2) + y1y′2 + y2y′1
= y1y′2 + y2y′1

since both y1 and y2 satisfy the differential equation. Since there is no reason to expect y1y′2 +
y2y′1 to be zero, we see that y1 + y2 need not be a solution of the equation. This does not
violate Theorem 16.1 since the given equation is not linear.

(e) False. The general solution of this equation is y(t) = c1 sin
√

2 t + c2 cos
√

2 t. The condition
y(0) = 4 means that c2 = 4. We need a second condition in order to get a value for c1. Thus
there are multiple solutions.

48. Substitution gives

y′′(t)− 12y′(t) + 36y(t) = (C1e6t + C2te6t)′′ − 12(C1e6t + C2te6t)′ + 36(C1e6t + C2te6t)

= 36C1e6t + C2(e6t + 6te6t)′ − (72C1e6t + 12C2e6t + 72C2te6t)

+ 36C1e6t + 36C2te6t

= 36C1e6t + 6C2e6t + 6C2e6t + 36C2te6t − 72C1e6t − 12C2e6t − 72C2te6t

+ 36C1e6t + 36C2te6t

= 0.
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49. Substitution gives

y′′(t)− 12y′(t) + 36y(t) = (C1e6t + C2te6t + t2e6t)′′ − 12(C1e6t + C2te6t + t2e6t)′

+ 36(C1e6t + C2te6t + t2e6t)

= 36C1e6t + (C2e6t + 6C2te6t + 2te6t + 6t2e6t)′

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 36C1e6t + 6C2e6t + 6C2e6t + 36C2te6t + 2e6t + 12te6t + 12te6t + 36t2e6t

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 36C1e6t + 12C2e6t + 36C2te6t + 2e6t + 24te6t + 36t2e6t

− 72C1e6t − 12C2e6t − 72C2te6t − 24te6t − 72t2e6t

+ 36C1e6t + 36C2te6t + 36t2e6t

= 2e6t.

50. Substitution gives

y′′(t) + 4y(t) = (C1 sin 2t + C2 cos 2t− 2t cos 2t)′′ + 4(C1 sin 2t + C2 cos 2t− 2t cos 2t)

= −4C1 sin 2t− 4C2 cos 2t− 2(cos 2t− 2t sin 2t)′ + 4C1 sin 2t + 4C2 cos 2t− 8t cos 2t
= −2(−2 sin 2t− 2 sin 2t− 4t cos 2t)− 8t cos 2t
= 8 sin 2t

51. Substitution gives

t2y′′(t)− 3ty′(t) + 4y(t) = t2(C1t2 + C2t2 ln t)′′ − 3t(C1t2 + C2t2 ln t)′ + 4(C1t2 + C2t2 ln t)

= t2(2C1) + t2(2C2t ln t + C2t)′ − 6C1t2 − 3t(2C2t ln t + C2t)

+ 4(C1t2 + C2t2 ln t)

= 2C1t2 + 2C2t2 ln t + 2C2t2 + C2t2 − 6C1t2 − 6C2t2 ln t− 3C2t2

+ 4C1t2 + 4C2t2 ln t
= 0.

Copyright © 2013 Pearson Education, Inc.



12 Second-Order Differential Equations

52. Substitution gives

t2y′′(t)− 3ty′(t) + 4y(t) = t2(C1t2 + C2t2 ln t + t2 ln2 t)′′ − 3t(C1t2 + C2t2 ln t + t2 ln2 t)′

+ 4(C1t2 + C2t2 ln t + t2 ln2 t)

= t2(2C1t + 2C2t ln t + C2t + 2t ln2 t + 2t ln t)′

− 3t(2tC1 + 2C2t ln t + C2t + 2t ln2 t + 2t ln t)

4C1t2 + 4C2t2 ln t + 4t2 ln2 t

= t2(2C1 + 2C2 ln t + 2C2 + C2 + 2 ln2 t + 4 ln t + 2 ln t + 2)

− 6C1t2 − 6C2t2 ln t− 3C2t2 − 6t2 ln2 t− 6t2 ln t

4C1t2 + 4C2t2 ln t + 4t2 ln2 t

= 2C1t2 + 2C2t2 ln t + 2C2t2 + C2t2 + 2t2 ln2 t + 4t2 ln t + 2t2 ln t + 2t2

− 6C1t2 − 6C2t2 ln t− 3C2t2 − 6t2 ln2 t− 6t2 ln t

4C1t2 + 4C2t2 ln t + 4t2 ln2 t

= 2t2.

