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| PREFACE

This Complete Solutions Manual contains solutions to all exercises in the text Single Variable
Calculus, Seventh Edition, by James Stewart. A student version of this manual is also available;
it contains solutions to the odd-numbered exercises in each section, the review sections, the True-
False Quizzes, and the Problem Solving sections, as well as solutions to all the exercises in the
Concept Checks. No solutions to the projects appear in the student version. It is our hope that by
browsing through the solutions, professors will save time in determining appropriate assignments
for their particular class.

We use some nonstandard notation in order to save space. If you see a symbol that you don’t
recognize, refer to the Table of Abbreviations and Symbols on page v.

We appreciate feedback concerning errors, solution correctness or style, and manual style. Any
comments may be sent directly to jeff.cole@anokaramsey.edu, or in care of the publisher:
Brooks/Cole, Cengage Learning, 20 Davis Drive, Belmont CA 94002-3098.
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| ABBREVIATIONS AND SYMBOLS

CD
CU

FDT
HA

I/'D
1P

VA

CAS

II=

concave downward
concave upward

the domain of f

First Derivative Test
horizontal asymptote(s)
interval of convergence
Increasing/Decreasing Test
inflection point(s)

radius of convergence

vertical asymptote(s)

indicates the use of a computer algebra system.

indicates the use of I’Hospital’s Rule.

indicates the use of Formula j in the Table of Integrals in the back endpapers.
indicates the use of the substitution {u = sin z, du = cos z dx}.

indicates the use of the substitution {u = cosz, du = —sinz dz}.
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[J DIAGNOSTIC TESTS

Test A Algebra

L (@) (—3)* = (—3)(—-3)(—3)(-3) = 81 (b) —3* = —(3)(3)(3)(3) = —81
(©) 34 = % _ % @ % _523-21 _ 52 _ o5

1 1 1 1
f) 1673/4 = = = — ==
() 6 163/4 (416)3 23 8

—
)
~
—
win
|
N
I
—
nlw
~—.
™)
Il
sl

2. (a) Note that v/200 = /100 - 2 = 10+/2 and v/32 = /16 - 2 = 4 /2. Thus v/200 — v/32 = 10v/2 — 4/2 = 6 /2.

(b) (3ab®)(4ab?)? = 3a°b*16ab* = 48a°b”

© (3m3/2y3 )2 (xzyfl/z )2 (xzyfl/z)z x4y71 4 z

22y—1/2 - 373/2y3 = (323/213)2 = 9346 - 913yby = W
3. (a) 3(x + 6) + 4(2x — 5) = 3z + 18 + 8z — 20 = 11z — 2

(b) (z +3)(4x — 5) = 42® — 5z + 122 — 15 = 42 + Tz — 15
© (Va+vh) (Va—vb) = (vVa) ~vavi+vavi— (vV6) =a-b
Or: Use the formula for the difference of two squares to see that (\/5+ \/5) (\/_— \/5) = (\/5)2 - (\/5)2 =a—b.

(d) (22 +3)* = (2z + 3)(2z + 3) = 42 + 62 + 62 + 9 = 4a® + 122 + 9.
Note: A quicker way to expand this binomial is to use the formula (a 4 b)? = a® + 2ab + b* with @ = 22 and b = 3:
2z +3)% = (22)% +2(22)(3) + 3% = 4a® + 122+ 9

(e) See Reference Page 1 for the binomial formula (a + b)® = a® + 3a®b + 3ab® + b>. Using it, we get
(4 2)% = 2® + 32%(2) + 32(2%) + 2° = 2 + 62% + 122 + 8.

4. (a) Using the difference of two squares formula, a®> — b* = (a + b)(a — b), we have

4a* — 25 = (2x)% — 5% = (22 + 5)(2z — 5).

(b) Factoring by trial and error, we get 22 + 5z — 12 = (22 — 3)(z + 4).

(c) Using factoring by grouping and the difference of two squares formula, we have
23 =322 —dx+12 =2z —3) —4(z —3) = (2% —4)(x — 3) = (z — 2)(z + 2)(x — 3).

(d) z* + 272 = 2(2® + 27) = z(z + 3)(2® — 3z +9)
This last expression was obtained using the sum of two cubes formula, a® + b> = (a + b)(a® — ab + b*) witha = «
and b = 3. [See Reference Page 1 in the textbook.]

