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Chapter D2

Second-Order Differential Equations

D2.1 Basic Ideas

1.

The order of a differential equation is the highest-order derivative that appears in the equation.
Thus for example y'(t) + y(t) = 0 is a first-order equation, while y”(t) 4+ y(t) = 0 is a second-
order equation.

A differential equation is linear if each additive term of the equation either does not depend on the
unknown function y (so that it is either constant or depends only on ¢), or is a multiple of y or one
of its derivatives by a constant or by a function of ¢ only. In other words, a differential equation is
linear if it is of the form

YO+ pua (YT O+ + (Y (O + poOy () = £(0).
A nonlinear differential equation is one that is not linear.

A differential equation vy (t) + p(t)y'(t) + q(t)y(t) = f(t) is homogeneous if f(t) = 0 for t in the
domain we are interested in. It is nonhomogeneous if this is not the case. Thus for example y” (t) +
3ty(t) = 0 is homogeneous, while v (t) + 3ty(t) = #? is nonhomogeneous.

The general form is y” (t) + p(t)y'(t) + q(t)y(t) = f(t). If the original form of the equation has
a coefficient on y” (t) other than 1, simply divide through by it to get an equation in this general
form.

Two functions f and g are linearly dependent on an interval [ if there is some nonzero constant
¢ such that for each x € I we have f(x) = cg(x). That is, they are linearly dependent if one is a
nonzero constant multiple of another.

By Theorem 16.2, there are two linearly independent solutions to a second-order linear homoge-
neous differential equation.

The general solution of a second-order linear nonhomogeneous differential equation is the sum of
(a) any single particular solution of the nonhomogeneous equation, and (b) the general solution
of the homogeneous equation derived by setting f(¢t) = 0 in the nonhomogeneous equation. See
Theorems 16.3 and 16.4.

Ify"(t) + p(t)y' (t) + q(t)y(t) = f(t) is a second-order linear nonhomogeneous differential equa-
tion with initial conditions y(0) = A and y’(0) = B, we solve it as follows: first find the general
solution of the corresponding homogeneous differential equation y” (¢) + p(t)y'(t) + q(t)y(t) = 0;
this will have the form cqy1 (f) + coy2(t) where y1(t) and y(t) are linearly independent solutions
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Second-Order Differential Equations

10.

11.

12.

13.

14.

15.

16.

to the homogeneous equation. Next, find any particular solution, say y3(t), to the original nonho-
mogeneous equation. By Theorem 16.4, the general solution to the nonhomogeneous equation is
then cqy1 (f) + c2y2(t) + y3(t). Now use the initial conditions to construct the two equations

c1y1(0) + c2y2(0) = A —y3(0)
c1y1(0) + c2y2(0) = B — y5(0)

and solve these for c; and c¢».

Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since y and its derivatives only appear in terms by themselves, not with other
derivatives of v, it is linear. Finally, since there is a nonzero term (10¢?) that does not depend on v,
it is nonhomogeneous.

Since the highest order derivative appearing is the first derivative, this is a first-order differential
equation. Since there is a y° term, it is nonlinear. Finally, since the term —4t is a nonzero term not
depending on y, it is nonhomogeneous.

Since the highest order derivative appearing is the second derivative, this is a second-order differ-
ential equation. Since there is a term involving yy/, it is nonlinear. Finally, since there is a nonzero
term (e') that does not depend on y, it is nonhomogeneous.

Since the highest order derivative appearing is the second derivative, this is a second-order dif-
ferential equation. Since z and its derivatives only appear in terms by themselves, not with other
derivatives of z, it is linear. Finally, since every nonzero term depends on z, it is homogeneous.

. 2
Since &> ekt = 4 (kek') = k?et, we have

y'(t) —4y(t) = (3e* —5e™ )" — 4(3e* —5e72) = 122 — 20e~ % — (12¢*" —20e~2%) = 0.

2 2

Since (sinat)” = (acosat) = —a*sinat and (cosat)” = (—asinat)’ = —a* cos at, we have

y'(t) +16y(t) = (10sin4t — 20 cos4t)” + 16(10sin 4t — 20 cos 4t)
= —160sin 4t + 320 cos 4t + (160 sin 4t — 320 cos 4t)
=0.

. 2
Since ;?ekt = & (ke") = k%M, we have

v (t) —9y(t) = (4> +3e73" —2t)" — 9(4e3 + 373" — 21)
= (3663 +27¢73) — (36> +27¢73 — 18t)
= 18t.

Using the derivatives of sinat and cos at from Exercise 14, we have

1 " 1
y'(t) +25y(t) = <Zsin5t — 6.cos5t + 5 cos t) +25 <2$in5t —6cos5t + 5 cos t)

1 2
= (—50 sin 5t + 150 cos 5t — > cos t) + (50 sin b5t — 150 cos 5¢ + ; cos t>

= 12cost.
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D2.1 Basic Ideas

17. We have

Cre !t + Coe?)" — (Cre ™t + Coe?®) —2(Cre™! + Coe?)

y'(t) =y (1) —2y(t) = (
(Cre™t +4Coe*") — (—Cre! +2Cpe*) — (2C e~ 4 2Cpe*)
0

18. We have

v (£) + 2y (t) = By(t) = (Cre 3 + Coe' + ') +2(Cre™>" 4 Cpe! + €)' — 3(Cre™3 + Cae® + &)
= (9C1e73" + Coe® +4e?) 4 (—6C1e 3 +2Coe! + 4e*)
— (3C1e7% +3Cye! + 36%)
= 5e?,

19. We have

y"(t) + 6y’ (t) + 25y(t) = (e*m(Cl sin4t + C, cos4t))// +6 (e*m(Cl sin4t + C, cos4t)>/
+25 (eiSt(Cl sin4t + C; cos 4t))
= (—33_3t(C1 sin 4t 4+ Cy cos 4t) 4 e 3 (4C; cos 4t — 4C, sin 4t))/
+6 (—36_3t(C1 sin 4t 4 Cy cos 4t) 4 e (4Cy cos 4t — 4C, sin 4t))
+25 (efgt(Cl sin4t + C; cos 4t))
- <e_3t((—3C1 — 4Cy) sindt + (4C; — 3C) Cos4t))/
+6 (—38_3t (Cy sindt + Cp cos4t) + e~ (4Cy cos 4t — 4C; sin 4t))
+25 (e 3(Cy sin4t + C; cos 4t))
(

3¢ 73 ((—3Cy — 4C,) sin4t + (4C; — 3Cy) cos 4t)

(—
e 3((— 12c1 —16C,) cos 4t + (—16Cy + 12C;) sin 4t)
+6 (—Be_St(Cl sin4t 4 Cy cos 4t) 4 e (4Cy cos 4t — 4C, sin 4t))
+25 (efgt(Cl sin4t + C; cos 4t))
= e~ 3((9C; + 12C,) sin4t + (—12C; 4 9C;) cos 4t)
+e73((=16Cy + 12C;) sin4t + (—12C; — 16Cy) cos 4t)
+ e ((—18Cy — 24C,) sin4t + (24C; — 18C;) cos 4t)

