
Limits and Continuity

Exercise Set 1.1

1. (a) 3 (b) 3 (c) 3 (d) 3

2. (a) 0 (b) 0 (c) 0 (d) 0

3. (a) −1 (b) 3 (c) does not exist (d) 1

4. (a) 2 (b) 0 (c) does not exist (d) 2

5. (a) 0 (b) 0 (c) 0 (d) 3

6. (a) 1 (b) 1 (c) 1 (d) 0

7. (a) −∞ (b) −∞ (c) −∞ (d) 1

8. (a) +∞ (b) +∞ (c) +∞ (d) can not be found from graph

9. (a) +∞ (b) +∞ (c) 2 (d) 2 (e) −∞ (f) x = −2, x = 0, x = 2

10. (a) does not exist (b) −∞ (c) 0 (d) −1 (e) +∞ (f) 3 (g) x = −2, x = 2

11. (i) −0.01 −0.001 −0.0001 0.0001 0.001 0.01

0.9950166 0.9995002 0.9999500 1.0000500 1.0005002 1.0050167

(ii)

   

0.995

1.005

-0.01 0.01
The limit appears to be 1.

12. (i) −0.1 −0.01 −0.001 0.001 0.01 0.1

2.0135792 2.0001334 2.0000013 2.0000013 2.0001334 2.0135792

(ii)

2.014

2
1.01.0-

The limit appears to be 2.
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13. (a) 2 1.5 1.1 1.01 1.001 0 0.5 0.9 0.99 0.999

0.1429 0.2105 0.3021 0.3300 0.3330 1.0000 0.5714 0.3690 0.3367 0.3337

1

0
0 2

The limit is 1/3.

(b) 2 1.5 1.1 1.01 1.001 1.0001

0.4286 1.0526 6.344 66.33 666.3 6666.3

50

0
1 2

The limit is +∞.

(c) 0 0.5 0.9 0.99 0.999 0.9999

−1 −1.7143 −7.0111 −67.001 −667.0 −6667.0

0

-50

0 1

The limit is −∞.

14. (a) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

0.5359 0.5132 0.5001 0.5000 0.5000 0.4999 0.4881 0.4721

0.6

0
-0.25 0.25

The limit is 1/2.

(b) 0.25 0.1 0.001 0.0001

8.4721 20.488 2000.5 20001
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100

0
0 0.25

The limit is +∞.

(c) −0.25 −0.1 −0.001 −0.0001

−7.4641 −19.487 −1999.5 −20000

0

-100

-0.25 0

The limit is −∞.

15. (a) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

2.7266 2.9552 3.0000 3.0000 3.0000 3.0000 2.9552 2.7266

3

2
-0.25 0.25

The limit is 3.

(b) 0 −0.5 −0.9 −0.99 −0.999 −1.5 −1.1 −1.01 −1.001

1 1.7552 6.2161 54.87 541.1 −0.1415 −4.536 −53.19 −539.5

60

-60

-1.5 0

The limit does not exist.

16. (a) 0 −0.5 −0.9 −0.99 −0.999 −1.5 −1.1 −1.01 −1.001

1.5574 1.0926 1.0033 1.0000 1.0000 1.0926 1.0033 1.0000 1.0000

1.5

1
-1.5 0

The limit is 1.
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(b) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0.1 0.25

1.9794 2.4132 2.5000 2.5000 2.5000 2.5000 2.4132 1.9794

2.5

2
-0.25 0.25

The limit is 5/2.

17. False; define f(x) = x for x 6= a and f(a) = a+ 1. Then limx→a f(x) = a 6= f(a) = a+ 1.

18. True; by 1.1.3.

19. False; define f(x) = 0 for x < 0 and f(x) = x+ 1 for x ≥ 0. Then the left and right limits exist but are unequal.

20. False; define f(x) = 1/x for x > 0 and f(0) = 2.

27. msec =
x2 − 1

x+ 1
= x− 1 which gets close to −2 as x gets close to −1, thus y − 1 = −2(x+ 1) or y = −2x− 1.

28. msec =
x2

x
= x which gets close to 0 as x gets close to 0, thus y = 0.

29. msec =
x4 − 1

x− 1
= x3 + x2 + x+ 1 which gets close to 4 as x gets close to 1, thus y − 1 = 4(x− 1) or y = 4x− 3.

30. msec =
x4 − 1

x+ 1
= x3−x2 +x−1 which gets close to −4 as x gets close to −1, thus y−1 = −4(x+1) or y = −4x−3.

31. (a) The length of the rod while at rest.

(b) The limit is zero. The length of the rod approaches zero as its speed approaches c.

32. (a) The mass of the object while at rest.

(b) The limiting mass as the velocity approaches the speed of light; the mass is unbounded.

33. (a)

3.5

2.5
–1 1

The limit appears to be 3.

(b)

3.5

2.5
–0.001 0.001

The limit appears to be 3.
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(c)

3.5

2.5
–0.000001 0.000001

The limit does not exist.

Exercise Set 1.2

1. (a) By Theorem 1.2.2, this limit is 2 + 2 · (−4) = −6.

(b) By Theorem 1.2.2, this limit is 0− 3 · (−4) + 1 = 13.

(c) By Theorem 1.2.2, this limit is 2 · (−4) = −8.

(d) By Theorem 1.2.2, this limit is (−4)2 = 16.

(e) By Theorem 1.2.2, this limit is 3
√

6 + 2 = 2.

(f) By Theorem 1.2.2, this limit is
2

(−4)
= −1

2
.

2. (a) By Theorem 1.2.2, this limit is 0 + 0 = 0.

(b) The limit doesn’t exist because lim f doesn’t exist and lim g does.

(c) By Theorem 1.2.2, this limit is −2 + 2 = 0.

(d) By Theorem 1.2.2, this limit is 1 + 2 = 3.

(e) By Theorem 1.2.2, this limit is 0/(1 + 0) = 0.

(f) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.

(g) The limit doesn’t exist because
√
f(x) is not defined for 0 < x < 2.

(h) By Theorem 1.2.2, this limit is
√

1 = 1.

3. By Theorem 1.2.3, this limit is 2 · 1 · 3 = 6.

4. By Theorem 1.2.3, this limit is 33 − 3 · 32 + 9 · 3 = 27.

5. By Theorem 1.2.4, this limit is (32 − 2 · 3)/(3 + 1) = 3/4.

6. By Theorem 1.2.4, this limit is (6 · 0− 9)/(03 − 12 · 0 + 3) = −3.

7. After simplification,
x4 − 1

x− 1
= x3 + x2 + x+ 1, and the limit is 13 + 12 + 1 + 1 = 4.

8. After simplification,
t3 + 8

t+ 2
= t2 − 2t+ 4, and the limit is (−2)2 − 2 · (−2) + 4 = 12.

9. After simplification,
x2 + 6x+ 5

x2 − 3x− 4
=
x+ 5

x− 4
, and the limit is (−1 + 5)/(−1− 4) = −4/5.
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10. After simplification,
x2 − 4x+ 4

x2 + x− 6
=
x− 2

x+ 3
, and the limit is (2− 2)/(2 + 3) = 0.

11. After simplification,
2x2 + x− 1

x+ 1
= 2x− 1, and the limit is 2 · (−1)− 1 = −3.

12. After simplification,
3x2 − x− 2

2x2 + x− 3
=

3x+ 2

2x+ 3
, and the limit is (3 · 1 + 2)/(2 · 1 + 3) = 1.

13. After simplification,
t3 + 3t2 − 12t+ 4

t3 − 4t
=
t2 + 5t− 2

t2 + 2t
, and the limit is (22 + 5 · 2− 2)/(22 + 2 · 2) = 3/2.

14. After simplification,
t3 + t2 − 5t+ 3

t3 − 3t+ 2
=
t+ 3

t+ 2
, and the limit is (1 + 3)/(1 + 2) = 4/3.

15. The limit is +∞.

16. The limit is −∞.

17. The limit does not exist.

18. The limit is +∞.

19. The limit is −∞.

20. The limit does not exist.

21. The limit is +∞.

22. The limit is −∞.

23. The limit does not exist.

24. The limit is −∞.

25. The limit is +∞.

26. The limit does not exist.

27. The limit is +∞.

28. The limit is +∞.

29. After simplification,
x− 9√
x− 3

=
√
x+ 3, and the limit is

√
9 + 3 = 6.

30. After simplification,
4− y

2−√y
= 2 +

√
y, and the limit is 2 +

√
4 = 4.

31. (a) 2 (b) 2 (c) 2

32. (a) does not exist (b) 1 (c) 4

33. True, by Theorem 1.2.2.

34. False; e.g. lim
x→0

x2

x
= 0.
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35. False; e.g. f(x) = 2x, g(x) = x, so lim
x→0

f(x) = lim
x→0

g(x) = 0, but lim
x→0

f(x)/g(x) = 2.

36. True, by Theorem 1.2.4.

37. After simplification,

√
x+ 4− 2

x
=

1√
x+ 4 + 2

, and the limit is 1/4.

38. After simplification,

√
x2 + 4− 2

x
=

x√
x2 + 4 + 2

, and the limit is 0.

39. (a) After simplification,
x3 − 1

x− 1
= x2 + x+ 1, and the limit is 3.

(b)

y

x

4

1

40. (a) After simplification,
x2 − 9

x+ 3
= x− 3, and the limit is −6, so we need that k = −6.

(b) On its domain (all real numbers), f(x) = x− 3.

41. (a) Theorem 1.2.2 doesn’t apply; moreover one cannot subtract infinities.