53. Substitution gives

t2y′′(t) + ty′(t) +
(

t2 − 1
4

)
y(t) = t2

(
t−1/2(C1 cos t + C2 sin t)

)′′
+ t
(

t−1/2(C1 cos t + C2 sin t)
)′

+

(
t2 − 1

4

)(
t−1/2(C1 cos t + C2 sin t)

)
= t2

(
−1

2
t−3/2(C1 cos t + C2 sin t) + t−1/2(−C1 sin t + C2 cos t)

)′
+ t
(
−1

2
t−3/2(C1 cos t + C2 sin t) + t−1/2(−C1 sin t + C2 cos t)

)
+ C1t3/2 cos t + C2t3/2 sin t− 1

4
C1t−1/2 cos t− 1

4
C2t−1/2 sin t

= t2
(

3
4

t−5/2(C1 cos t + C2 sin t)− 1
2

t−3/2(−C1 sin t + C2 cos t)
)

+ t2
(
−1

2
t−3/2(−C1 sin t + C2 cos t) + t−1/2(−C1 cos t− C2 sin t)

)
− 1

2
C1t−1/2 cos t− 1

2
C2t−1/2 sin t− C1t1/2 sin t + C2t1/2 cos t

+ C1t3/2 cos t + C2t3/2 sin t− 1
4

C1t−1/2 cos t− 1
4

C2t−1/2 sin t

=
3
4

t−1/2(C1 cos t + C2 sin t)− 1
2

t1/2(−C1 sin t + C2 cos t)

− 1
2

t1/2(−C1 sin t + C2 cos t) + t3/2(−C1 cos t− C2 sin t)

− 1
2

C1t−1/2 cos t− 1
2

C2t−1/2 sin t− C1t1/2 sin t + C2t1/2 cos t

+ C1t3/2 cos t + C2t3/2 sin t− 1
4

C1t−1/2 cos t− 1
4

C2t−1/2 sin t

= 0.
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54. (a) Substituting y = sin t and y = cos t into y′′ + y = 0 gives

y′′ + y = (sin t)′′ + sin t = (cos t)′ + sin t = − sin t + sin t = 0

y′′ + y = (cos t)′′ + cos t = (− sin t)′ + cos t = − cos t + cos t = 0.

(b) Since we have found two linearly independent solutions, the general solution, by Theorem
16.2, is y = C1 sin t + C2 cos t.

(c) Substituting y = sin 2t and y = cos 2t into y′′ + 4y = 0 gives

y′′ + 4y = (sin 2t)′′ + 4 sin 2t = (2 cos 2t)′ + 4 sin 2t = −4 sin 2t + 4 sin 2t = 0

y′′ + 4y = (cos 2t)′′ + 4 cos 2t = (−2 sin 2t)′ + 4 cos 2t = −4 cos 2t + 4 cos 2t = 0.

(d) Since we have found two linearly independent solutions, the general solution, by Theorem
16.2, is y = C1 sin 2t + C2 cos 2t.

(e) Both y = sin kt and y = cos kt are solutions, since substitution gives

y′′ + ky = (sin kt)′′ + k2 sin kt = (k cos kt)′ + k2 sin kt = −k2 sin kt + k2 sin kt = 0

y′′ + ky = (cos kt)′′ + k2 cos kt = (−k sin kt)′ + k2 cos kt = −k2 cos kt + k2 cos kt = 0.

Since those solutions are linearly independent, the general solution, by Theorem 16.2, is y =
C1 sin kt + C2 cos kt.

55. (a) Substitution gives

y′′ − y = (et)′′ − et = (et)′ − et = et − et = 0

y′′ − y = (e−t)′′ − e−t = (−e−t)′ − e−t = e−t − e−t = 0.

(b) sinh t and cosh t are each linear combinations of the solutions et and e−t, so they are both
solutions. They are linearly independent since if a sinh t + b cosh t = 0, then

a
(

et − e−t

2

)
+ b

(
et + e−t

2

)
=

a + b
2

et +
b− a

2
e−t = 0.

Since et and e−t are linearly independent, we must have a + b = b− a = 0, so that a = b = 0.
This proves that sinh t and cosh t are linearly independent as well.

(c) Since sinh′ = cosh and cosh′ = sinh, substitution gives

y′′ − y = (sinh t)′′ − sinh t = (cosh t)′ − sinh t = sinh t− sinh t = 0

y′′ − y = (cosh t)′′ − cosh t = (sinh t)′ − cosh t = cosh t− cosh t = 0.

(d) From part (a), the general solution is C1et + C2e−t. From part (c), the general solution is
C1 sinh t + C2 cosh t.