+ 73 (25C; sin 4t + 25C, cos 4t)
=0.
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Second-Order Differential Equations

20. We have
" !
Y (1) + 8/ (t) +25y(t) = (e—4f(c1 sin3t + Cp cos 3t) + 2) +8 (e—‘”(q sin3t + C cos 3t) + 2)
+25 (ef‘”(Cl sin 3t + C; cos 3t) + 2)

!/
- (—4e*4f(c1 sin3t + C cos 3t) + e~4(3C; cos 3t — 3C, sin 3t))
+ 8(—4e *(Cy sin 3t 4 C cos 3t) + e (3C; cos 3t — 3C, sin 3t))
425 (e*4f(c1 sin3t + Cy cos 3t) + 2)

= (e_4t((—4C1 —3C;) sin3t + (3C; —4C;) cos 3t))/
e #(—32C; sin 3t — 32C; cos 3t) + e~ *(24C; cos 3t — 24C; sin 3t))
+ e #(25C; sin 3t + 25C, cos 3t) + 50
— 44 ((—4C; — 3Cy) sin3t + (3C; — 4C,) cos 3t)>
+ e H((=12C; —9Cy) cos 3t + (—9C; + 12C,) sin 3t)
+ e 4 ((—32C; — 24C,) sin 3t + (24C; — 32C;) cos 3t)
+ e~ #(25C; sin 3t + 25C; cos 3t) 4 50
= e #((16Cy + 12C,) sin 3t + (—12C; 4 16Cy) cos 3t)
+ e 4 ((=9C; +12Cy) sin 3t + (—12C; — 9C,) cos 3t)
+ e 4 ((—32C; — 24C,) sin 3t + (24C; — 32C;) cos 3t)

+ e #(25C; sin 3t + 25C; cos 3t) + 50
= 50.

-

21. We have
' (8) — (t+ 1)y (1) +y(t) = £ (Cre' + Ca(t+ 1)) = (t+1) (Cref + Ca(t + 1))
+ (Cre' + Co(t+ 1))
=t (Cref + C2) — (£ 4+ 1) (Cref + Ca) + (Cref + Ca(t +1))
= tCre! — tCre! — tCy — Cre! — Co + Cre! +tCo + Gy
= 0.

22. We have
1 " 1 !
2y (t) + 2ty (t) — 2y(t) = 12 (Clt_z + Cot + 2t3> + 2t (Clt‘2 + Cot + 2t3)
1
-2 (Clt_z + Cot + 2t3)
2 -3 3 2 ' -3 3 2
=2 (200 + Gt o)+ 2 (2P Gt ot
-2 1 3
—2<C1t +Cat + 5t )
- <6C1t_4 + 3t) 4G 2 £ 2Ct + 383 — 2C 72 — 2Ct —

= 6Cyt 2 +3t3 —4C 2 +2Cot 4+ 313 —2C1+72 = 2C,t — 3
= 5¢3,

Copyright © 2013 Pearson Education, Inc.
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23.

24.

25.

26.

27.

28.

29.

30.

31.

o—60 — 60

The two given solutions are linearly independent, since for example at t = 0, % -5
while at t = 1 we see that % +5e 6 = ¢ +£ ¢%, so that the two solutions do not differ by a
constant multiple. Since the two given solutions are linearly independent, the general solution is
y(t) = C1e® + Cpe . Note that the coefficient of 5 in the second solution has been subsumed into
the constant C,.

e

The two given solutions are linearly independent, since for example at ¢ = 0, sin V5t =0-cos/5¢t,
but this is not true at t = 7, so that the two solutions do not differ by a constant multiple. Since

the two given solutions are linearly independent, the general solution is y(t) = Cjcosv/5t +
Cysin V5t

The two solutions are linearly independent, since for example at t = 0, te™! = 0-e~!, but this is not
true at t = 1, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = Cre~! + Cate ™.

The two solutions are linearly independent, since for example at t = 1, t = 1- !, but this is not
true at ¢ = 2, so that the two solutions do not differ by a constant multiple. Since the two solutions
are linearly independent, the general solution is y(t) = Cyt + Cot 1.

y”(t) - y(t) — (6—31‘)// o e—3t — 96_3t o e—St — 86_3t.
Substituting gives
y"(t) +y(t) = (2sint — cos2t)” 4 (2sint — cos 2t)

= (2cost +2sin2t)’ + 2sint — cos 2t
= —2sint +4cos2t + 2sint — cos 2t

= 3cos2t.
Substituting gives
Y'(1) =4y (1) +4y(t) = (Pe*)" — 4(Pe) + 4(He*)
= (2te® +212e%") — 4(2te* + 212e%) 4 412
= 26 + 4te? + Ate? + 412 — 8te* — 812 + 417
= 2¢.
Substituting gives

2y (t) + ty (t) — 4y (t) = t2(—2t + 12)" + t(=2t + £2)" — 4(—2t + 1?)
= t2(—242t) + t(—2+2t) + 8t — 4
=212 — 2t +21* + 8t — 4> = 6t.

Substituting e~ for y(t) gives
1 1 1 49
" _ —( Z,-t _ [t e el SR —t
y"(t) —49y(t) <2e ) 49 <2€ ) 5¢ ¢ 24e7".
Substituting et + 3¢”* for y(t) gives
1

1 " 1 49
y'(t) —49y(t) = <2e—t +3e7f> —49 <2e—f +3e7f> = Ee—f +147¢7 — 7e—f —147¢7t = —24¢7",

Copyright © 2013 Pearson Education, Inc.



Second-Order Differential Equations

Thus both of the functions given are in fact particular solutions. Their difference is 3¢”*; substitut-
ing this into the equation gives

v (t) — 49y(t) = (3e”")" —49(3e”") = 147¢”t — 1477 = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.
32. Substituting 2sint for y(t) gives
y"(t) +16y(t) = (2sint)” +16(2sint) = —2sint + 32sint = 30sin t.
Substituting 2 sint — 8 cos 4t for y(t) gives

y"(t) + 16y(t) = (2sint — 8cos4t)” + 16(2sint — 8 cos 4t)
= —2sint 4 128 cos 4t + 32 sint — 128 cos 4t
= 30sint.

Thus both of the functions given are in fact particular solutions. Their difference is 8 cos 4t; substi-
tuting this into the equation gives

y"(t) + 16y (t) = (8cos4t)” +16(8cos4t) = —128 cos4t + 128 cos 4t = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.
33. Substituting —e' for y(t) gives
y'(t) —y (1) — 12y(t) = (—e")" — (—e') —12(—e') = —e' + ¢! + 12¢" = 12¢".
Substituting 6e* — e! for y(t) gives
v (1) =y (1) — 12y(t) = (6e* — ') — (6e* —e') —12(6e* — e')

= 96e™ — e — (24" —e') — 72¢* + 12¢!
= 12¢".