(b) lim
x→0+

(
1

x
− 1

x2

)
= lim
x→0+

(
x− 1

x2

)
= −∞.

42. (a) Theorem 1.2.2 assumes that L1 and L2 are real numbers, not infinities. It is in general not true that ”∞·0 = 0 ”.

(b)
1

x
− 2

x2 + 2x
=

x2

x(x2 + 2x)
=

1

x+ 2
for x 6= 0, so that lim

x→0

(
1

x
− 2

x2 + 2x

)
=

1

2
.

43. For x 6= 1,
1

x− 1
− a

x2 − 1
=
x+ 1− a
x2 − 1

and for this to have a limit it is necessary that lim
x→1

(x + 1 − a) = 0, i.e.

a = 2. For this value,
1

x− 1
− 2

x2 − 1
=
x+ 1− 2

x2 − 1
=

x− 1

x2 − 1
=

1

x+ 1
and lim

x→1

1

x+ 1
=

1

2
.

44. (a) For small x, 1/x2 is much bigger than ±1/x.

(b)
1

x
+

1

x2
=
x+ 1

x2
. Since the numerator has limit 1 and x2 tends to zero from the right, the limit is +∞.

45. The left and/or right limits could be plus or minus infinity; or the limit could exist, or equal any preassigned real
number. For example, let q(x) = x− x0 and let p(x) = a(x− x0)n where n takes on the values 0, 1, 2.

46. If on the contrary lim
x→a

g(x) did exist then by Theorem 1.2.2 so would lim
x→a

[f(x) + g(x)], and that would be a

contradiction.

47. Clearly, g(x) = [f(x) + g(x)]− f(x). By Theorem 1.2.2, lim
x→a

[f(x) + g(x)]− lim
x→a

f(x) = lim
x→a

[f(x) + g(x)− f(x)] =

lim
x→a

g(x).
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48. By Theorem 1.2.2, lim
x→a

f(x) =

(
lim
x→a

f(x)

g(x)

)
lim
x→a

g(x) =

(
lim
x→a

f(x)

g(x)

)
· 0 = 0, since lim

x→a

f(x)

g(x)
exists.

Exercise Set 1.3

1. (a) −∞ (b) +∞

2. (a) 2 (b) 0

3. (a) 0 (b) −1

4. (a) does not exist (b) 0

5. (a) 3 + 3 · (−5) = −12 (b) 0− 4 · (−5) + 1 = 21 (c) 3 · (−5) = −15 (d) (−5)2 = 25

(e) 3
√

5 + 3 = 2 (f) 3/(−5) = −3/5 (g) 0

(h) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.

6. (a) 2 · 7− (−6) = 20 (b) 6 · 7 + 7 · (−6) = 0 (c) +∞ (d) −∞ (e) 3
√
−42

(f) −6/7 (g) 7 (h) −7/12

7. (a) x 0.1 0.01 0.001 0.0001 0.00001 0.000001

f(x) 1.471128 1.560797 1.569796 1.570696 1.570786 1.570795

The limit appears to be ≈ 1.57079 . . ..

(b) The limit is π/2.

8. x 10 100 1000 10000 100000 1000000

f(x) 1.258925 1.047129 1.006932 1.000921 1.000115 1.000014

The limit appears to be 1.

9. The limit is −∞, by the highest degree term.

10. The limit is +∞, by the highest degree term.

11. The limit is +∞.

12. The limit is +∞.

13. The limit is 3/2, by the highest degree terms.

14. The limit is 5/2, by the highest degree terms.

15. The limit is 0, by the highest degree terms.

16. The limit is 0, by the highest degree terms.

17. The limit is 0, by the highest degree terms.

18. The limit is 5/3, by the highest degree terms.

19. The limit is −∞, by the highest degree terms.

20. The limit is +∞, by the highest degree terms.

21. The limit is −1/7, by the highest degree terms.

22. The limit is 4/7, by the highest degree terms.
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23. The limit is 3
√
−5/8 = − 3

√
5 /2, by the highest degree terms.

24. The limit is 3
√

3/2 , by the highest degree terms.

25.

√
5x2 − 2

x+ 3
=

√
5− 2

x2

−1− 3
x

when x < 0. The limit is −
√

5 .

26.

√
5x2 − 2

x+ 3
=

√
5− 2

x2

1 + 3
x

when x > 0. The limit is
√

5 .

27.
2− y√
7 + 6y2

=
− 2
y + 1√
7
y2 + 6

when y < 0. The limit is 1/
√

6 .

28.
2− y√
7 + 6y2

=

2
y − 1√

7
y2 + 6

when y > 0. The limit is −1/
√

6 .

29.

√
3x4 + x

x2 − 8
=

√
3 + 1

x3

1− 8
x2

when x < 0. The limit is
√

3 .

30.

√
3x4 + x

x2 − 8
=

√
3 + 1

x3

1− 8
x2

when x > 0. The limit is
√

3 .

31. lim
x→+∞

(
√
x2 + 3 − x)

√
x2 + 3 + x√
x2 + 3 + x

= lim
x→+∞

3√
x2 + 3 + x

= 0, by the highest degree terms.

32. lim
x→+∞

(
√
x2 − 3x − x)

√
x2 − 3x + x√
x2 − 3x + x

= lim
x→+∞

−3x√
x2 − 3x + x

= −3/2, by the highest degree terms.

33. lim
x→−∞

1− ex

1 + ex
=

1− 0

1 + 0
= 1.

34. Divide the numerator and denominator by ex: lim
x→+∞

1− ex

1 + ex
= lim
x→+∞

e−x − 1

e−x + 1
=

0− 1

0 + 1
= −1.

35. Divide the numerator and denominator by ex: lim
x→+∞

1 + e−2x

1− e−2x
=

1 + 0

1− 0
= 1.

36. Divide the numerator and denominator by e−x: lim
x→−∞

e2x + 1

e2x − 1
=

0 + 1

0− 1
= −1.

37. The limit is −∞.

38. The limit is +∞.

39.
x+ 1

x
= 1 +

1

x
, so lim

x→+∞

(x+ 1)x

xx
= e from Figure 1.3.4.

40.

(
1 +

1

x

)−x
=

1(
1 + 1

x

)x , so the limit is e−1.

41. False: lim
x→+∞

(
1 +

1

x

)2x

=

[
lim

x→+∞

(
1 +

1

x

)x]2

= e2.

42. False; y = 0 is a horizontal asymptote for the curve y = ex yet lim
x→+∞

ex does not exist.

43. True: for example f(x) = sinx/x crosses the x-axis infinitely many times at x = nπ, n = 1, 2, . . ..
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44. False: if the asymptote is y = 0, then lim
x→±∞

p(x)/q(x) = 0, and clearly the degree of p(x) is strictly less than the

degree of q(x). If the asymptote is y = L 6= 0, then lim
x→±∞

p(x)/q(x) = L and the degrees must be equal.

45. It appears that lim
t→+∞

n(t) = +∞, and lim
t→+∞

e(t) = c.

46. (a) It is the initial temperature of the potato (400◦ F).

(b) It is the ambient temperature, i.e. the temperature of the room.

47. (a) +∞ (b) −5

48. (a) 0 (b) −6

49. lim
x→−∞

p(x) = +∞. When n is even, lim
x→+∞

p(x) = +∞; when n is odd, lim
x→+∞

p(x) = −∞.

50. (a) p(x) = q(x) = x. (b) p(x) = x, q(x) = x2. (c) p(x) = x2, q(x) = x. (d) p(x) = x+ 3, q(x) = x.

51. (a) No. (b) Yes, tanx and secx at x = nπ + π/2 and cotx and cscx at x = nπ, n = 0,±1,±2, . . ..

52. If m > n the limit is zero. If m = n the limit is cm/dm. If n > m the limit is +∞ if cndm > 0 and −∞ if cndm < 0.

53. (a) Every value taken by ex
2

is also taken by et: choose t = x2. As x and t increase without bound, so does

et = ex
2

. Thus lim
x→+∞

ex
2

= lim
t→+∞

et = +∞.

(b) If f(t) → +∞ (resp. f(t) → −∞) then f(t) can be made arbitrarily large (resp. small) by taking t large
enough. But by considering the values g(x) where g(x) > t, we see that f(g(x)) has the limit +∞ too (resp. limit
−∞). If f(t) has the limit L as t → +∞ the values f(t) can be made arbitrarily close to L by taking t large
enough. But if x is large enough then g(x) > t and hence f(g(x)) is also arbitrarily close to L.

(c) For lim
x→−∞

the same argument holds with the substitutiion ”x decreases without bound” instead of ”x increases

without bound”. For lim
x→c−

substitute ”x close enough to c, x < c”, etc.

54. (a) Every value taken by e−x
2

is also taken by et: choose t = −x2. As x increases without bound and t decreases

without bound, the quantity et = e−x
2

tends to 0. Thus lim
x→+∞

e−x
2

= lim
t→−∞

et = 0.

(b) If f(t) → +∞ (resp. f(t) → −∞) then f(t) can be made arbitrarily large (resp. small) by taking t small
enough. But by considering the values g(x) where g(x) < t, we see that f(g(x)) has the limit +∞ too (resp. limit
−∞). If f(t) has the limit L as t → −∞ the values f(t) can be made arbitrarily close to L by taking t small
enough. But if x is large enough then g(x) < t and hence f(g(x)) is also arbitrarily close to L.

(c) For lim
x→−∞

the same argument holds with the substitutiion ”x decreases without bound” instead of ”x increases

without bound”. For lim
x→c−

substitute ”x close enough to c, x < c”, etc.