(e) Substitution gives

y′′ − k2y = (ekt)′′ − k2ekt = (kekt)′ − k2ekt = k2ekt − k2ekt = 0

y′′ − k2y = (e−kt)′′ − k2e−kt = (−ke−kt)′ − k2e−kt = k2e−kt − k2e−kt = 0.

(f) In terms of exponentials, from part (e), the general solution is C1ekt + C2e−kt. Since cosh kt =
ekt+e−kt

2 and sinh kt = ekt−e−kt

2 , an identical argument to that in part (b) shows that cosh(kt)
and sinh(kt) are also solutions to y′′ − k2y and that they are linearly independent. So in terms
of hyperbolic functions, the general solution is C1 sinh kt + C2 cosh kt.
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14 Second-Order Differential Equations

56. With y = C1e−2t + C2e−t + C3et, we have

y′ = −2C1e−2t − C2e−t + C3et

y′′ = 4C1e−2t + C2e−t + C3et

y′′′ = −8C1e−2t − C2e−t + C3et

so that

y′′′(t) + 2y′′(t)− y′(t)− 2y(t) = −8C1e−2t − C2e−t + C3et + 2(4C1e−2t + C2e−t + C3et)

− (−2C1e−2t − C2e−t + C3et)− 2(C1e−2t + C2e−t + C3et)

= 0.

57. Note that (ekt)(iv) = k4ekt, (sin kt)(iv) = k4 sin kt, and (cos kt)(iv) = k4 cos kt. Thus with y =
C1e−2t + C2e2t + C3 sin 2t + C4 cos 2t, we have

y(iv) = 16C1e−2t + 16C2e2t + 16C3 sin 2t + 16C4 cos 2t = 16y(t).

58. (a) d
dt
(
y(t)2) = 2y(t) d

dt (y(t)) = 2y(t)y′(t).

(b) Since 2yy′ = d
dt (y

2), we can substitute in y′′(t)− 2y(t)y′(t) = 0 to get y′′(t)− (y(t)2)′ = 0.

(c) Integrating with respect to t gives
∫ (

y′′(t)− (y(t)2)
)

dt =
∫

0 dt, or y′(t)− y(t)2 = C. This

is a separable equation; rearranging gives y′(t)
y(t)2+C = 1, or dy

y2+C = dt.

(d) There are now three cases.

• If C > 0 then integrating gives 1√
C

tan−1
(

y√
C

)
= t+C′, so that y√

C
= tan(

√
C t+C′

√
C)

and y =
√

C tan(
√

C t + C′
√

C). Renaming constants gives y = C1 tan(C2 + C1t).

• If C = 0 then integrating y′

y2 = dt gives −y−1 = t + C1 so that y = − 1
t+C1

.

• If C < 0 then integrating gives

1
2
√
−C

ln

∣∣∣∣∣y−
√
−C

y +
√
−C

∣∣∣∣∣ = t + C′,

so that, writing D =
√
−C,

y− D
y + D

= ±e2D(t+C′), and solving for y gives y = D
1± e2D(t+C′)

1∓ e2D(t+C′)
.

Finally, rename constants to get

y = D
1± e2Dt+2DC′

1∓ e2Dt+2DC′ = C1
1− C2e2C1t

1 + C2e2C1t .

(Note that in the final equation, the sign of C2 may be chosen appropriately so that we
can force the − sign in the numerator and the + sign in the denominator).

59. (a) d
dt
(
y′(t)2) = 2y′(t) d

dt (y
′(t)) = 2y′(t)y′′(t).

(b) From part (a), y′′(t)y′(t) = 1
2 ·

d
dt (y

′(t)2) = 1, so that (y′(t)2)′ = 2.

(c) Integrating both sides with respect to t gives
∫
(y′(t)2)′ dt =

∫
2 dt, or y′(t)2 = 2t + C1 where

C1 is an arbitrary constant. Thus y′(t) = ±
√

2t + C1.
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(d) Solving this equation simply involves integrating the right-hand side:

y(t) =
∫
±
√

2t + C1 dt =
∫
±(2t + C1)

1/2 dt = ±1
3
(2t + C1)

3/2 + C2.

Thus there are two families of solutions.

60. (a) With v = y′, we have v′ = 2v, or v′ − 2v = 0. The integrating factor is e
∫
−2 dt = e−2t; this

gives e−2tv′ − 2e−2tv = 0, or (e−2tv)′ = 0. Thus e−2tv = C1, so that v = y′ = C1e2t.

(b) Integrating once again gives y = C1
2 e2t + C3 = C2e2t + C3. As a check, note that

y′′ = (C2e2t + C3)
′′ = (2C2e2t)′ = 4C2e2t = 2(2C2e2t) = 2y′.