Thus both of the functions given are in fact particular solutions. Their difference is 6¢*; substitut-
ing this into the equation gives

v (1) —y'(t) — 12y(t) = (6e*)" — (6e*) —12(6e*) = 96 — 24¢ — 72¢* = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.

34. Substituting —% for y(t) gives

t2

tz 1 /
2.1 / _ — 2(_ > - _ v
oy () + 2ty' () — 30y(¢) t( 2) +2t< 2) 30( 2)
= —2 — 22 4+ 1542
= 1212,

Substituting 3> — % for y(t) gives
2\" 2\’ 2
2y" (t) + 2ty (t) — 30y(t) = 12 (3t5 - 2> + 2t (3t5 - 2) —30 <3t5 — 2)
= 2(60t> — 1) + 2t(15t* — t) — 90> + 15¢°

= 60t° — 2 + 30 — 2t2 — 90#° + 1542
= 122

Copyright © 2013 Pearson Education, Inc.
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35.

36.

37.

Thus both of the functions given are in fact particular solutions. Their difference is 3t>; substituting
this into the equation gives

£2y" () 4 2ty (t) — 30y (t) = t2(3t°)" 4 2t(3t°)" — 30(3t>) = 60t + 30> — 90t° = 0,
so that the two particular solutions differ by a solution of the homogeneous equation.

Evaluating the differential expression y” () + 2y(t) for the three values given, we get:

(sinv21)" +2sinv2t = —2sin V2t 4 2sinv2t = 0
()" +2¢" = ¢! + 2¢' = 3¢
(cosV21)" +2cos V2t = —2cos V2t +2cos V2t = 0.

Thus sin /2t and cos /2t are solutions of the homogeneous equation and ¢f is a solution of the
nonhomogeneous equation. Since sin /2t and cos v/2t are linearly independent, the general so-
lution of the nonhomogeneous equation is

y(t) = cysin V2t 4 cpcos V2t + et

Evaluating the differential expression y” (t) — 4y(t) for the three values given, we get:

(5e2)" — 4(5e*) = 20e* —20¢* = 0
(6721‘)// _ 4(67213) — 467213 _ 467215 =0

(—cost)” —4(—cost) = cost+4cost = 5cost.

This 5¢% and e~2* are solutions of the homogeneous equation and — cos  is a solution of the non-
homogeneous equation. Since 5¢* and e~ are linearly independent, the general solution of the
nonhomogeneous equation is

2t

y(t) = c1e® + cpe ' — cost.

Notice that the coefficient 5 of ¢?! was subsumed into the constant c;. Writing y(t) = 5c1e? +
coe 2t — cost is equally correct but unnecessarily complicated.

Evaluating the differential expression y” (t) — 3y/(t) + £y(t) for the three values given, we get

25
(32 cos 28)" — 3(e¥/2 cos 2t + Z(33”2 cos 2t)

N W

!/
2
Ze%/2 cos 2t — 2¢%/2 sin Zt) -3 <;e3t/2 cos 2t — 2¢3/% sin t> + 15(63”2 cos 2t)

!/
= <e3t/2 (i cos2t —2sin 2t>) -3 (;e3t/2 cos 2t — 2¢3/2 sin t> + 24—5(63”2 cos 2t)
3
2

9 25
— §e3t/2 cos 2t + 6¢°/2 sin 2t + Zewz cos 2t

2
= ¢3t/2 <ZCOSZt —3sin2t — 3sin2t — 4 cos 2t — gcos2t+6sin2t+ 45C052t>

=0

Copyright © 2013 Pearson Education, Inc.



Second-Order Differential Equations

2
(e3t/2 sin2t)” _ 3(e3t/2 SinZt)’ + Z5(e3t/2 sin 2t)

!/
2
Ze%/2sin 2t + 2¢%/2 cos Zt) -3 (;63”2 sin 2t + 2¢3/2 cos t> + ZS(EBt/Z sin 2t)

N W

!
2
= <e3t/2 (i sin2t + 2 cos 2t>) -3 (;e3t/2 sin 2t 4 2¢%/2 cos t> + 15(63'5/2 sin 2t)
3
2

9 25
— §€3t/2 sin 2f — 6¢°/2 cos 2t + Zewz sin 2t
st2 (9 . . 9 . 25 .
=e 1 sin2t + 3 cos2t + 3cos2t — 4sin 2t — 5 sin2t — 6 cos 2t + T sin 2t
=0

2
(48 4 100¢)” — 3(48 + 100t)’ + ZS (48 4 100£) = 0 — 300 + 300 + 625¢ = 625t.

Thus €3/2 cos 2t and ¢3/2 sin 2t are linearly independent solutions of the homogeneous equation,
and 48 + 100t is a particular solution of the nonhomogeneous equation. Thus the general solution
of the nonhomogeneous equation is

y(t) = c16%/2 cos 2t + c2e3/? sin 2t + 48 + 100¢.

38. Evaluating the differential expression t2y” (t) + 2ty (t) — 6y(t) for the three values given, we get

3 F2t(t73) —6(t3) =122 — 6172 — 6172 =0

#\" #\’ £
#2 (2> + 2t (2> -6 (2> = 6t* +4t* — 3¢* = 7

£2(12)" +2t(t2) — 6(£2) = 21> + 42 — 612 = 0.

. . . . 4. .
Thus ¢~ and #? are linearly independent solutions of the homogeneous equation, and % is a partic-
ular solution of the nonhomogeneous equation. Thus the general solution of the nonhomogeneous
equation is
4

t
y(t) = c1t 2 +cot? + 5

39. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1sin0+ cpcos0= y(0) =4 =4
0

so that
3C1 =0.

3c1 cos0 — 3¢y sin0 = 1/ (0)
Thus ¢; = 0 and ¢, = 4, and the solution to the initial value problem is y(t) = 4 cos 3t.

40. Substituting the initial conditions into y(t) gives the system of simultaneous equations

1 +ce = y(0)= 2 c1+c= 2
0 o0 so that
cre’ —ce - =y'(0) = -2 1 —C=—2.

Thus ¢; = 0 and ¢, = 2, and the solution to the initial value problem is y(t) = 2¢~".

Copyright © 2013 Pearson Education, Inc.



D2.1 Basic Ideas 9

41. Substituting the initial conditions into y(t) gives the system of simultaneous equations

1”0+ e = y(0) = -3 e+ ¢p=-3
5.0 _40 , so that
5c1e”" —dcpe "V =y (0) = 3 5¢1 —4cp = 3.
Thus ¢; = —1 and ¢, = —2, and the solution to the initial value problem is y(t) = —e — 2.