55. t = 1/x, lim
t→+∞

f(t) = +∞.

56. t = 1/x, lim
t→−∞

f(t) = 0.

57. t = cscx, lim
t→+∞

f(t) = +∞.

58. t = cscx, lim
t→−∞

f(t) = 0.

59. Let t = lnx. Then t also tends to +∞, and
ln 2x

ln 3x
=
t+ ln 2

t+ ln 3
, so the limit is 1.

60. With t = x− 1, [ln(x2 − 1)− ln(x+ 1)] = ln(x+ 1) + ln(x− 1)− ln(x+ 1) = ln t, so the limit is +∞.
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61. Set t = −x, then get lim
t→−∞

(
1 +

1

t

)t
= e by Figure 1.3.4.

62. With t = x/2, lim
x→+∞

(
1 +

2

x

)x
=

(
lim

t→+∞
[1 + 1/t]

t

)2

= e2

63. From the hint, lim
x→+∞

bx = lim
x→+∞

e(ln b)x =


0 if b < 1,

1 if b = 1,

+∞ if b > 1.

64. It suffices by Theorem 1.1.3 to show that the left and right limits at zero are equal to e.

(a) lim
x→+∞

(1 + x)1/x = lim
t→0+

(1 + 1/t)t = e.

(b) lim
x→−∞

(1 + x)1/x = lim
t→0−

(1 + 1/t)t = e.

65. (a) 4 8 12 16 20

40

80

120

160

200

t

v

(b) lim
t→∞

v = 190
(

1− lim
t→∞

e−0.168t
)

= 190, so the asymptote is v = c = 190 ft/sec.

(c) Due to air resistance (and other factors) this is the maximum speed that a sky diver can attain.

66. (a) p(1990) = 525/(1 + 1.1) = 250 (million).

(b)
1920 2000 2080

250

500

t

P

(c) lim
t→∞

p(t) =
525

1 + 1.1 limt→∞ e−0.02225(t−1990)
= 525 (million).

(d) The population becomes stable at this number.

67. (a) n 2 3 4 5 6 7

1 + 10−n 1.01 1.001 1.0001 1.00001 1.000001 1.0000001

1 + 10n 101 1001 10001 100001 1000001 10000001

(1 + 10−n)1+10n

2.7319 2.7196 2.7184 2.7183 2.71828 2.718282

The limit appears to be e.

(b) This is evident from the lower left term in the chart in part (a).

(c) The exponents are being multiplied by a, so the result is ea.
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68. (a) f(−x) =

(
1− 1

x

)−x
=

(
x− 1

x

)−x
=

(
x

x− 1

)x
, f(x− 1) =

(
x

x− 1

)x−1

=

(
x− 1

x

)
f(−x).

(b) lim
x→−∞

(
1 +

1

x

)x
= lim
x→+∞

f(−x) =

[
lim

x→+∞

x

x− 1

]
lim

x→+∞
f(x− 1) = lim

x→+∞
f(x− 1) = e.

69. After a long division, f(x) = x + 2 +
2

x− 2
, so lim

x→±∞
(f(x) − (x + 2)) = 0 and f(x) is asymptotic to y = x + 2.

The only vertical asymptote is at x = 2.

–12 –6 3 9 15

–15

–9

–3

3

9

15

x

x = 2

y

y = x + 2

70. After a simplification, f(x) = x2 − 1 +
3

x
, so lim

x→±∞
(f(x) − (x2 − 1)) = 0 and f(x) is asymptotic to y = x2 − 1.

The only vertical asymptote is at x = 0.

–4 –2 2 4

–2

1

3

5

x

y

y = x2 – 1

71. After a long division, f(x) = −x2+1+
2

x− 3
, so lim

x→±∞
(f(x)−(−x2+1)) = 0 and f(x) is asymptotic to y = −x2+1.

The only vertical asymptote is at x = 3.

–4 –2 2 4

–12

–6

6

12

x

x = 3

y

y = –x2 + 1

72. After a long division, f(x) = x3 +
3

2(x− 1)
− 3

2(x+ 1)
, so lim

x→±∞
(f(x)−x3) = 0 and f(x) is asymptotic to y = x3.

The vertical asymptotes are at x = ±1.
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–2 2

–15

5

15

x

y

y = x3

x = 1

x = –1

73. lim
x→±∞

(f(x)− sinx) = 0 so f(x) is asymptotic to y = sinx. The only vertical asymptote is at x = 1.

–4 2 8

–4

3

5

x

y

y = sin x

x = 1

Exercise Set 1.4

1. (a) |f(x)− f(0)| = |x+ 2− 2| = |x| < 0.1 if and only if |x| < 0.1.

(b) |f(x)− f(3)| = |(4x− 5)− 7| = 4|x− 3| < 0.1 if and only if |x− 3| < (0.1)/4 = 0.025.

(c) |f(x) − f(4)| = |x2 − 16| < ε if |x − 4| < δ. We get f(x) = 16 + ε = 16.001 at x = 4.000124998, which
corresponds to δ = 0.000124998; and f(x) = 16− ε = 15.999 at x = 3.999874998, for which δ = 0.000125002. Use
the smaller δ: thus |f(x)− 16| < ε provided |x− 4| < 0.000125 (to six decimals).

2. (a) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.1 if and only if |x| < 0.05.

(b) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.01 if and only if |x| < 0.005.

(c) |f(x)− f(0)| = |2x+ 3− 3| = 2|x| < 0.0012 if and only if |x| < 0.0006.

3. (a) x0 = (1.95)2 = 3.8025, x1 = (2.05)2 = 4.2025.

(b) δ = min ( |4− 3.8025|, |4− 4.2025| ) = 0.1975.

4. (a) x0 = 1/(1.1) = 0.909090 . . . , x1 = 1/(0.9) = 1.111111 . . .

(b) δ = min( |1− 0.909090|, |1− 1.111111| ) = 0.0909090 . . .

5. |(x3−4x+5)−2| < 0.05 is equivalent to−0.05 < (x3−4x+5)−2 < 0.05, which means 1.95 < x3−4x+5 < 2.05. Now
x3−4x+5 = 1.95 at x = 1.0616, and x3−4x+5 = 2.05 at x = 0.9558. So δ = min (1.0616− 1, 1− 0.9558) = 0.0442.
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2.2

1.9
0.9 1.1

6.
√

5x+ 1 = 3.5 at x = 2.25,
√

5x+ 1 = 4.5 at x = 3.85, so δ = min(3− 2.25, 3.85− 3) = 0.75.

5

0
2 4

7. With the TRACE feature of a calculator we discover that (to five decimal places) (0.87000, 1.80274) and (1.13000, 2.19301)
belong to the graph. Set x0 = 0.87 and x1 = 1.13. Since the graph of f(x) rises from left to right, we see that if
x0 < x < x1 then 1.80274 < f(x) < 2.19301, and therefore 1.8 < f(x) < 2.2. So we can take δ = 0.13.

8. From a calculator plot we conjecture that lim
x→0

f(x) = 2. Using the TRACE feature we see that the points

(±0.2, 1.94709) belong to the graph. Thus if −0.2 < x < 0.2, then 1.95 < f(x) ≤ 2 and hence |f(x)−L| < 0.05 <
0.1 = ε.

9. |2x− 8| = 2|x− 4| < 0.1 when |x− 4| < 0.1/2 = 0.05 = δ.

10. |(5x− 2)− 13| = 5|x− 3| < 0.01 when |x− 3| < 0.01/5 = 0.002 = δ.

11. If x 6= 3, then

∣∣∣∣x2 − 9

x− 3
− 6

∣∣∣∣ =

∣∣∣∣x2 − 9− 6x+ 18

x− 3

∣∣∣∣ =

∣∣∣∣x2 − 6x+ 9

x− 3

∣∣∣∣ = |x− 3| < 0.05 when |x− 3| < 0.05 = δ.

12. If x 6= −1/2, then

∣∣∣∣4x2 − 1

2x+ 1
− (−2)

∣∣∣∣ =

∣∣∣∣4x2 − 1 + 4x+ 2

2x+ 1

∣∣∣∣ =

∣∣∣∣4x2 + 4x+ 1

2x+ 1

∣∣∣∣ = |2x+ 1| = 2|x− (−1/2)| < 0.05 when

|x− (−1/2)| < 0.025 = δ.

13. Assume δ ≤ 1. Then −1 < x− 2 < 1 means 1 < x < 3 and then |x3 − 8| = |(x− 2)(x2 + 2x+ 4)| < 19|x− 2|, so
we can choose δ = 0.001/19.

14. Assume δ ≤ 1. Then −1 < x−4 < 1 means 3 < x < 5 and then |
√
x − 2| =

∣∣∣∣ x− 4√
x + 2

∣∣∣∣ < |x− 4|√
3 + 2

, so we can choose

δ = 0.001 · (
√

3 + 2).

15. Assume δ ≤ 1. Then −1 < x − 5 < 1 means 4 < x < 6 and then

∣∣∣∣ 1x − 1

5

∣∣∣∣ =

∣∣∣∣x− 5

5x

∣∣∣∣ < |x− 5|
20

, so we can choose

δ = 0.05 · 20 = 1.

16. ||x| − 0| = |x| < 0.05 when |x− 0| < 0.05 = δ.

17. Let ε > 0 be given. Then |f(x)− 3| = |3− 3| = 0 < ε regardless of x, and hence any δ > 0 will work.

18. Let ε > 0 be given. Then |(x+ 2)− 6| = |x− 4| < ε provided δ = ε (although any smaller δ would work).
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19. |3x− 15| = 3|x− 5| < ε if |x− 5| < ε/3, δ = ε/3.