61. (a) With v = y′, we have v′ = 3v + 4, or v′ − 3v = 4. The integrating factor is e
∫
−3 dt = e−3t; this

gives e−3tv′ − 3e−3tv = (e−3tv)′ = 4e−3t. Integrate both sides to get e−3tv = − 4
3 e−3t + C1, so

that v = − 4
3 + C1e3t. This is the same as y′ = − 4

3 + C1e3t.

(b) Integrating once again gives y = − 4
3 t + C1

3 e3t + C2 = C2 − 4
3 t + C3e3t. As a check, note that

y′′ = (C2 −
4
3

t + C3e3t)′′ = 9C3e3t

3y′ + 4 = 3(C2 −
4
3

t + C3e3t)′ + 4 = −4 + 9C3e3t + 4 = 9C3e3t.

62. (a) With v = y′, we have v′ = e−v. This is separable: evv′ = 1; integrating both sides gives
ev = t + C, so that v = ln(t + C1). Substituting back gives y′ = ln(t + C1).

(b) Integrating once again gives y = (t + C1) ln(t + C1)− t + C2. As a check, note that

y′′ = ((t + C1) ln(t + C1))
′′ + (−t + C2)

′′ = (ln(t + C1) + 1)′ =
1

t + C1

e−y′ = e−((t+C1) ln(t+C1)−t+C2)
′
= e−1−ln(t+C1)+1 = e− ln(t+C1) =

1
t + C1

.

63. (a) With v = y′ we get v′ = 2tv2, so that v−2v′ = 2t. Integrating both sides gives−v−1 = t2 + C1,
so that v = − 1

t2+C1
. Substituting back gives y′ = − 1

t2+C1
.

(b) Integrating once again gives if C1 > 0

y = − 1√
C1

arctan
(

t√
C1

)
+ C2.

and if C1 < 0

y =
1

2
√
|C1|

ln

∣∣∣∣∣ t +
√
|C1|

t−
√
|C1|

∣∣∣∣∣+ C2.

As a check, note that for C1 > 0,

y′ = − 1√
C1
·
√

C1

t2 + C1
= −(t2 + C1)

−1

y′′ = 2t(t2 + C1)
−2

so that indeed y′′ = 2t(y′)2, and for C1 < 0, regardless of the sign of t+
√
|C1|

t−
√
|C1|

,

y′ =
−1

t2 − |C1|
=

−1
t2 + C1

y′′ =
2t

(t2 + C1)2

and again y′′ = 2t(y′)2.
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64. (a) Since

(sin 4t)′′ + 16 sin 4t = (4 cos 4t)′ + 16 sin 4t = −16 sin 4t + 16 sin 4t = 0

(cos 4t)′′ + 16 cos 4t = (−4 sin 4t)′ + 16 cos 4t = −16 cos 4t + 16 cos 4t = 0

we see that sin 4t and cos 4t are linearly independent solutions, so that y(t) = C1 sin 4t +
C2 cos 4t is the general solution.

(b) Substituting the initial conditions into y(t) gives the system of simultaneous equations

C1 · sin(4 · 0) + C2 · cos(4 · 0) = y(0) = 4

4C1 · cos(4 · 0)− 4C2 · sin(4 · 0) = y′(0) = −1
so that

C2 = 4
4C1 = − 1.

Thus C1 = − 1
4 and C2 = 4, and the solution to the initial value problem is y(t) = − 1

4 sin 4t +
4 cos 4t.

(c) A graph of the solution for 0 ≤ t ≤ 4π is

Π

2
Π

3 Π

2
2 Π

5 Π

2 3 Π
7 Π

2
4 Π

-4

-2

2

4

65. (a) Computing derivatives gives

(e−3t/2 sin 2t)′ = −3
2

e−3t/2 sin 2t + 2e−3t/2 cos 2t = e−3t/2
(

2 cos 2t− 3
2

sin 2t
)

(e−3t/2 sin 2t)′′ =
(
−3

2
e−3t/2 sin 2t + 2e−3t/2 cos 2t

)′
=

9
4

e−3t/2 sin 2t− 3e−3t/2 cos 2t− 3e−3t/2 cos 2t− 4e−3t/2 sin 2t

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t

)
(e−3t/2 cos 2t)′ = −3

2
e−3t/2 cos 2t− 2e−3t/2 sin 2t = e−3t/2

(
−3

2
cos 2t− 2 sin 2t

)
(e−3t/2 cos 2t)′′ =

(
−3

2
e−3t/2 cos 2t− 2e−3t/2 sin 2t

)′
=

9
4

e−3t/2 cos 2t + 3e−3t/2 sin 2t + 3e−3t/2 sin 2t− 4e−3t/2 cos 2t

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t

)
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Substituting e−3t/2 sin 2t and e−3t/2 cos 2t gives

y′′ + 3y′ +
25
4

y = (e−3t/2 sin 2t)′′ + 3(e−3t/2 sin 2t)′ +
25
4
(e−3t/2 sin 2t)