42. Substituting the initial conditions into y(t) gives the system of simultaneous equations

c1sin0+ cpcos0— cos0= y(0)

4 =5
) ) , so that
2¢1¢0s0 —2cpsin0+3sin0 = ' (0) =2

2C1 =2.

Thus ¢; = 1 and ¢, = 5, and the solution to the initial value problem is y(t) = sin2t + 5cos 2t —
cos 3t.

43. Substituting the initial conditions into y(t) gives the system of simultaneous equations

4.0 —4.0 2
c1€ core — 0F===y(0
! t o y(0) so that

=0
4ere*0 —dcpe™*0 2.0 =y'(0)=0 4c1 — 4y =

Thus ¢; = ¢, = &, and the solution to the initial value problem is y(t) = {ze* + e

44. Substituting the initial conditions into y(t) gives the system of simultaneous equations

C1'1_2+C2-1= y(l)

3 c1+c= 3
“2c1-173%34+ =y(1)=0

so that
—2c14+c3=0.
Thus ¢; = 1 and ¢, = 2, and the solution to the initial value problem is y(t) = t 2 + 2t.
45. Substituting the initial conditions into y(t) gives the system of simultaneous equations

-124¢-12=y(1)= 1 cg+ =1
so that
—201-13420-1=9/(1) = —1 =201 +2c0 = — 1.

Thus c; = % and ¢ = }1, and the solution to the initial value problem is y(t) = %t‘z + %tz.
46. Using the facts that

(e*sin3t)’ = —4e * sin3t + 3¢ * cos 3t = e * (3 cos 3t — 4sin 3t)
(e cos3t)’ = —4e * cos3t — 3¢ #sin3t = —e * (4 cos3t + 3sin3t),

substitute the initial conditions into y(t) to get the system of simultaneous equations

cre *0sin0 + ce40cos0= y(0)= 1
c1(e7*%(3cos0 — 4sin0)) — cp (e *%(4cos 0+ 3sin0)) = v/ (0) = —1

so that

Cr = 1
3c1 —4cr = —1.

Thus ¢; = ¢, = 1, and the solution to the initial value problem is y(t) = e~*(sin 3t + cos 3t).

Copyright © 2013 Pearson Education, Inc.



10 Second-Order Differential Equations

47. (a) False. By Theorems 16.2 and 16.4, a second-order linear differential equation has two linearly
independent solutions, so that the general solution must involve two terms with arbitrary
constants. Note that 0 is linearly dependent with any nonzero function, so that these theorems
imply that neither linearly independent solution is everywhere zero.

(b) True. Substituting y, + cy;, into the nonhomogeneous equation gives

v +py +ay = (yp+cyn)” +pyp +cyn) +9(yp +cyn)
= (yp + Yy + ayp) + c(yy, + py, + qyn)
=f+0=/,

so that y, + cy;, satisfies the nonhomogeneous equation. This is the content of Theorem 16.4.

(c) False. Since 1 — cos? x = sin? x, this pair of function is {sin2 x, 5 sin? x}, which are obviously

constant multiples of one another and thus linearly dependent.

(d) False. Substitute y; + y» into the formula to get

Vit =i +y)" + (v +y2) (v +y2)
=¥ + Y5 + vy + 2y s + vy
= (] +yy1) + (3 +yaws) +y1ys + vau
= y1ys + vayi

since both y; and y; satisfy the differential equation. Since there is no reason to expect 115 +
Y2y} to be zero, we see that y; + y» need not be a solution of the equation. This does not
violate Theorem 16.1 since the given equation is not linear.

(e) False. The general solution of this equation is y(t) = ¢y sinv/2t + ¢, cos v/2 t. The condition
y(0) = 4 means that c; = 4. We need a second condition in order to get a value for c¢;. Thus
there are multiple solutions.

48. Substitution gives

y'(t) — 12y (t) + 36y(t) = (Cre® + Cote®)” —12(Cye® + Cote®) + 36(Cye® 4 Cote®)
= 36C;e% + Cy (% + 6te®)" — (72C1e% + 12Cpe% + 72C,te®)
+36C;e% + 36C,te®
= 36C;e% + 6Cye% 4 6Coe% + 36C,te® — 72C1e% — 12Ce% — 72C,te®
4 36C1€% 4 36C,te®
=0.
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49. Substitution gives

Y () =12y (t) + 36y (t) = (C1e® 4 Cote® + 12e5)" — 12(C1e® + Cyted + 12657

+36(C1e% + Cyted + 1265

= 36C1e% + (Cpe® 4 6Cyted + 2t + 6120’
— 72C;e% — 12C,e® — 72C,te® — 24160 — 724260t
+36C1e% 4 36C,ted + 36125

= 36C1e% + 6C2e% + 6Cpe® + 36Cote® + 2¢% + 1248 + 12t + 36126%
— 72C;1e% — 12C,e® — 72C,te® — 24100 — 724260
+36C;¢% + 36C,te® + 3620

= 36C;¢% + 12Cye% + 36C,te® + 2¢0 + 246 + 36126
— 72C;e% — 12C,e® — 72C,te® — 24t — 724260
+36C1e% + 36C,ted + 36120

= 2¢%.

50. Substitution gives

y'(t) +4y(t) = (Cysin2t + Cycos 2t — 2t cos2t)” + 4(Cy sin 2t + C cos 2t — 2t cos 2t)
= —4C; sin 2t — 4C, cos 2t — 2(cos 2t — 2t sin 2t) + 4Cy sin 2t + 4C, cos 2t — 8t cos 2t
= —2(—2sin2t — 2sin 2t — 4t cos 2t) — 8t cos 2t
= 8sin2t

51. Substitution gives

22y (1) — 3ty (t) + 4y(t) = 2(C1#? + Cot* Int)” — 3t(Cyt? 4+ Cot? Int)’ + 4(Cy#? + Cot* Int)
= t2(2Cy) + 2 (2Cot Int + Cat)’ — 6C1#> — 3t(2Cot Int + Cyt)
+4(C1£? + Cof? Int)
= 2C112 4+ 2Cot? Int + 2Cot? 4 Cot? — 6C11* — 6Cot? Int — 3Cyt?
+4C11? +4Cyt% Int
=0.
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12 Second-Order Differential Equations

52. Substitution gives

2y (£) = 3ty (t) + 4y(t) = 2(C1#* + Cot? Int + 2 In® )" — 3t(C1£? + Cot? Int 4 2 In )

+4(C12 4+ G Int + £21n?t)

= 2(2C1t + 2CotInt + Cot + 2t In t + 2t Int)’
— 3t(2tCy + 2CatInt + Cot 4 2tIn’ t + 2t Int)
4C12 + 4GP Int + 42 In® ¢t

= 2(2C; +2CInt +2C, + Cy +2Int +4Int +2Int +2)
—6C112 — 6Cot? Int — 3Cot?* — 6t2In’t — 62 Int
4C112 + 4Gt Int + 412 In’ ¢