20. |7x+ 5 + 2| = 7|x+ 1| < ε if |x+ 1| < ε/7, δ = ε/7.

21.

∣∣∣∣2x2 + x

x
− 1

∣∣∣∣ = |2x| < ε if |x| < ε/2, δ = ε/2.

22.

∣∣∣∣x2 − 9

x+ 3
− (−6)

∣∣∣∣ = |x+ 3| < ε if |x+ 3| < ε, δ = ε.

23. |f(x)− 3| = |x+ 2− 3| = |x− 1| < ε if 0 < |x− 1| < ε, δ = ε.

24. |9− 2x− 5| = 2|x− 2| < ε if 0 < |x− 2| < ε/2, δ = ε/2.

25. If ε > 0 is given, then take δ = ε; if |x− 0| = |x| < δ, then |x− 0| = |x| < ε.

26. If x < 2 then |f(x)−5| = |9−2x−5| = 2|x−2| < ε if |x−2| < ε/2, δ1 = ε/2. If x > 2 then |f(x)−5| = |3x−1−5| =
3|x− 2| < ε if |x− 2| < ε/3, δ2 = ε/3 Now let δ = min(δ1, δ2) then for any x with |x− 2| < δ, |f(x)− 5| < ε.

27. For the first part, let ε > 0. Then there exists δ > 0 such that if a < x < a + δ then |f(x) − L| < ε. For the left
limit replace a < x < a+ δ with a− δ < x < a.

28. (a) Given ε > 0 there exists δ > 0 such that if 0 < |x− a| < δ then ||f(x)− L| − 0| < ε, or |f(x)− L| < ε.

(b) From part (a) it follows that |f(x) − L| < ε is the defining condition for each of the two limits, so the two
limit statements are equivalent.

29. (a) |(3x2 + 2x− 20− 300| = |3x2 + 2x− 320| = |(3x+ 32)(x− 10)| = |3x+ 32| · |x− 10|.

(b) If |x− 10| < 1 then |3x+ 32| < 65, since clearly x < 11.

(c) δ = min(1, ε/65); |3x+ 32| · |x− 10| < 65 · |x− 10| < 65 · ε/65 = ε.

30. (a)

∣∣∣∣ 28

3x+ 1
− 4

∣∣∣∣ =

∣∣∣∣28− 12x− 4

3x+ 1

∣∣∣∣ =

∣∣∣∣−12x+ 24

3x+ 1

∣∣∣∣ =

∣∣∣∣ 12

3x+ 1

∣∣∣∣ · |x− 2|.

(b) If |x− 2| < 4 then −2 < x < 6, so x can be very close to −1/3, hence

∣∣∣∣ 12

3x+ 1

∣∣∣∣ is not bounded.

(c) If |x− 2| < 1 then 1 < x < 3 and 3x+ 1 > 4, so

∣∣∣∣ 12

3x+ 1

∣∣∣∣ < 12

4
= 3.

(d) δ = min(1, ε/3);

∣∣∣∣ 12

3x+ 1

∣∣∣∣ · |x− 2| < 3 · |x− 2| < 3 · ε/3 = ε.

31. If δ < 1 then |2x2 − 2| = 2|x− 1||x+ 1| < 6|x− 1| < ε if |x− 1| < ε/6, so δ = min(1, ε/6).

32. If δ < 1 then |x2 + x− 12| = |x+ 4| · |x− 3| < 5|x− 3| < ε if |x− 3| < ε/5, so δ = min(1, ε/5).

33. If δ < 1/2 and |x− (−2)| < δ then −5/2 < x < −3/2, x+ 1 < −1/2, |x+ 1| > 1/2; then∣∣∣∣ 1

x+ 1
− (−1)

∣∣∣∣ =
|x+ 2|
|x+ 1|

< 2|x+ 2| < ε if |x+ 2| < ε/2, so δ = min(1/2, ε/2).

34. If δ < 1/4 and |x−(1/2)| < δ then

∣∣∣∣2x+ 3

x
− 8

∣∣∣∣ =
|6x− 3|
|x|

<
6|x− (1/2)|

1/4
= 24|x−(1/2)| < ε if |x−(1/2)| < ε/24,

so δ = min(1/4, ε/24).



54 Chapter 1

35. |
√
x− 2| =

∣∣∣∣(√x− 2)

√
x+ 2√
x+ 2

∣∣∣∣ =

∣∣∣∣ x− 4√
x+ 2

∣∣∣∣ < 1

2
|x− 4| < ε if |x− 4| < 2ε, so δ = min(2ε, 4).

36. If δ < 1 and |x− 2| < δ then |x| < 3 and x2 + 2x+ 4 < 9 + 6 + 4 = 19 , so
|x3 − 8| = |x− 2| · |x2 + 2x+ 4| < 19δ < ε if δ = min(ε/19, 1).

37. Let ε > 0 be given and take δ = ε. If |x| < δ, then |f(x)− 0| = 0 < ε if x is rational, and |f(x)− 0| = |x| < δ = ε
if x is irrational.

38. If the limit did exist, then for ε = 1/2 there would exist δ > 0 such that if |x| < δ then |f(x) − L| < 1/2.
Some of the x-values are rational, for which |L| < 1/2; some are irrational, for which |1 − L| < 1/2. But
1 = |1| = L+ (1− L) < 1/2 + 1/2, or 1 < 1, a contradiction. Hence the limit cannot exist.

39. (a) We have to solve the equation 1/N2 = 0.1 here, so N =
√

10.

(b) This will happen when N/(N + 1) = 0.99, so N = 99.

(c) Because the function 1/x3 approaches 0 from below when x → −∞, we have to solve the equation 1/N3 =
−0.001, and N = −10.

(d) The function x/(x+1) approaches 1 from above when x→ −∞, so we have to solve the equation N/(N+1) =
1.01. We obtain N = −101.

40. (a) N = 3
√

10 (b) N = 3
√

100 (c) N = 3
√

1000 = 10

41. (a)
x2

1

1 + x2
1

= 1− ε, x1 = −
√

1− ε
ε

;
x2

2

1 + x2
2

= 1− ε, x2 =

√
1− ε
ε

(b) N =

√
1− ε
ε

(c) N = −
√

1− ε
ε

42. (a) x1 = −1/ε3; x2 = 1/ε3 (b) N = 1/ε3 (c) N = −1/ε3

43.
1

x2
< 0.01 if |x| > 10, N = 10.

44.
1

x+ 2
< 0.005 if |x+ 2| > 200, x > 198, N = 198.

45.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < 0.001 if |x+ 1| > 1000, x > 999, N = 999.

46.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < 0.1 if |2x+ 5| > 110, 2x > 105, N = 52.5.

47.

∣∣∣∣ 1

x+ 2
− 0

∣∣∣∣ < 0.005 if |x+ 2| > 200, −x− 2 > 200, x < −202, N = −202.

48.

∣∣∣∣ 1

x2

∣∣∣∣ < 0.01 if |x| > 10, −x > 10, x < −10, N = −10.

49.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < 0.1 if |2x+ 5| > 110, −2x− 5 > 110, 2x < −115, x < −57.5, N = −57.5.

50.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < 0.001 if |x+ 1| > 1000, −x− 1 > 1000, x < −1001, N = −1001.
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51.

∣∣∣∣ 1

x2

∣∣∣∣ < ε if |x| > 1√
ε
, so N =

1√
ε
.

52.

∣∣∣∣ 1

x+ 2

∣∣∣∣ < ε if |x+ 2| > 1

ε
, i.e. when x+ 2 >

1

ε
, or x >

1

ε
− 2, so N =

1

ε
− 2.

53.

∣∣∣∣4x− 1

2x+ 5
− 2

∣∣∣∣ =

∣∣∣∣ 11

2x+ 5

∣∣∣∣ < ε if |2x+5| > 11

ε
, i.e. when −2x−5 >

11

ε
, which means 2x < −11

ε
−5, or x < −11

2ε
− 5

2
,

so N = −5

2
− 11

2ε
.

54.

∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ =

∣∣∣∣ 1

x+ 1

∣∣∣∣ < ε if |x+ 1| > 1

ε
, i.e. when −x− 1 >

1

ε
, or x < −1− 1

ε
, so N = −1− 1

ε
.

55.

∣∣∣∣ 2
√
x√

x− 1
− 2

∣∣∣∣ =

∣∣∣∣ 2√
x− 1

∣∣∣∣ < ε if
√
x− 1 >

2

ε
, i.e. when

√
x > 1 +

2

ε
, or x >

(
1 +

2

ε

)2

, so N =

(
1 +

2

ε

)2

.

56. 2x < ε if x < log2 ε, so N = log2 ε.

57. (a)
1

x2
> 100 if |x| < 1

10
(b)

1

|x− 1|
> 1000 if |x− 1| < 1

1000

(c)
−1

(x− 3)2
< −1000 if |x− 3| < 1

10
√

10
(d) − 1

x4
< −10000 if x4 <

1

10000
, |x| < 1

10

58. (a)
1

(x− 1)2
> 10 if and only if |x− 1| < 1√

10

(b)
1

(x− 1)2
> 1000 if and only if |x− 1| < 1

10
√

10

(c)
1

(x− 1)2
> 100000 if and only if |x− 1| < 1

100
√

10

59. If M > 0 then
1

(x− 3)2
> M when 0 < (x− 3)2 <

1

M
, or 0 < |x− 3| < 1√

M
, so δ =

1√
M

.