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t

)
+ 3e−3t/2

(
2 cos 2t− 3

2
sin 2t

)
+

25
4
(e−3t/2 sin 2t)

= e−3t/2
(
−6 cos 2t− 7

4
sin 2t + 6 cos 2t− 9

2
sin 2t +

25
4

sin 2t
)

= 0

y′′ + 3y′ +
25
4

y = (e−3t/2 cos 2t)′′ + 3(e−3t/2 cos 2t)′ +
25
4
(e−3t/2 cos 2t)

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t

)
+ 3e−3t/2

(
−3

2
cos 2t− 2 sin 2t

)
+

25
4
(e−3t/2 cos 2t)

= e−3t/2
(
−7

4
cos 2t + 6 sin 2t− 9

2
cos 2t− 6 sin 2t +

25
4

cos 2t
)

= 0

so that e−3t/2 sin 2t and e−3t/2 cos 2t are linearly independent solutions, so that the general
solution is y(t) = e−3t/2(C1 sin 2t + C2 cos 2t).

(b) Since

y′(t) = −3
2

e−3t/2(C1 sin 2t + C2 cos 2t) + e−3t/2(2C1 cos 2t− 2C2 sin 2t)

= e−3t/2
((

2 cos 2t− 3
2

sin 2t
)

C1 +

(
−2 sin 2t− 3

2
cos 2t

)
C2

)
,

substituting the initial conditions into y(t) gives the system of simultaneous equations

e−3·0/2(sin(2 · 0)C1 + cos(2 · 0)C2) = y(0) = 4

e−3·0/2
((

2 cos 0− 3
2

sin 0
)

C1 +

(
−2 sin 0− 3

2
cos 0

)
C2

)
= y′(0) = 0

so that

C2 = 4

2C1 −
3
2

C2 = 0.

Thus C1 = 3 and C2 = 4, and the solution to the initial value problem is

y(t) = e−3t/2(3 sin 2t + 4 cos 2t).

(c) A plot of the solution for 0 ≤ t ≤ 2π is
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66. (a) Since (sin 3t)′ = 3 cos 3t, (sin 3t)′′ = −9 sin 3t, (cos 3t)′ = −3 sin 3t, and (cos 3t)′′ = −9 cos 3t,
have, substituting y = sin 3t and y = cos 3t,

y′′ + 9y = −9 sin 3t + 9 sin 3t = 0

y′′ + 9y = −9 cos 3t + 9 cos 3t = 0,

so that sin 3t and cos 3t are two linearly independent solutions to the homogeneous problem.
Also, substituting y = sin t, we get

y′′ + 9y = − sin t + 9 sin t = 8 sin t,

so that sin t is a solution to the nonhomogeneous problem. Thus the general solution to the
nonhomogeneous problem is y(t) = C1 sin 3t + C2 cos 3t + sin t.

(b) Substituting the initial conditions into y(t) gives the system of simultaneous equations

C1 sin(3 · 0) + C2 cos(3 · 0) + sin 0 = y(0) = 0

3C1 cos(3 · 0)− 3C2 sin(3 · 0) + cos 0 = y′(0) = 2
so that

C2 = 0
3C1 = 1.

Thus C1 = 1
3 and C2 = 0, and the solution to the initial value problem is y(t) = 1

3 sin 3t+ sin t.

(c) A plot of the solution for 0 ≤ t ≤ 4π is
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67. (a) Computing derivatives gives

(e−3t sin 4t)′ = −3e−3t sin 4t + 4e−3t cos 4t = e−3t(−3 sin 4t + 4 cos 4t)

(e−3t sin 4t)′′ = (e−3t(−3 sin 4t + 4 cos 4t))′

= −3e−3t(−3 sin 4t + 4 cos 4t) + e−3t(−12 cos 4t− 16 sin 4t)

= e−3t(−7 sin 4t− 24 cos 4t)

(e−3t cos 4t)′ = −3e−3t cos 4t− 4e−3t sin 4t = e−3t(−3 cos 4t− 4 sin 4t)

(e−3t cos 4t)′′ = (e−3t(−3 cos 4t− 4 sin 4t))′

= −3e−3t(−3 cos 4t− 4 sin 4t) + e−3t(12 sin 4t− 16 cos 4t)