=2C12 +2Cot? Int + 2Cot% 4+ Cot? + 282 In? t + 42 Int + 262 Int + 2£2
—6C112 — 6Cot? Int — 3Cot? — 6t In* t — 612 In t
4C12 + 4GP Int + 42 In* ¢t

=212

53. Substitution gives

2y (£) + ty () + (t2 - i) y(t) = 2 (2(Creost + Cysint) )

+t (t_l/z(Cl cost + C sint))l + (t2 - i) (t_l/Z(Cl cost+ Cy sint))
= <—;t3/2(C1 cost + Cpsint) +t~2(—Cy sint + Gy cost))l

+t <—;t3/2(cl cost+ Cysint) +t~1/2(—Cy sint + C; cos t))

+ C1t3/2 cost+ C2t3/2 sint — %Cltfl/z cost — %Cztfl/z sint

3 1
= <4t_5/2(C1 cost+ Cpsint) — Et_S/z(—Cl sint +C; cost))

1
12 (—2t3/2(—C1 sint 4+ Cycost) +t 1/2(—Cycost — C, sinf))

1 1 . .
— §C1t71/2 cost — ECZFUZ sint — Cyt/2sint 4+ Cyt'/? cos t

1 1
+ C1t3/2 cost+ Czt‘o’/2 sint — ZC1F1/2 cost — ZCzt_l/Z sint

= Ztil/z(cl cost+ Cpsint) — %tl/z(—Cl sint + Cp cost)
- %tl/z(—Cl sint + Cycost) + t3/2(—Cj cost — Cy sint)
— %Clt_l/Z cost — %Czt_l/2 sint — C1tl/2 sint + Cztl/2 cost
+ C1if3/2 cost+ Cot??sint — %Clt*”z cost — iCzt*U2 sin ¢

=0.
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54. (a) Substituting y = sint and y = cost into y” +y = 0 gives
y" +vy = (sint)” +sint = (cost)’ +sint = —sint +sint = 0
y" +y = (cost)” + cost = (—sint)’ + cost = —cost + cost = 0.

(b) Since we have found two linearly independent solutions, the general solution, by Theorem
16.2,isy = Cysint + Cy cost.

¢) Substituting y = sin2t and y = cos 2t into y” + 4y = 0 gives
(c) Substituting y = sin2t and y 2tinto y" + 4y = 0 gi
vy +4y = (sin2t)” +4sin2t = (2cos2t)’ + 4sin2t = —4sin2t +4sin2t =0
v +4y = (cos2t)” +4cos2t = (—2sin2t) +4cos2t = —4cos2t + 4cos2t = 0.

(d) Since we have found two linearly independent solutions, the general solution, by Theorem
16.2,is y = Cq sin2t + C, cos 2t.

(e) Both y = sinkt and y = cos kt are solutions, since substitution gives
y' +ky = (sinkt)” + k*sinkt = (kcoskt)' + k*sinkt = —k*sinkt + k? sinkt = 0
y" 4+ ky = (coskt)” + k* coskt = (—ksinkt)' + k* coskt = —k* cos kt + k* cos kt = 0.

Since those solutions are linearly independent, the general solution, by Theorem 16.2, is y =
Cq sinkt 4+ Cy cos kt.

55. (a) Substitution gives
y//_y:(et)l/_et:(et)l_et:et_etzo

yl/ —y= (eft)// o eft — (_eft)l o eft — eft _ eft =0.

(b) sinht and cosht are each linear combinations of the solutions ¢! and e, so they are both
solutions. They are linearly independent since if asinh t + bcosht = 0, then

el —et el+et a+b, b—a
a( 5 )—i—b( > ) Ze+ze =0.

Since ¢f and ¢! are linearly independent, we must havea +b = b —a = 0, so thata = b = 0.
This proves that sinh t and cosh ¢ are linearly independent as well.

(c) Since sinh’ = cosh and cosh’ = sinh, substitution gives

y" —y = (sinht)” —sinht = (cosht)’ — sinht = sinht — sinht =0
y" —y = (cosht)” — cosht = (sinht)’ — cosht = cosht — cosh t = 0.

(d) From part (a), the general solution is Cie! + Cre ™.

Cq sinht 4+ Cp cosh t.

(e) Substitution gives

From part (c), the general solution is

y// o ka _ (ekt)// o kZekt — (kekt)/ _ kZekt — kZekt o kZekt -0

y/l _ ka _ (efkt)/l _ kze—kt — (_kefkt)/ _ kzefkt _ kzefkt _ kzefkt =0.

(f) In terms of exponentials, from part (e), the general solution is C1ekt 4+ Cre*. Since cosh kt =
M and sinh kt = ekta‘fkt, an identical argument to that in part (b) shows that cosh(kt)

and sinh(kt) are also solutions to y” — k?y and that they are linearly independent. So in terms
of hyperbolic functions, the general solution is C; sinh kt 4 C cosh kt.
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14 Second-Order Differential Equations

56. With y = Cie=2! + Coe~ + Cze!, we have

y = —2Cie % — et + Cae
y' = 4Cie 2 4 Coe ! + Cze
y/// = —8C1€72t — Czeit + Cget

so that

v (t) +2y"(t) — v/ (t) — 2y(t) = —8Cie % — Coe™" + Cae' +2(4Cre % 4 Coe™! + Cze')
— (—2C1e 2 — Cye !+ Cael) — 2(Cre 2 + Cre™F 4 Caet)
=0.

57. Note that (ekt)(V) = k4ekt, (sinkt)(V) = k*sinkt, and (coskt)™¥) = k*coskt. Thus with y =
Cye 2t + Cpe?t + Casin2t + C4 cos 2t, we have

y¥) = 16C;e72% 4 16Ce% + 16C3 sin 2t + 16C, cos 2t = 16y(t).

58. (@) & (v(1)?) =2y() & (y(1) = 2y (D) ().
(b) Since 2yy’ = 4 (y*), we can substitute i 1ny ( ) (t) '(t) = 0to gety"'(t) — (y(t)?) = 0.
(c) Integrating with respect to t gives [ (y”( ) dt = det or y'(t) —y(t)? = C. This
1,0

( ) —
y(£)2+C ¢ 2+c dat.

is a separable equation; rearranging gives ; ( )

(d) There are now three cases.

\%) =t+C’, so that % = tan(v/Ct+ C'V/C)
an = tan t+ . Renaming constants gives y = Cq tan(Cy + Cqf).
dy=+/C tan(/Ct+C'\/C). R ing gives y = C C+C

¢ If C > 0 then integrating gives % tan ! (

e If C = 0 then integrating ;—; = dt gives —y~! =t + C; so thaty = —ﬁ.
¢ If C < 0 then integrating gives
1
=t+C,
2/ —C y+v-
so that, writing D = v/—C,
_ , 2D(t+C’)
y-D_ +2P+C) | and solving for y gives y =D 1xe

y+D 1:F82D(t+cl)'

Finally, rename constants to get
1 4 g2Dt+2DC 1— CzeZClt

Y= Pl F b — M1 L GG

(Note that in the final equation, the sign of C, may be chosen appropriately so that we
can force the — sign in the numerator and the + sign in the denominator).