60. If M < 0 then
−1

(x− 3)2
< M when 0 < (x− 3)2 < − 1

M
, or 0 < |x− 3| < 1√

−M
, so δ =

1√
−M

.

61. If M > 0 then
1

|x|
> M when 0 < |x| < 1

M
, so δ =

1

M
.

62. If M > 0 then
1

|x− 1|
> M when 0 < |x− 1| < 1

M
, so δ =

1

M
.

63. If M < 0 then − 1

x4
< M when 0 < x4 < − 1

M
, or |x| < 1

(−M)1/4
, so δ =

1

(−M)1/4
.

64. If M > 0 then
1

x4
> M when 0 < x4 <

1

M
, or x <

1

M1/4
, so δ =

1

M1/4
.

65. If x > 2 then |x+ 1− 3| = |x− 2| = x− 2 < ε if 2 < x < 2 + ε, so δ = ε.

66. If x < 1 then |3x+ 2− 5| = |3x− 3| = 3|x− 1| = 3(1− x) < ε if 1− x < ε/3, or 1− ε/3 < x < 1, so δ = ε/3.
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67. If x > 4 then
√
x− 4 < ε if x− 4 < ε2, or 4 < x < 4 + ε2, so δ = ε2.

68. If x < 0 then
√
−x < ε if −x < ε2, or −ε2 < x < 0, so δ = ε2.

69. If x > 2 then |f(x)− 2| = |x− 2| = x− 2 < ε if 2 < x < 2 + ε, so δ = ε.

70. If x < 2 then |f(x)− 6| = |3x− 6| = 3|x− 2| = 3(2− x) < ε if 2− x < ε/3, or 2− ε/3 < x < 2, so δ = ε/3.

71. (a) Definition: For every M < 0 there corresponds a δ > 0 such that if 1 < x < 1 + δ then f(x) < M . In our case

we want
1

1− x
< M , i.e. 1− x > 1

M
, or x < 1− 1

M
, so we can choose δ = − 1

M
.

(b) Definition: For every M > 0 there corresponds a δ > 0 such that if 1− δ < x < 1 then f(x) > M . In our case

we want
1

1− x
> M , i.e. 1− x < 1

M
, or x > 1− 1

M
, so we can choose δ =

1

M
.

72. (a) Definition: For every M > 0 there corresponds a δ > 0 such that if 0 < x < δ then f(x) > M . In our case we

want
1

x
> M , i.e. x <

1

M
, so take δ =

1

M
.

(b) Definition: For every M < 0 there corresponds a δ > 0 such that if −δ < x < 0 then f(x) < M . In our case

we want
1

x
< M , i.e x >

1

M
, so take δ = − 1

M
.

73. (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M , i.e. x + 1 > M , or
x > M − 1, so N = M − 1.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M , i.e. x + 1 < M , or
x < M − 1, so N = M − 1.

74. (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M , i.e. x2 − 3 > M , or
x >
√
M + 3, so N =

√
M + 3.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M , i.e. x3 + 5 < M , or
x < (M − 5)1/3, so N = (M − 5)1/3.

75. (a)
3.0

7.5
= 0.4 (amperes) (b) [0.3947, 0.4054] (c)

[
3

7.5 + δ
,

3

7.5− δ

]
(d) 0.0187

(e) It approaches infinity.

Exercise Set 1.5

1. (a) No: lim
x→2

f(x) does not exist. (b) No: lim
x→2

f(x) does not exist. (c) No: lim
x→2−

f(x) 6= f(2).

(d) Yes. (e) Yes. (f) Yes.

2. (a) No: lim
x→2

f(x) 6= f(2). (b) No: lim
x→2

f(x) 6= f(2). (c) No: lim
x→2−

f(x) 6= f(2).

(d) Yes. (e) No: lim
x→2+

f(x) 6= f(2). (f) Yes.

3. (a) No: f(1) and f(3) are not defined. (b) Yes. (c) No: f(1) is not defined.

(d) Yes. (e) No: f(3) is not defined. (f) Yes.
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4. (a) No: f(3) is not defined. (b) Yes. (c) Yes.

(d) Yes. (e) No: f(3) is not defined. (f) Yes.

5. (a) No. (b) No. (c) No. (d) Yes. (e) Yes. (f) No. (g) Yes.

6. (a) No. (b) No. (c) No. (d) No. (e) Yes. (f) Yes. (g) Yes.

7. (a)

y

x
3 (b)

y

x

1

1 3

(c)

y

x

-1

1

1

(d)

y

x
2 3

8. The discontinuities probably correspond to the times when the patient takes the medication. We see a jump in the
concentration values here, which are followed by continuously decreasing concentration values as the medication
is being absorbed.

9. (a)

C

t

1

$4

2

(b) One second could cost you one dollar.

10. (a) Not continuous, since the values are integers.

(b) Continuous.

(c) Not continuous, again, the values are integers (if we measure them in cents).

(d) Continuous.

11. None, this is a continuous function on the real numbers.

12. None, this is a continuous function on the real numbers.

13. None, this is a continuous function on the real numbers.

14. The function is not continuous at x = 2 and x = −2.

15. The function is not continuous at x = −1/2 and x = 0.
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16. None, this is a continuous function on the real numbers.

17. The function is not continuous at x = 0, x = 1 and x = −1.

18. The function is not continuous at x = 0 and x = −4.

19. None, this is a continuous function on the real numbers.

20. The function is not continuous at x = 0 and x = −1.

21. None, this is a continuous function on the real numbers. f(x) = 2x+ 3 is continuous on x < 4 and f(x) = 7 +
16

x
is continuous on 4 < x; lim

x→4−
f(x) = lim

x→4+
f(x) = f(4) = 11 so f is continuous at x = 4.

22. The function is not continuous at x = 1, as lim
x→1

f(x) does not exist.

23. True; by Theorem 1.5.5.

24. False; e.g. f(x) = 1 if x 6= 3, f(3) = −1.

25. False; e.g. f(x) = g(x) = 2 if x 6= 3, f(3) = 1, g(3) = 3.

26. False; e.g. f(x) = g(x) = 2 if x 6= 3, f(3) = 1, g(3) = 4.

27. True; use Theorem 1.5.3 with g(x) =
√
f(x).

28. Generally, this statement is false because
√
f(x) might not even be defined. If we suppose that f(c) is nonnegative,

and f(x) is also nonnegative on some interval (c − α, c + α), then the statement is true. If f(c) = 0 then given
ε > 0 there exists δ > 0 such that whenever |x− c| < δ, 0 ≤ f(x) < ε2. Then |

√
f(x)| < ε and

√
f is continuous at

x = c. If f(c) 6= 0 then given ε > 0 there corresponds δ > 0 such that whenever |x− c| < δ, |f(x)−f(c)| < ε
√
f(c).

Then |
√
f(x)−

√
f(c)| = |f(x)− f(c)|

|
√
f(x) +

√
f(c)|

≤ |f(x)− f(c)|√
f(c)

< ε.

29. (a) f is continuous for x < 1, and for x > 1; lim
x→1−

f(x) = 5, lim
x→1+

f(x) = k, so if k = 5 then f is continuous for

all x.

(b) f is continuous for x < 2, and for x > 2; lim
x→2−

f(x) = 4k, lim
x→2+

f(x) = 4 + k, so if 4k = 4 + k, k = 4/3 then f

is continuous for all x.

30. (a) f is continuous for x < 3, and for x > 3; lim
x→3−

f(x) = k/9, lim
x→3+

f(x) = 0, so if k = 0 then f is continuous for

all x.

(b) f is continuous for x < 0, and for x > 0; lim
x→0−

f(x) doesn’t exist unless k = 0, and if so then lim
x→0−

f(x) =

0; lim
x→0+

f(x) = 9, so there is no k value which makes the function continuous everywhere.

31. f is continuous for x < −1, −1 < x < 2 and x > 2; lim
x→−1−

f(x) = 4, lim
x→−1+

f(x) = k, so k = 4 is required. Next,

lim
x→2−

f(x) = 3m+ k = 3m+ 4, lim
x→2+

f(x) = 9, so 3m+ 4 = 9,m = 5/3 and f is continuous everywhere if k = 4

and m = 5/3.

32. (a) No, f is not defined at x = 2. (b) No, f is not defined for x ≤ 2. (c) Yes. (d) No, see (b).
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33. (a)

y

x
c (b)

y

x
c

34. (a) f(c) = lim
x→c

f(x)

(b) lim
x→1

f(x) = 2, lim
x→1

g(x) = 1.

-1 0 1 2

2.5

y

x

1

1

(c) Define f(1) = 2 and redefine g(1) = 1.

35. (a) x = 0, lim
x→0−

f(x) = −1 6= +1 = lim
x→0+

f(x) so the discontinuity is not removable.

(b) x = −3; define f(−3) = −3 = lim
x→−3

f(x), then the discontinuity is removable.

(c) f is undefined at x = ±2; at x = 2, lim
x→2

f(x) = 1, so define f(2) = 1 and f becomes continuous there; at

x = −2, lim
x→−2

f(x) does not exist, so the discontinuity is not removable.

36. (a) f is not defined at x = 2; lim
x→2

f(x) = lim
x→2

x+ 2

x2 + 2x+ 4
=

1

3
, so define f(2) =

1

3
and f becomes continuous

there.

(b) lim
x→2−

f(x) = 1 6= 4 = lim
x→2+

f(x), so f has a nonremovable discontinuity at x = 2.