= e−3t(24 sin 4t− 7 cos 4t)

Then, substituting y = e−3t sin 4t and y = e−3t cos 4t gives

y′′ + 6y′ + 25y = (e−3t sin 4t)′′ + 6(e−3t sin 4t)′ + 25(e−3t sin 4t)

= e−3t(−7 sin 4t− 24 cos 4t) + 6e−3t(−3 sin 4t + 4 cos 4t) + 25e−3t sin 4t
= 0

y′′ + 6y′ + 25y = (e−3t cos 4t)′′ + 6(e−3t cos 4t)′ + 25(e−3t cos 4t)

= e−3t(24 sin 4t− 7 cos 4t) + 6e−3t(−3 cos 4t− 4 sin 4t) + 25e−3t cos 4t
= 0

so that e−3t sin 4t and e−3t cos 4t are two linearly independent solutions to the homogeneous
problem. Also, substituting y = e−t, we get

y′′ + 6y′ + 25y = e−t − 6e−t + 25e−t = 20e−t,

so that e−t is a solution to the nonhomogeneous problem. Thus the general solution to the
nonhomogeneous problem is y(t) = e−3t(C1 sin 4t + C2 cos 4t) + e−t.

(b) Since

y′(t) = −3e−3t(C1 sin 4t + C2 cos 4t) + e−3t(4C1 cos 4t− 4C2 sin 4t)− e−t

= e−3t((−3 sin 4t + 4 cos 4t)C1 + (−4 sin 4t− 3 cos 4t)C2)− e−t,

substituting the initial conditions into y(t) gives the system of simultaneous equations

e−3·0(sin(0)C1 + cos(0)C2) + e−0 = y(0) = 2

e−3·0((−3 sin 0 + 4 cos 0)C1 + (−4 sin 0− 3 cos 0)C2 − e−0 = y′(0) = 0

so that

C2 = 1
4C1 − 3C2 = 1.

Thus C1 = C2 = 1, and the solution to the initial value problem is

y(t) = e−3t (sin 4t + cos 4t) + e−t.

(c) A plot of the solution for 0 ≤ t ≤ 2π is
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68. (a) Let u = y′; then the differential equation becomes

u′(x) =
√

1 + u(x)2

sx
.

The initial condition y(1) = 0 is irrelevant to this problem, while y′(1) = 0 becomes the initial
condition u(1) = 0.

(b) This equation is separable: divide both sides by
√

1 + u2 to obtain

du√
1 + u2

=
dx
sx

.

Integrating both sides gives

ln
∣∣∣u +

√
1 + u2

∣∣∣ = 1
s

ln(sx) + C,

so that exponentiating both sides gives

u +
√

1 + u2 = ±eC · e(1/s) ln(sx) = ±eC · (sx)1/s = ±eCs1/sx1/s = C1x1/s.

Since u(1) = y′(1) = 0, we get

0 +
√

1 + 02 = C1 · 11/s, so that C1 = 1.

Thus u +
√

1 + u2 = x1/s. To simplify, subtract u from both sides and square to get

1 + u2 = x2/s − 2ux1/s + u2, so that u =
1
2

x−1/s(x2/s − 1) =
1
2
(x1/s − x−1/s).

(c) Since u = y′, we have the equation y′ = 1
2 (x1/s − x−1/s); solve this by integrating both sides

with respect to x. (Recall that s > 1, so that we need not worry about integrating x±1/s and
getting logarithmic functions):

y =
1
2

(
s

s + 1
x(s+1)/s − s

s− 1
x(s−1)/s

)
+ C2. (D2.1)

Since y(1) = 0, we get

0 =
1
2

(
s

s + 1
− s

s− 1

)
+ C2 = − s

s2 − 1
+ C2,

so that C2 = s
s2−1 .
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(d) Replacing C2 in (D2.1) by its value, and factoring out sx, we get

y =
sx
2

(
x1/s

s + 1
− x−1/s

s− 1

)
+

s
s2 − 1

.

69. (a) Multiplying mx′′(t) = F(x) by x′(t) gives

mx′′(t)x′(t) = F(x)x′(t). (D2.2)

Now, by the Chain Rule (or, see Exercise 59(a)), 2x′′(t)x′(t) =
d
dt
(x′(t)2), so that x′′(t)x′(t) =

1
2

d
dt
(x′(t)2). Further, with ϕ′(x) = −F(x), differentiating with respect to time gives, again by

the Chain Rule,
d
dt
(ϕ(x)) = ϕ′(x)x′(t) = −F(x)x′(t). Making these substitutions in (D2.2)

gives

d
dt

(
m · 1

2
(x′(t))2

)
= − d

dt
(ϕ(x)), so

d
dt

[
1
2

m(x′(t))2 + ϕ(x)
]
= 0.