59. (@) & (v'(1)?) =20/ (& (1) =2/ (D" (¢).
(b) From part (a), y”(1)y'(t) = % - £(y/(t)?) = 1, so that (y/(t)?)' = 2.
(c) Integrating both sides with respect to t gives [(y/(t)?)' dt = [2dt, or y'(t)? = 2t + C; where
C; is an arbitrary constant. Thus y'(t) = £v/2t + C;.
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60.

61.

62.

63.

(d) Solving this equation simply involves integrating the right-hand side:

Thus there are two families of solutions.
(a) With v = y/, we have v/ = 20, or v — 20 = 0. The integrating factor is el ~2dt — =2t this
gives e 20/ —2¢72y = 0, or (e ?v)’ = 0. Thus e *v = Cy, so that v = y' = Cye?.
ntegrating once again gives y = =-¢-° + C3 = (e“ + (3. As a check, note that
(b) Integrating gain gives y = §le? + C3 = Coe? + C3. As a check h
Yy = (Coe® + C3)" = (2C2¢*) = 4Coe® = 2(2Ce™) =2y

a) With v = /, we have v/ = 30 + 4, or v/ — 30 = 4. The integrating factor is e/ 39 = ¢~3!; this
y & &
gives e =30’ — 3¢~y = (e73'v)’ = 4¢3, Integrate both sides to get e =30 = —%e 73 + C, s0
that v = —3 + Cye*. This is the same as y’ = —3§ + Cyel.

(b) Integrating once again gives y = —%t + %e3t +C=C— %t + Cze®. As a check, note that
4
]/” = (Cz — gt + C3€3t)” = 9C3€3t
4
3y +4=3(C, — St C3e®) 44 = —4+9C3e* + 4 = 9C3e*.
(a) With v = y/, we have v/ = ¢ ?. This is separable: ¢’v' = 1; integrating both sides gives

eV =t+ C, so that v = In(t + C7). Substituting back gives v’ = In(t 4+ Cy).
(b) Integrating once again gives y = (t + C1) In(t + C1) — t + C5. As a check, note that

1
y" = ((t+Co)In(t+Cr))" + (~t+Cy)" = (In(t+Cp) +1) =
1
oV — o~ ((HHCI)IN(t+C1)—+C)' _ ,—1-In(t+Cp)+1 _ ,—In(t+Cy) _ 1
t+Cy

(a) Withv =/ we get v/ = 2t0?, so that v=20’ = 2t. Integrating both sides gives —v~! = 24 C;,

so thatv = — ﬁ Substituting back gives y’ = — et
(b) Integrating once again gives if C; > 0

1 t
= ———arctan | — | + C,.
Y vC (\/Cl)

t+ VG|
t— /]G

andif C; <0
1

y= In
2/
As a check, note that for C; > 0,
1 v/C
V= e = (P C) !
VG 2+ G
y' =2t +Cp)7?

+C.

so that indeed i = 2t(y’)?, and for C; < 0, regardless of the sign of i \/%,
;o —1 -1
A TGN -G
no_ 2t
N (tz + C1)2

and again y" = 2t(y')2.
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16 Second-Order Differential Equations

64. (a) Since

(sin4t)” + 16sin4t = (4cos4t)’ + 16sin4t = —16sin4t + 16sin4t = 0
(cos4t)” + 16 cos4t = (—4sin4t)’ + 16 cos4t = —16cos4t + 16 cos4t = 0

we see that sin4t and cos4t are linearly independent solutions, so that y(t) = Cj sin4t +
C, cos 4t is the general solution.

(b) Substituting the initial conditions into y(t) gives the system of simultaneous equations

Cy-sin(4-0)+ Cp-cos(4-0) = y(0) = 4 C,=4
o

so that
4Cy - cos(4-0) —4C; - sin(4-0) = y'(0) = -1 4, = -1

Thus C; = f% and C, = 4, and the solution to the initial value problem is y(t) = 7}1 sin 4t +
4 cos4t.

(c) A graph of the solution for 0 <t < 47 is

4

65. (a) Computing derivatives gives

(e73/2sin2t) = _26731&/2 sin 2t + 2e3/2 cos 2t = ¢3/2 (2 cos 2t — % sin 2t)

3 /
(e73/2sin2t)" = (—26_3t/2 sin 2t + 2¢73/2 cos 2t>

_ 9,32 _3p3t/2 3031/ —3t/2

sin 2t cos 2t — cos 2t — 4e sin 2t

7
= ¢ 3t/2 (—6 cos 2t — 1 sinZt)

3 3
(e731/2 cos2t) = *56_3”2 cos 2t — 2¢73/25in 2t = ¢73/2 <2 cos 2t — 2sin 2t>
3 !
(e73/2 cos2t)" = (—2€3t/2 cos 2t — 2¢~3/2sin 2t>
9
= 1673”2 cos 2t 4 3e /2 sin 2t + 3¢73/2 sin 2t — 4e73t/2 cos 2t

— p3t/2 <_Z cos2t+6 sin2t>
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—3t/2 —3t/2

Substituting e sin2tand e cos 2t gives

2 2
y'+3y + ZS‘V = (e73/2sin2t)" 4+ 3(e~3/2sin2t)’ + 25(673”2 sin 2t)

7 3
= ¢ 3t/2 <6 cos 2t — 1 sin2t> +3e73/2 (2 cos 2t — 5 sin2t>
2
+ 25(873”2 sin 2f)

7 2
— ¢ 3t/2 <6 cos 2t — 1 sin2t + 6 cos 2t — g sin 2t + Z5 sin2t>

=0

2 2
v + 3y + ZSy = (e73/2 cos2t)" +3(e73/2 cos 2t) + 15(673”2 cos 2t)

= ¢73t/2 (—Z cos 2t + 6sin Zt) +3¢73t/2 (—; cos 2t — 2 sin2t>
2
+ 15(6*3”2 cos 2t)

7
= ¢ 3t/2 (—4 cos 2t + 6sin2t — ;COSZt — 6sin2t + 245C052t>

=0

so that e=3/2sin 2t and e~3/2 cos 2t are linearly independent solutions, so that the general
solution is y(t) = e~3/2(Cy sin 2t + C; cos 2t).