(c) lim
x→1

f(x) = 8 6= f(1), so f has a removable discontinuity at x = 1.

37. (a)

y

x

-5

5

5

Discontinuity at x = 1/2, not removable; at x = −3, removable.

(b) 2x2 + 5x− 3 = (2x− 1)(x+ 3)
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38. (a)

4

–4

–3 3

There appears to be one discontinuity near x = −1.52.

(b) One discontinuity at x ≈ −1.52.

39. Write f(x) = x3/5 = (x3)1/5 as the composition (Theorem 1.5.6) of the two continuous functions g(x) = x3 and
h(x) = x1/5; it is thus continuous.

40. x4 + 7x2 + 1 ≥ 1 > 0, thus f(x) is the composition of the polynomial x4 + 7x2 + 1, the square root
√
x, and the

function 1/x and is therefore continuous by Theorem 1.5.6.

41. Since f and g are continuous at x = c we know that lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c). In the following we use

Theorem 1.2.2.

(a) f(c) + g(c) = lim
x→c

f(x) + lim
x→c

g(x) = lim
x→c

(f(x) + g(x)) so f + g is continuous at x = c.

(b) Same as (a) except the + sign becomes a − sign.

(c) f(c)g(c) = lim
x→c

f(x) lim
x→c

g(x) = lim
x→c

f(x)g(x) so fg is continuous at x = c.

42. A rational function is the quotient f(x)/g(x) of two polynomials f(x) and g(x). By Theorem 1.5.2 f and g are
continuous everywhere; by Theorem 1.5.3 f/g is continuous except when g(x) = 0.

43. (a) Let h = x− c, x = h+ c. Then by Theorem 1.5.5, lim
h→0

f(h+ c) = f( lim
h→0

(h+ c)) = f(c).

(b) With g(h) = f(c+h), lim
h→0

g(h) = lim
h→0

f(c+h) = f(c) = g(0), so g(h) is continuous at h = 0. That is, f(c+h)

is continuous at h = 0, so f is continuous at x = c.

44. The function h(x) = f(x) − g(x) is continuous on the interval [a, b], and satisfies h(a) > 0, h(b) < 0. The
Intermediate Value Theorem or Theorem 1.5.8 tells us that there is at least one solution of the equation on this
interval h(x) = 0, i.e. f(x) = g(x).

45. Of course such a function must be discontinuous. Let f(x) = 1 on 0 ≤ x < 1, and f(x) = −1 on 1 ≤ x ≤ 2.

46. (a) (i) No. (ii) Yes. (b) (i) No. (ii) No. (c) (i) No. (ii) No.

47. If f(x) = x3 + x2 − 2x− 1, then f(−1) = 1, f(1) = −1. The Intermediate Value Theorem gives us the result.

48. Since lim
x→−∞

p(x) = −∞ and lim
x→+∞

p(x) = +∞ (or vice versa, if the leading coefficient of p is negative), it follows

that for M = −1 there corresponds N1 < 0, and for M = 1 there is N2 > 0, such that p(x) < −1 for x < N1 and
p(x) > 1 for x > N2. We choose x1 < N1 and x2 > N2 and use Theorem 1.5.8 on the interval [x1, x2] to show the
existence of a solution of p(x) = 0.

49. For the negative root, use intervals on the x-axis as follows: [−2,−1]; since f(−1.3) < 0 and f(−1.2) > 0, the
midpoint x = −1.25 of [−1.3,−1.2] is the required approximation of the root. For the positive root use the interval
[0, 1]; since f(0.7) < 0 and f(0.8) > 0, the midpoint x = 0.75 of [0.7, 0.8] is the required approximation.

50. For the negative root, use intervals on the x-axis as follows: [−2,−1]; since f(−1.7) < 0 and f(−1.6) > 0, use
the interval [−1.7,−1.6]. Since f(−1.61) < 0 and f(−1.60) > 0 the midpoint x = −1.605 of [−1.61,−1.60] is the



Exercise Set 1.6 61

required approximation of the root. For the positive root use the interval [1, 2]; since f(1.3) > 0 and f(1.4) < 0,
use the interval [1.3, 1.4]. Since f(1.37) > 0 and f(1.38) < 0, the midpoint x = 1.375 of [1.37, 1.38] is the required
approximation.

51. For the positive root, use intervals on the x-axis as follows: [2, 3]; since f(2.2) < 0 and f(2.3) > 0, use the interval
[2.2, 2.3]. Since f(2.23) < 0 and f(2.24) > 0 the midpoint x = 2.235 of [2.23, 2.24] is the required approximation
of the root.

52. Assume the locations along the track are numbered with increasing x ≥ 0. Let TS(x) denote the time during the
sprint when the runner is located at point x, 0 ≤ x ≤ 100. Let TJ(x) denote the time when the runner is at the
point x on the return jog, measured so that TJ(100) = 0. Then TS(0) = 0, TS(100) > 0, TJ(100) = 0, TJ(0) > 0,
so that Exercise 44 applies and there exists an x0 such that TS(x0) = TJ(x0).

53. Consider the function f(θ) = T (θ + π)− T (θ). Note that T has period 2π, T (θ + 2π) = T (θ), so that f(θ + π) =
T (θ + 2π) − T (θ + π) = −(T (θ + π) − T (θ)) = −f(θ). Now if f(θ) ≡ 0, then the statement follows. Otherwise,
there exists θ such that f(θ) 6= 0 and then f(θ + π) has an opposite sign, and thus there is a t0 between θ and
θ + π such that f(t0) = 0 and the statement follows.

54. Let the ellipse be contained between the horizontal lines y = a and y = b, where a < b. The expression
|f(z1) − f(z2)| expresses the area of the ellipse that lies between the vertical lines x = z1 and x = z2, and
thus |f(z1) − f(z2)| ≤ (b − a)|z1 − z2|. Thus for a given ε > 0 there corresponds δ = ε/(b − a), such that if
|z1 − z2| < δ, then |f(z1)− f(z2)| ≤ (b− a)|z1 − z2| < (b− a)δ = ε which proves that f is a continuous function.

55. Since R and L are arbitrary, we can introduce coordinates so that L is the x-axis. Let f(z) be as in Exercise 54.
Then for large z, f(z) = area of ellipse, and for small z, f(z) = 0. By the Intermediate Value Theorem there is a
z1 such that f(z1) = half of the area of the ellipse.

56. (a)

y

x

0.4

1

0.2 0.8

(b) Let g(x) = x − f(x). Then g(x) is continuous, g(1) ≥ 0 and g(0) ≤ 0; by the Intermediate Value Theorem
there is a solution c in [0, 1] of g(c) = 0, which means f(c) = c.

Exercise Set 1.6

1. This is a composition of continuous functions, so it is continuous everywhere.

2. Discontinuity at x = π.

3. Discontinuities at x = nπ, n = 0,±1,±2, . . .

4. Discontinuities at x =
π

2
+ nπ, n = 0,±1,±2, . . .

5. Discontinuities at x = nπ, n = 0,±1,±2, . . .

6. Continuous everywhere.

7. Discontinuities at x =
π

6
+ 2nπ, and x =

5π

6
+ 2nπ, n = 0,±1,±2, . . .
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8. Discontinuities at x =
π

2
+ nπ, n = 0,±1,±2, . . .

9. sin−1 u is continuous for −1 ≤ u ≤ 1, so −1 ≤ 2x ≤ 1, or −1/2 ≤ x ≤ 1/2.

10. cos−1 u is defined and continuous for −1 ≤ u ≤ 1 which means −1 ≤ lnx ≤ 1, or 1/e ≤ x ≤ e.

11. (0, 3) ∪ (3,∞).

12. (−∞, 0) ∪ (0,+∞).

13. (−∞,−1] ∪ [1,∞).

14. (−3, 0) ∪ (0,∞).

15. (a) f(x) = sinx, g(x) = x3 + 7x+ 1. (b) f(x) = |x|, g(x) = sinx. (c) f(x) = x3, g(x) = cos(x+ 1).

16. (a) f(x) = |x|, g(x) = 3 + sin 2x. (b) f(x) = sinx, g(x) = sinx. (c) f(x) = x5 − 2x3 + 1,
g(x) = cosx.

17. lim
x→+∞

cos

(
1

x

)
= cos

(
lim

x→+∞

1

x

)
= cos 0 = 1.

18. lim
x→+∞

sin

(
πx

2− 3x

)
= sin

(
lim

x→+∞

πx

2− 3x

)
= sin

(
−π

3

)
= −
√

3

2
.

19. lim
x→+∞

sin−1

(
x

1− 2x

)
= sin−1

(
lim

x→+∞

x

1− 2x

)
= sin−1

(
−1

2

)
= −π

6
.

20. lim
x→+∞

ln

(
x+ 1

x

)
= ln

(
lim

x→+∞

x+ 1

x

)
= ln(1) = 0.

21. lim
x→0

esin x = e

(
lim
x→0

sinx
)

= e0 = 1.

22. lim
x→+∞

cos(2 tan−1 x) = cos( lim
x→+∞

2 tan−1 x) = cos(2(π/2)) = −1.

23. lim
θ→0

sin 3θ

θ
= 3 lim

θ→0

sin 3θ

3θ
= 3.

24. lim
h→0

sinh

2h
=

1

2
lim
h→0

sinh

h
=

1

2
.

25. lim
θ→0+

sin θ

θ2
=

(
lim
θ→0+

1

θ

)
lim
θ→0+

sin θ

θ
= +∞.

26. lim
θ→0+

sin2 θ

θ
=

(
lim
θ→0

sin θ

)
lim
θ→0

sin θ

θ
= 0.