(b) With E =
1
2

mv2 + ϕ, since the time derivative of E is zero, it follows that E is conserved in
time.

70. (a) With y = t, we have y′ = 1 and y′′ = 0. Substituting gives

0− 1
t
· 1 + 1

t2 t = 0,

so that y1 = t is a solution.

(b) Let y2 = v(t)y1(t) = tv(t) be any other solution. Now, y′2 = v(t) + tv′(t) and y′′2 = 2v′(t) +
tv′′(t), substituting y2 in the equation gives

y′′2 −
1
t

y′2 +
1
t2 y2 = 2v′(t) + tv′′(t)− 1

t
(
v(t) + tv′(t)

)
+

1
t2 (tv(t))

= 2v′(t) + tv′′(t)− 1
t

v(t)− v′(t) +
1
t

v(t)

= tv′′(t) + v′(t).

Since y2 is a solution, we have tv′′(t) + v′(t) = 0, or v′′ = −v′

t
.

(c) Letting w = v′ gives the differential equation w′ = −w
t

.

(d) This is a separable equation; rearranging gives
w′

w
= −1

t
, and integrating both sides gives

ln |w| = C − ln t = C + ln 1
t . Thus w = ±eC+ln(1/t) = C1

t . Note that since t > 0, we do not
need absolute value signs around t.

(e) Substituting back gives v′ =
C1

t
. Integrating both sides gives v = C1 ln t+C2. Note that since

t > 0, we do not need absolute value signs here.

(f) Since y2(t) = tv(t), we get for a general solution C2t + C1t ln t.
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D2.2 Linear Homogeneous Equations

1. We assume that all derivatives of the function are multiples of the function itself, so we start with
ert.

2. The characteristic polynomial is r2 − 3r + 10 = 0; see the discussion in the first few paragraphs of
this section.

3. The characteristic polynomial is a quadratic equation, so it can have two distinct real roots, one
repeated real root, or two conjugate complex roots.

4. The general solution when the characteristic polynomial has distinct real roots is y(t) = c1er1t +
c2er2t, where r1 6= r2 are the real roots.

5. When the characteristic polynomial has a repeated real root r, the general solution is y(t) = c1ert +
c2tert.

6. If the characteristic polynomial r2 + pr + q = 0 has two conjugate complex roots, the general
solution is y(t) = c1eat cos bt + c2eat sin bt, where a = − p

2 and b = 4q− p2.

7. Since the roots are −2± 3i, we have a = −2 and b = 3 in Case 3, so that the general solution is
y(t) = c1e−2t cos 3t + c2e−2t sin 3t.

8. The trial solution for a second-order Cauchy-Euler equation is y(t) = tp.

9. The characteristic polynomial is r2 − 25 = (r + 5)(r − 5) = 0, with roots ±5. Since the roots are
real and distinct, the general solution is y(t) = c1e5t + c2e−5t.

10. The characteristic polynomial is r2 − 2r− 15 = (r− 5)(r + 3) = 0, with roots 5 and −3. Since the
roots are real and distinct, the general solution is y(t) = c1e5t + c2e−3t.

11. The characteristic polynomial is r2 − 3r = r(r− 3) = 0, with roots 0 and 3. Since the roots are real
and distinct, the general solution is y(t) = c1e0t + c2e3t = c1 + c2e3t.

12. The characteristic polynomial is r2 − r− 3
4 =

(
r− 3

2
) (

r + 1
2

)
= 0, with roots 3

2 and − 1
2 . Since the

roots are real and distinct, the general solution is y(t) = c1e3t/2 + c2e−t/2.

13. The characteristic polynomial is 2r2 + 6r − 20 = (2r − 4)(r + 5), with roots 2 and −5. Since the
roots are real and distinct, the general solution is y(t) = c1e2t + c2e−5t.

14. The characteristic polynomial is r2− 5
2 r + 1 = 1

2 (x− 2)(2x− 1), with roots 2 and 1
2 . Since the roots

are real and distinct, the general solution is y(t) = c1e2t + c2et/2.

15. The characteristic polynomial r2 − 36 = (r + 6)(r − 6) has distinct real roots ±6, so the general
solution is y(t) = c1e6t + c2e−6t. Then y′(t) = 6c1e6t − 6c2e−6t. Substituting the initial conditions
gives

c1e6·0 + c2e−6·0 = y(0) = 3

6c1e6·0 − 6c2e−6·0 = y′(0) = 0
so that

c1 + c2 = 3
6c1 − 6c2 = 0.