(b) Since

y'(t) = —%e’3t/2(C1 sin 2t 4 Cp cos 2t) + e 3/2(2C; cos 2t — 2C, sin 2t)

— pBt/2 (<2c052f — ;SinZt) Cy + (—2 sin 2t — ;COSZt) C2> ,

substituting the initial conditions into y(t) gives the system of simultaneous equations
e >92(sin(2-0)Cy + c0s(2-0)C2) = y(0) = 4
e 3072 ((ZCOSO - gsin0> 1+ (—2 sin0 — §c0s0> Cz) =y'(0)=0
so that

C =4

3
2C1 — =G =0.
Cy 2C2 0

Thus C; = 3 and Cp = 4, and the solution to the initial value problem is
y(t) = e~3/2(3sin 2t + 4 cos 2t).

(c) A plot of the solution for 0 < t < 27 is
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18 Second-Order Differential Equations

.
n n
b n > 2n

66. (a) Since (sin3t)’ = 3cos3t, (sin3t)” = —9sin3t, (cos3t)’ = —3sin3t, and (cos 3t)”" = —9cos 3t,
have, substituting y = sin 3t and y = cos 3t,

y" 49y = —9sin3t +9sin3t =0
y" +9y = —9cos3t +9cos3t =0,

so that sin 3t and cos 3t are two linearly independent solutions to the homogeneous problem.
Also, substituting y = sint, we get

y" +9y = —sint +9sint = 8sint,

so that sint is a solution to the nonhomogeneous problem. Thus the general solution to the
nonhomogeneous problem is y(t) = Cy sin 3t + C, cos 3t + sin t.

(b) Substituting the initial conditions into y(t) gives the system of simultaneous equations

Cysin(3-0) + Cycos(3-0) + sin0 = y(0)
3Cycos(3-0) —3Cysin(3-0) +cos0 = y'(0) =

0 C =
so that
2 3¢ =1.

Thus C; = % and C; = 0, and the solution to the initial value problem is y(t) = % sin 3t +sin .

(c) A plot of the solution for 0 < t < 47 is

0.5+

05
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67. (a) Computing derivatives gives

(e~ sin4t)’ = —3¢~% sin4t + 4¢3 cos 4t = e 3 (—3sin 4t + 4 cos 4t)
(=3 sin4t)” = (e 3 (—3sin4t + 4cos4t))’
= 3¢ 3 (—3sin4t +4cosdt) +e ¥ (—12cos4t — 16sin 4t)
e 3 (—7sin4t — 24 cos4t)
(e 3 cos4t) = —3e 3 cosdt — de 3 sin4dt = e (3 cos4t — 4sin4t)
(e3 cos4t)” = (e 3 (—3cos4t — 4sin4t))’
= —3e 3 (—3cos4t — 4sin4t) + e 3 (12sin4t — 16 cos 4t)
= ¢ (24sin 4t — 7 cos 4t)

t t

Then, substituting y = e~ sin4t and y = e~3! cos 4t gives

y' 46y +25y = (e sin4t)” 4 6(e~> sin4t)’ + 25(e~ sin 4t)
= 73 (—7sin4t — 24 cos 4t) 4 6e 3 (—3sin4t + 4 cos 4t) + 25¢ > sin 4t

-3t -3t

so that e™>" sin4t and e~ cos 4t are two linearly independent solutions to the homogeneous
problem. Also, substituting y = e, we get

y' +6y +25y =e "t —6e " +25e7F =20e7F,

so that e~ is a solution to the nonhomogeneous problem. Thus the general solution to the
nonhomogeneous problem is y(t) = e~3!(Cy sin4t + Cp cos4t) + e~ *.

(b) Since

y'(t) = —3e % (Cy sindt + Cy cos4t) + e (4Cy cos 4t — 4Cysindt) — e
= e 3 ((—3sin4t +4cos4t)Cy + (—4sin4t —3cos4t)Cy) —e ",

substituting the initial conditions into y(t) gives the system of simultaneous equations

e=30(sin(0)Cy + cos(0)Cz) +e~" = y(0) =2
6_3'0((—3 sin0 +4cos0)Cy + (—4sin0 —3cos0)C, — e ¥ = y'(0)=0
so that
C=1
4C1 - 3C2 =1

Thus C; = C; =1, and the solution to the initial value problem is
y(t) = e 3 (sin4t + cos4t) +e .
(c) A plot of the solution for 0 < t < 27 is
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68. (a) Letu = y/; then the differential equation becomes

() V1+u(x)?

SX

The initial condition y(1) = 0is irrelevant to this problem, while iy’ (1) = 0 becomes the initial
condition u(1) = 0.

(b) This equation is separable: divide both sides by v/1 4 12 to obtain

du _d7x
VituZ o osx

Integrating both sides gives

ln‘u—b— \/1—0—142‘ = %ln(sx) +C,

so that exponentiating both sides gives
UA VI 12 = € /NG — o€ (gx) /s = oCl/sydls — 0y y1/s,
Since u(1) = y'(1) = 0, we get
0+ \/1—|—702= Cl-ll/s, sothat C; = 1.

Thus u + V1 + u2 = x!/5. To simplify, subtract u from both sides and square to get

1 1
14 u? = x*/° —2ux* +u?, sothat u= Exfl/s(xZ/s —-1) = E(xl/s —x7),

(c) Since u = y’, we have the equation y’ = J(x1/ — x~1/5); solve this by integrating both sides

with respect to x. (Recall that s > 1, so that we need not worry about integrating x*!/¢ and
getting logarithmic functions):
1/ s siys S (s-1)/s
y—2<s+1x o + C,. (D2.1)

Since y(1) = 0, we get

1 S S S
0 2<s+1 s—1>+ 2 21

— S
so that C; = 575
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(d) Replacing C; in (D2.1) by its value, and factoring out sx, we get
_sx x1/s B x—1/s N s
YT \sr1 5o s2—1

69. (a) Multiplying mx” (t) = F(x) by x'(t) gives

mx" (t)x'(t) = F(x)x'(t). (D2.2)

d

Now, by the Chain Rule (or, see Exercise 59(a)), 2x” (t)x'(t) (x'(£)?), so that x”(t)x'(t) =

Tt
%%(x’ (t)2). Further, with ¢ (x) = —F(x), differentiating with respect to time gives, again by
the Chain Rule, i((p(x)) = ¢'(x)x'(t) = —F(x)x/(t). Making these substitutions in (D2.2)

dt
gives

i (m 3 R) ==, s LGP+ ew) <o

1
(b) With E = EmUZ + ¢, since the time derivative of E is zero, it follows that E is conserved in
time.

70. (a) Withy =t, wehavey’ = 1and y’ = 0. Substituting gives

1 1
0——-14+5t=0,
e
so that y; = t is a solution.

(b) Lety, = v(t)y1(t) = tov(t) be any other solution. Now, y5 = v(t) + tv/(t) and y4 = 20/(t) +
tv" (), substituting y, in the equation gives

v
Since y; is a solution, we have tv” (t) + 0/(t) = 0, or v = -
w
(c) Letting w = v’ gives the differential equation w’ = s
o : o 1 . . . ,
(d) This is a separable equation; rearranging gives Py and integrating both sides gives

Injw| =C—Int =C+Inl Thusw = +CHIn(1/) = % Note that since t > 0, we do not
need absolute value signs around ¢.