27.
tan 7x

sin 3x
=

7

3 cos 7x
· sin 7x

7x
· 3x

sin 3x
, so lim

x→0

tan 7x

sin 3x
=

7

3 · 1
· 1 · 1 =

7

3
.

28.
sin 6x

sin 8x
=

6

8
· sin 6x

6x
· 8x

sin 8x
, so lim

x→0

sin 6x

sin 8x
=

6

8
· 1 · 1 =

3

4
.
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29. lim
x→0+

sinx

5
√
x

=
1

5
lim
x→0+

√
x lim
x→0+

sinx

x
= 0.

30. lim
x→0

sin2 x

3x2
=

1

3

(
lim
x→0

sinx

x

)2

=
1

3
.

31. lim
x→0

sinx2

x
=
(

lim
x→0

x
)(

lim
x→0

sinx2

x2

)
= 0.

32.
sinh

1− cosh
=

sinh

1− cosh
· 1 + cosh

1 + cosh
=

sinh(1 + cosh)

1− cos2 h
=

1 + cosh

sinh
; this implies that lim

h→0+
is +∞, and lim

h→0−
is −∞,

therefore the limit does not exist.

33.
t2

1− cos2 t
=

(
t

sin t

)2

, so lim
t→0

t2

1− cos2 t
= 1.

34. cos( 1
2π − x) = cos(1

2π) cosx+ sin( 1
2π) sinx = sinx, so lim

x→0

x

cos
(

1
2π − x

) = 1.

35.
θ2

1− cos θ
· 1 + cos θ

1 + cos θ
=
θ2(1 + cos θ)

1− cos2 θ
=

(
θ

sin θ

)2

(1 + cos θ), so lim
θ→0

θ2

1− cos θ
= (1)2 · 2 = 2.

36.
1− cos 3h

cos2 5h− 1
· 1 + cos 3h

1 + cos 3h
=

sin2 3h

− sin2 5h
· 1

1 + cos 3h
, so (using the result of problem 28)

lim
x→0

1− cos 3h

cos2 5h− 1
= lim
x→0

sin2 3h

− sin2 5h
· 1

1 + cos 3h
= −

(
3

5

)2

· 1

2
= − 9

50

37. lim
x→0+

sin

(
1

x

)
= lim
t→+∞

sin t, so the limit does not exist.

38. lim
x→0

x2 − 3 sinx

x
= lim
x→0

x− 3 lim
x→0

sinx

x
= −3.

39.
2− cos 3x− cos 4x

x
=

1− cos 3x

x
+

1− cos 4x

x
. Note that

1− cos 3x

x
=

1− cos 3x

x
· 1 + cos 3x

1 + cos 3x
=

sin2 3x

x(1 + cos 3x)
=

sin 3x

x
· sin 3x

1 + cos 3x
. Thus

lim
x→0

2− cos 3x− cos 4x

x
= lim
x→0

sin 3x

x
· sin 3x

1 + cos 3x
+ lim
x→0

sin 4x

x
· sin 4x

1 + cos 4x
= 3 · 0 + 4 · 0 = 0.

40.
tan 3x2 + sin2 5x

x2
=

3

cos 3x2
· sin 3x2

3x2
+ 25 · sin2 5x

(5x)2
, so

lim
x→0

tan 3x2 + sin2 5x

x2
= lim
x→0

3

cos 3x2
lim
x→0

sin 3x2

3x2
+ 25 lim

x→0

(
sin 5x

5x

)2

= 3 + 25 = 28.

41. (a) 4 4.5 4.9 5.1 5.5 6
0.093497 0.100932 0.100842 0.098845 0.091319 0.076497

The limit appears to be 0.1.

(b) Let t = x− 5. Then t→ 0 as x→ 5 and lim
x→5

sin(x− 5)

x2 − 25
= lim
x→5

1

x+ 5
lim
t→0

sin t

t
=

1

10
· 1 =

1

10
.
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42. (a) −2.1 −2.01 −2.001 −1.999 −1.99 −1.9
−1.09778 −1.00998 −1.00100 −0.99900 −0.98998 −0.89879

The limit appears to be −1.

(b) Let t = (x+2)(x+1). Then t→ 0 as x→ −2, and lim
x→−2

sin[(x+ 2)(x+ 1)]

x+ 2
= lim
x→−2

(x+1) lim
t→0

sin t

t
= −1 ·1 =

−1 by the Substitution Principle (Exercise 1.3.53).

43. True: let ε > 0 and δ = ε. Then if |x− (−1)| = |x+ 1| < δ then |f(x) + 5| < ε.

44. True; from the proof of Theorem 1.6.5 we have tanx ≥ x ≥ sinx for 0 < x < π/2, and the desired inequalities
follow immediately.

45. False; consider f(x) = tan−1 x.

46. True; by the Squeezing Theorem 1.6.4 | lim
x→0

xf(x)| ≤M lim
x→0
|x| = 0 and

∣∣∣∣ lim
x→+∞

f(x)

x

∣∣∣∣ ≤M lim
x→+∞

1

x
= 0.

47. (a) The student calculated x in degrees rather than radians.

(b) sinx◦ = sin t where x◦ is measured in degrees, t is measured in radians and t =
πx◦

180
. Thus lim

x◦→0

sinx◦

x◦
=

lim
t→0

sin t

(180t/π)
=

π

180
.

48. Denote θ by x in accordance with Figure 1.6.4. Let P have coordinates (cosx, sinx) and Q coordinates (1, 0) so

that c2(x) = (1− cosx)2 + sin2 x = 2(1− cosx). Since s = rθ = 1 ·x = x we have lim
x→0+

c2(x)

s2(x)
= lim
x→0+

2
1− cosx

x2
=

lim
x→0+

2
1− cosx

x2
· 1 + cosx

1 + cosx
= lim
x→0+

(
sinx

x

)2
2

1 + cosx
= 1.

49. lim
x→0−

f(x) = k lim
x→0

sin kx

kx cos kx
= k, lim

x→0+
f(x) = 2k2, so k = 2k2, and the nonzero solution is k =

1

2
.

50. No; sinx/|x| has unequal one-sided limits (+1 and −1).

51. (a) lim
t→0+

sin t

t
= 1.

(b) lim
t→0−

1− cos t

t
= 0 (Theorem 1.6.3).

(c) sin(π − t) = sin t, so lim
x→π

π − x
sinx

= lim
t→0

t

sin t
= 1.

52. Let t =
π

2
− π

x
. Then cos

(π
2
− t
)

= sin t, so lim
x→2

cos(π/x)

x− 2
= lim
t→0

(π − 2t) sin t

4t
= lim
t→0

π − 2t

4
lim
t→0

sin t

t
=
π

4
.

53. t = x− 1; sin(πx) = sin(πt+ π) = − sinπt; and lim
x→1

sin(πx)

x− 1
= − lim

t→0

sinπt

t
= −π.

54. t = x− π/4; tanx− 1 =
2 sin t

cos t− sin t
; lim
x→π/4

tanx− 1

x− π/4
= lim
t→0

2 sin t

t(cos t− sin t)
= 2.
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55. t = x − π/4, cos(t + π/4) = (
√

2/2)(cos t − sin t), sin(t + π/4) = (
√

2/2)(sin t + cos t), so
cosx− sinx

x− π/4
=

−
√

2 sin t

t
; lim
x→π/4

cosx− sinx

x− π/4
= −
√

2 lim
t→0

sin t

t
= −
√

2.

56. Let g(x) = f−1(x) and h(x) = f(x)/x when x 6= 0 and h(0) = L. Then lim
x→0

h(x) = L = h(0), so h is continuous

at x = 0. Apply Theorem 1.5.5 to h ◦ g to obtain that on the one hand h(g(0)) = L, and on the other h(g(x)) =
f(g(x))

g(x)
, x 6= 0, and lim

x→0
h(g(x)) = h(g(0)). Since f(g(x)) = x and g = f−1 this shows that lim

x→0

x

f−1(x)
= L.

57. lim
x→0

x

sin−1 x
= lim
x→0

sinx

x
= 1.

58. tan(tan−1 x) = x, so lim
x→0

tan−1 x

x
= lim
x→0

x

tanx
= ( lim

x→0
cosx) lim

x→0

x

sinx
= 1.

59. 5 lim
x→0

sin−1 5x

5x
= 5 lim

x→0

5x

sin 5x
= 5.

60. lim
x→1

1

x+ 1
lim
x→1

sin−1(x− 1)

x− 1
=

1

2
lim
x→1

x− 1

sin(x− 1)
=

1

2
.

61. −|x| ≤ x cos

(
50π

x

)
≤ |x|, which gives the desired result.

62. −x2 ≤ x2 sin

(
50π
3
√
x

)
≤ x2, which gives the desired result.

63. Since lim
x→0

sin(1/x) does not exist, no conclusions can be drawn.

64. lim
x→0

f(x) = 1 by the Squeezing Theorem.

–1

0

1

–1 1
x

y

y = cos x

y = 1 – x2

y = f (x)

65. lim
x→+∞

f(x) = 0 by the Squeezing Theorem.

y

x

-1

4
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66.

y

x

y

x

67. (a) Let f(x) = x− cosx; f(0) = −1, f (π/2) = π/2. By the IVT there must be a solution of f(x) = 0.

(b)

y

x

0

0.5

1

1.5

y = cos x

c/2

y = x

(c) 0.739

68. (a) f(x) = x+ sinx− 1; f(0) = −1, f (π/6) = π/6− 1/2 > 0. By the IVT there must be a solution of f(x) = 0
in the interval.