Thus c1 = c2 = 3
2 , and the solution is y(t) = 3

2 (e
6t + e−6t).

16. The characteristic polynomial r2 − 6r = r(r − 6) has distinct real roots 0 and 6, so the general
solution is y(t) = c1e0t + c2e6t = c1 + c2e6t. Then y′(t) = 6c2e−6t. Substituting the initial conditions
gives

c1 + c2e6·0 = y(0) = −1

6c2e6·0 = y′(0) = 2
so that

c1 + c2 = −1
6c2 = 2.

Thus c1 = − 4
3 and c2 = 1

3 , so that the solution is y(t) = − 4
3 + 1

3 e6t.
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17. The characteristic polynomial r2 − 3r − 18 = (r − 6)(r + 3) has distinct real roots −3 and 6, so
the general solution is y(t) = c1e6t + c2e−3t. Then y′(t) = 6c1e6t − 3c2e−3t. Substituting the initial
conditions gives

c1e6·0 + c2e−3·0 = y(0) = 0

6c1e6·0 − 3c2e−3·0 = y′(0) = 4
so that

c1 + c2 = 0
6c1 − 3c2 = 4.

Thus c1 = 4
9 and c2 = − 4

9 . The general solution is y(t) = 4
9 (e

6t − e−3t).

18. The characteristic polynomial r2 + 8r + 15 = (r + 3)(r + 5) has distinct real roots −3 and −5, so
the general solution is y(t) = c1e−3t + c2e−5t. Then y′(t) = −3c1e−3t − 5c2e−5t. Substituting the
initial conditions gives

c1e−3·0 + c2e−5·0 = y(0) = 2

−3c1e−3·0 − 5c2e−5·0 = y′(0) = 4
so that

c1 + c2 = 2
−3c1 − 5c2 = 4.

Thus c1 = 7 and c2 = −5. The solution is y(t) = 7e−3t − 5e−5t.

19. The characteristic polynomial r2 − 2r− 5
4 = 1

4 (2r− 5)(2r + 1) has distinct real roots − 1
2 and 5

2 , so
the general solution is y(t) = c1e5t/2 + c2e−t/2. Then y′(t) = 5

2 c1e5t/2 − 1
2 c2e−t/2. Substituting the

initial conditions gives

c1e5·0/2 + c2e−0/2 = y(0) = 3
5
2

c1e5·0/2 − 1
2

c2e−0/2 = y′(0) = 0
so that

c1 + c2 = 3
5
2

c1 −
1
2

c2 = 0.

Thus c1 = 1
2 and c2 = 5

2 . The solution is y(t) = 1
2 e5t/2 + 5

2 e−t/2.

20. The characteristic polynomial r2 − 10r + 21 = (r − 3)(r − 7) has distinct real roots 3 and 7, so
the general solution is y(t) = c1e3t + c2e7t. Then y′(t) = 3c1e3t + 7c2e7t. Substituting the initial
conditions gives

c1e3·0 + c2e7·0 = y(0) = −3

3c1e3·0 + 7c2e7·0 = y′(0) = −1
so that

c1 + c2 = −3
3c1 + 7c2 = −1.

Thus c1 = −5 and c2 = 2. The solution is y(t) = −5e3t + 2e7t.

21. The characteristic polynomial r2 − 2r + 1 = (r − 1)2 has the repeated real root 1, so the general
solution is y(t) = c1et + c2tet. Then y′(t) = c1et + c2(et + tet). Substituting the initial conditions
gives

c1e0 + c2 · 0 · e0 = y(0) = 4

c1e0 + c2(e0 + 0 · e0)e0 = y′(0) = 0
so that

c1 = 4
c1 + c2 = 0.

Thus c1 = 4 and c2 = −4, and the solution is y(t) = 4et − 4tet.

22. The characteristic polynomial r2 + 6r + 9 = (r + 3)2 has the repeated real root −3, so the general
solution is y(t) = c1e−3t + c2te−3t. Then y′(t) = −3c1e−3t + c2(e−3t − 3te−3t). Substituting for the
initial conditions gives

c1e−3·0 + c2 · 0 · e−3·0 = y(0) = 0

−3c1e−3·0 + c2(e−3·0 − 3 · 0 · e−3·0) = y′(0) = −1
so that

c1 = 0
−3c1 + c2 = −1.

Thus c1 = 0 and c2 = −1, so that the solution is y(t) = −te−3t.
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