C
(e) Substituting back gives v’ = Tl Integrating both sides gives v = C; Int 4 C,. Note that since
t > 0, we do not need absolute value signs here.

(f) Since y,(t) = tv(t), we get for a general solution Cpt + CytInt.
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D2.2 Linear Homogeneous Equations

1.

10.

11.

12.

13.

14.

15.

16.

We assume that all derivatives of the function are multiples of the function itself, so we start with
e'.

The characteristic polynomial is 2 — 3r 4+ 10 = 0; see the discussion in the first few paragraphs of
this section.

The characteristic polynomial is a quadratic equation, so it can have two distinct real roots, one
repeated real root, or two conjugate complex roots.

The general solution when the characteristic polynomial has distinct real roots is y(t) = cie’t! +
cpe’2t, where 1 # r, are the real roots.

When the characteristic polynomial has a repeated real root r, the general solution is y(t) = c1e™ +
cote.

If the characteristic polynomial 2 + pr + g = 0 has two conjugate complex roots, the general
solution is y(t) = c1e™ cos bt + cre™ sin bt, where a = —§ and b = 49 — p2.

Since the roots are —2 &+ 3i, we have 1 = —2 and b = 3 in Case 3, so that the general solution is
y(t) = cre™? cos 3t + cre? sin 3t.

The trial solution for a second-order Cauchy-Euler equation is y(t) = 7.

The characteristic polynomial is > — 25 = (r + 5)(r — 5) = 0, with roots 5. Since the roots are
real and distinct, the general solution is y(t) = c1e> + cpe ™.

The characteristic polynomial is 2 — 2r — 15 = (r — 5)(r + 3) = 0, with roots 5 and —3. Since the
roots are real and distinct, the general solution is y(t) = c1e> + cpe ™.

The characteristic polynomial is > — 3r = r(r — 3) = 0, with roots 0 and 3. Since the roots are real
and distinct, the general solution is y(t) = c1e% + cpe® = c1 + coe®.

The characteristic polynomial is 2 — r — % = (r— %) (r + %) = 0, with roots % and —%. Since the

roots are real and distinct, the general solution is y(t) = c1e/? + coe /2.

The characteristic polynomial is 212 + 6r — 20 = (2r — 4)(r + 5), with roots 2 and —5. Since the
roots are real and distinct, the general solution is y(t) = c1e + coe ™.

The characteristic polynomial is 2 — 37 +1 = }(x —2)(2x — 1), with roots 2 and 1. Since the roots

are real and distinct, the general solution is y(t) = cye? + cpet/2.

The characteristic polynomial 7> — 36 = (r + 6)(r — 6) has distinct real roots 46, so the general
solution is y(t) = c1e® + coe ®. Then y/(t) = 6¢1€® — 6cre 6. Substituting the initial conditions
gives

160+ e 0= y(0) =3 c1+ =3
60 60 , so that
6c1e°" — 60oe =y(0)=0 6c1 — 60 = 0.
Thus ¢; = ¢, = 3, and the solution is y(t) = 3 (¢% + 7).

The characteristic polynomial > — 6r = r(r — 6) has distinct real roots 0 and 6, so the general

solution is y(t) = c1% + c2e® = c1 + c2e%. Then y/(t) = 6cre % Substituting the initial conditions
gives
1+ e = y(0) = -1 i+ o=-1
60 s so that
6c2e°" =y (0) = 2 6cr = 2.
Thus ¢; = —% and ¢, = 1, so that the solution is y(t) = —§ + $e®".
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17.

18.

19.

20.

21.

22.

The characteristic polynomial > — 37 — 18 = (r — 6)(r + 3) has distinct real roots —3 and 6, so
the general solution is y(t) = c1e® + coe 3. Then y/(t) = 6c1¢% — 3cpe™3. Substituting the initial
conditions gives

0+ e = y(0) =0 g+ =0
so that
66166'0 — 36267340 = y/(O) =4 6c1 —3cp = 4.
Thus ¢; = % and ¢y = —%. The general solution is y(t) = %( —e %),

The characteristic polynomial 2 + 87 + 15 = (r + 3)(r + 5) has dlstmct real roots —3 and —5, so
the general solution is y(t) = c1e~> + coe™>". Then y/(t) = —3c1e™3 — 5cpe>!. Substituting the
initial conditions gives

c1e _30 —|— C2€ 0 y(O) 1+ =2
so that
—3c1e™30 — 50070 =/ (0) = 4 —3c1 — 5cp = 4.

=3t __ 567513

Thus ¢; = 7 and ¢; = —5. The solution is y(¢)
1

The characteristic polynomial 2 — 2r — 3 = 1(2r — 5)(2r + 1) has distinct real roots —3 and 3, so
the general solution is y(t) = c1¢%/2 4 ce /2. Then y/(t) = 3c1€7/% — Lcpe™"/2. Substituting the
initial conditions gives

172+ e 2 = y(0) =3 a+ =3
5 502 1 02 _ i) — sothat 5 1
ST = sl =y (0)=0 217 302=0

Thus c; = % and ¢p = % The solution is y(t) = %€5t/2 + %e’t/z.

The characteristic polynomial 2 — 10r + 21 = (r — 3)(r — 7) has distinct real roots 3 and 7, so
the general solution is y(t) = c1e + cre”t. Then y/(t) = 3c1e® + 7cpe”t. Substituting the initial
conditions gives

04 C2€ = y(0)=-3 c1+ cp=-3
30 , so that
3cle + 70”0 =/ (0) = —1 3¢y +7cp = —1.

Thus ¢; = —5and ¢, = 2. The solution is y(t) = —5e3 + 2¢”.

The characteristic polynomial * — 2r +1 = (r — 1) has the repeated real root 1, so the general
solution is y(t) = cie’ + cate’. Then y/(t) = c1e’ + cp(e! + te'). Substituting the initial conditions
gives
cre® + c-0-¢" = y(0) =4 c1 =4
0 0 0\ 0 , so that
c1e’ +cp(e” +0-¢")e’ =y’ (0) =0 c1+c=0.

Thus ¢; = 4 and ¢; = —4, and the solution is y(t) = 4e' — 4t¢l.

The characteristic polynomial 72 + 6r +9 = (r + 3)? has the repeated real root —3, so the general
solution is y(t) = cie 3 + cate 3. Then y/(t) = —3c1e™3 + co(e73! — 3te=3). Substituting for the
initial conditions gives

cre 0 + c-0-e730 = y(0) =
30 30 30 , so that
—3c1e7Y + (e =3-0-¢777Y) =y/(0) = -1 =3¢+ =—

Thus ¢; = 0 and ¢; = —1, so that the solution is y(t) = —te~>*
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