(b)

y

x

0

0.5

c/6

y = x

y = 1 –  sin x

(c) 0.511

69. (a) Gravity is strongest at the poles and weakest at the equator.

30 60 90

9.80

9.82

9.84

f

g

(b) Let g(φ) be the given function. Then g(38) < 9.8 and g(39) > 9.8, so by the Intermediate Value Theorem
there is a value c between 38 and 39 for which g(c) = 9.8 exactly.

Chapter 1 Review Exercises

1. (a) 1 (b) Does not exist. (c) Does not exist. (d) 1 (e) 3 (f) 0 (g) 0

(h) 2 (i) 1/2

2. (a) x 2.00001 2.0001 2.001 2.01 2.1 2.5

f(x) 0.250 0.250 0.250 0.249 0.244 0.222
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For x 6= 2, f(x) =
1

x+ 2
, so the limit is 1/4.

(b) x -0.01 -0.001 -0.0001 0.0001 0.001 0.01

f(x) 4.0021347 4.0000213 4.0000002 4.0000002 4.0000213 4.0021347

Use
tan 4x

x
=

sin 4x

x cos 4x
=

4

cos 4x
· sin 4x

4x
; the limit is 4.

3. (a) x -0.01 -0.001 -0.0001 0.0001 0.001 0.01

f(x) 0.402 0.405 0.405 0.406 0.406 0.409

(b)

y

x

0.5

-1 1

4. x 2.9 2.99 2.999 3.001 3.01 3.1

f(x) 5.357 5.526 5.543 5.547 5.564 5.742

5. The limit is
(−1)3 − (−1)2

−1− 1
= 1.

6. For x 6= 1,
x3 − x2

x− 1
= x2, so lim

x→1

x3 − x2

x− 1
= 1.

7. If x 6= −3 then
3x+ 9

x2 + 4x+ 3
=

3

x+ 1
with limit −3

2
.

8. The limit is −∞.

9. By the highest degree terms, the limit is
25

3
=

32

3
.

10.

√
x2 + 4− 2

x2
·
√
x2 + 4 + 2√
x2 + 4 + 2

=
x2

x2(
√
x2 + 4 + 2)

=
1√

x2 + 4 + 2
, so lim

x→0

√
x2 + 4− 2

x2
= lim
x→0

1√
x2 + 4 + 2

=
1

4
.

11. (a) y = 0. (b) None. (c) y = 2.

12. (a)
√

5, no limit,
√

10,
√

10, no limit, +∞, no limit.

(b) −1,+1,−1,−1, no limit, −1,+1

13. If x 6= 0, then
sin 3x

tan 3x
= cos 3x, and the limit is 1.

14. If x 6= 0, then
x sinx

1− cosx
· 1 + cosx

1 + cosx
=

x

sinx
(1 + cosx), so the limit is 2.

15. If x 6= 0, then
3x− sin(kx)

x
= 3− k sin(kx)

kx
, so the limit is 3− k.

16. lim
θ→0

tan

(
1− cos θ

θ

)
= tan

(
lim
θ→0

1− cos θ

θ

)
= tan

(
lim
θ→0

1− cos2 θ

θ(1 + cos θ)

)
= tan

(
lim
θ→0

sin θ

θ
· sin θ

(1 + cos θ)

)
= 0.
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17. As t→ π/2+, tan t→ −∞, so the limit in question is 0.

18. ln(2 sin θ cos θ)− ln tan θ = ln 2 + 2 ln cos θ, so the limit is ln 2.

19.

(
1 +

3

x

)−x
=

[(
1 +

3

x

)x/3](−3)

, so the limit is e−3.

20.
(

1 +
a

x

)bx
=

[(
1 +

a

x

)x/a](ab)

, so the limit is eab.

21. $2,001.60, $2,009.66, $2,013.62, $2013.75.

23. (a) f(x) = 2x/(x− 1).

(b)

y

x

10

10

24. Given any window of height 2ε centered at the point x = a, y = L there exists a width 2δ such that the window
of width 2δ and height 2ε contains all points of the graph of the function for x in that interval.

25. (a) lim
x→2

f(x) = 5.

(b) δ = (3/4) · (0.048/8) = 0.0045.

26. δ ≈ 0.07747 (use a graphing utility).

27. (a) |4x− 7− 1| < 0.01 means 4|x− 2| < 0.01, or |x− 2| < 0.0025, so δ = 0.0025.

(b)

∣∣∣∣4x2 − 9

2x− 3
− 6

∣∣∣∣ < 0.05 means |2x+ 3− 6| < 0.05, or |x− 1.5| < 0.025, so δ = 0.025.

(c) |x2 − 16| < 0.001; if δ < 1 then |x + 4| < 9 if |x − 4| < 1; then |x2 − 16| = |x − 4||x + 4| ≤ 9|x − 4| < 0.001
provided |x− 4| < 0.001/9 = 1/9000, take δ = 1/9000, then |x2 − 16| < 9|x− 4| < 9(1/9000) = 1/1000 = 0.001.

28. (a) Given ε > 0 then |4x− 7− 1| < ε provided |x− 2| < ε/4, take δ = ε/4.

(b) Given ε > 0 the inequality

∣∣∣∣4x2 − 9

2x− 3
− 6

∣∣∣∣ < ε holds if |2x+ 3− 6| < ε, or |x− 1.5| < ε/2, take δ = ε/2.

29. Let ε = f(x0)/2 > 0; then there corresponds a δ > 0 such that if |x − x0| < δ then |f(x) − f(x0)| < ε,
−ε < f(x)− f(x0) < ε, f(x) > f(x0)− ε = f(x0)/2 > 0, for x0 − δ < x < x0 + δ.

30. (a) x 1.1 1.01 1.001 1.0001 1.00001 1.000001

f(x) 0.49 0.54 0.540 0.5403 0.54030 0.54030

(b) cos 1
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31. (a) f is not defined at x = ±1, continuous elsewhere.

(b) None; continuous everywhere.

(c) f is not defined at x = 0 and x = −3, continuous elsewhere.

32. (a) Continuous everywhere except x = ±3.

(b) Defined and continuous for x ≤ −1, x ≥ 1.

(c) Defined and continuous for x > 0.

33. For x < 2 f is a polynomial and is continuous; for x > 2 f is a polynomial and is continuous. At x = 2,
f(2) = −13 6= 13 = lim

x→2+
f(x), so f is not continuous there.

35. f(x) = −1 for a ≤ x < a+ b

2
and f(x) = 1 for

a+ b

2
≤ x ≤ b; f does not take the value 0.

36. If, on the contrary, f(x0) < 0 for some x0 in [0, 1], then by the Intermediate Value Theorem we would have a
solution of f(x) = 0 in [0, x0], contrary to the hypothesis.

37. f(−6) = 185, f(0) = −1, f(2) = 65; apply Theorem 1.5.8 twice, once on [−6, 0] and once on [0, 2].

Chapter 1 Making Connections

1. Let P (x, x2) be an arbitrary point on the curve, let Q(−x, x2) be its reflection through the y-axis, let O(0, 0) be
the origin. The perpendicular bisector of the line which connects P with O meets the y-axis at a point C(0, λ(x)),
whose ordinate is as yet unknown. A segment of the bisector is also the altitude of the triangle ∆OPC which is
isosceles, so that CP = CO.

Using the symmetrically opposing point Q in the second quadrant, we see that OP = OQ too, and thus C is
equidistant from the three points O,P,Q and is thus the center of the unique circle that passes through the three
points.

2. Let R be the midpoint of the line segment connecting P and O, so that R(x/2, x2/2). We start with the

Pythagorean Theorem OC
2

= OR
2

+ CR
2
, or λ2 = (x/2)2 + (x2/2)2 + (x/2)2 + (λ − x2/2)2. Solving for λ

we obtain λx2 = (x2 + x4)/2, λ = 1/2 + x2/2.

3. Replace the parabola with the general curve y = f(x) which passes through P (x, f(x)) and S(0, f(0)). Let the
perpendicular bisector of the line through S and P meet the y-axis at C(0, λ), and let R(x/2, (f(x) − λ)/2)

be the midpoint of P and S. By the Pythagorean Theorem, CS
2

= RS
2

+ CR
2
, or (λ − f(0))2 = x2/4 +[

f(x) + f(0)

2
− f(0)

]2

+ x2/4 +

[
f(x) + f(0)

2
− λ

]2

,

which yields λ =
1

2

[
f(0) + f(x) +

x2

f(x)− f(0)

]
.

4. (a) f(0) = 0, C(x) = 1
8 + 2x2, x2 + (y − 1

8 )2 =
(

1
8

)2
.

(b) f(0) = 0, C(x) = 1
2 (secx+ x2), x2 + (y − 1

2 )2 =
(

1
2

)2
.

(c) f(0) = 0, C(x) = 1
2

x2 + |x|2

|x|
, x2 + y2 = 0 (not a circle).

(d) f(0) = 0, C(x) = 1
2

x(1 + sin2 x)

sinx
, x2 +

(
y − 1

2

)2

=

(
1

2

)2

.
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(e) f(0) = 1, C(x) = 1
2

x2 − sin2 x

cosx− 1
, x2 + y2 = 1.

(f) f(0) = 0, C(x) =
1

2g(x)
+
x2g(x)

2
, x2 +

(
y − 1

2g(0)

)2

=

(
1

2g(0)

)2

.

(g) f(0) = 0, C(x) = 1
2

1 + x6

x2
, limit does not exist, osculating circle does not exist.