(e) The smallest exponent on x is —%, so we will factor out /2.

3232 —9x1/? 4 6712 =327V (2% — 304+ 2) =322 (z — 1)(z — 2)

(f) 2%y — oy = zy(2® — 4) = ay(z — 2)(z + 2)

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 1
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Ll DIAGNOSTIC TESTS

2 +3x+2 (z+1)(x+2) x+2

. @ = =

x2—x—2 (z+D(x—-2) x=—2

202 —2—-1 z+3 (2z+1)(@x—-1 z+3 =x-1

O — i (x—3)(x+3) 2z+1 z-3
© x? z+1 x? z+1 z? r+1 -2 2°—(z+1)(z—2)
-4 242 (@-2)(x+2) z+2 (@-2)(x+2) z+2 z-2  (z-2)(x+2)
P —(a?—z—-2) x+2 1
z+2(z—-2)  (z+2)(z—-2) 2z-2
Py iy o2 (y—a)(y+a)
Ty Yy —x y—x)y+x Yy+x
OT =T 15" %y G-» — -1 @ty
y = y =z
VIO V10 V542 VB042V10  5v242V10
O 2T 52 Vhez (Va) —22  5-4 =0V2H2V10
(b)\/4+h72_\/4+h72‘\/4+h+2_ A+h—-4 h B 1
h B h VETh+2 h(VE+h+2) h(VEi+h+2) Vith+2

@ trtl= (Pt +1-L=(z+3)+2

(b) 22% — 120 +11 =2(2® —62) + 11 =2(2* —62+9—9) + 11 =2(2? — 62 +9) — 18 + 11 =2(x — 3)* - 7

.(a)r+5=14—%a: & 1’—&—%1’:14—5 & %x=9 & QK:%-Q & =6

2
x+1

€T

©2°-2-12=0 & (z+3)(z—4)=0 & z+3=00rz—-4=0 & z=-30rx=4

(d) By the quadratic formula, 22> + 4z +1=0 <

4412 —4(2)(1)  —44+v8  —4+2v2  2(—2£V2) 2+ .,2 L
v -1 4 == =lEaVv2

2(2) 4

@2*-32°4+2=0 & @@ -1DE*-2)=0 & 22-1=00r2"-2=0 & 2*=1lorz’*=2 &
r=+lorz =42

10 2 22

f)3lz—4=10 & |[z-4/=2 & z-4=-Dor-4=2 & z=2orz=2

(g) Multiplying through 2z:(4 — )™/ =34 -z =0by (4 — z)'/? gives 2z —3(4 —2) =0 <

20 —-124+3z=0 & S5r—-12=0 & Hr=12 & m:%.

L@ -4<5-32<17T & -9<-32<12 & 3>z>-4or -4<z<3.

In interval notation, the answer is [—4, 3).

b)yz*> <22+8 & 22—-2x—-8<0 < (v+2)(xr—4) <0 Now, (z+ 2)(x — 4) will change sign at the critical

values z = —2 and = = 4. Thus the possible intervals of solution are (—oo, —2), (—2,4), and (4, co). By choosing a

single test value from each interval, we see that (—2, 4) is the only interval that satisfies the inequality.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



TESTB ANALYTIC GEOMETRY U 3

(c) The inequality z(z — 1)(x + 2) > 0 has critical values of —2, 0, and 1. The corresponding possible intervals of solution
are (—oo, —2), (—2,0), (0,1) and (1, co). By choosing a single test value from each interval, we see that both intervals

(—2,0) and (1, co) satisfy the inequality. Thus, the solution is the union of these two intervals: (—2,0) U (1, c0).
dz—4<3 & —3<zr—-4<3 < 1<z<T7 Ininterval notation, the answer is (1, 7).

2 2x — 3 2r—3 x+1 2r—3—x—1 r—4

Tz —3
e <1 -1<0 & — <0 & ——m<0 & <0
()x—l—l_ r+1 - x+1 r+1— x+1 - rx+1—
Now, the expression i 11 may change signs at the critical values x = —1 and = = 4, so the possible intervals of solution
T

are (—oo, —1), (—1,4], and [4, co). By choosing a single test value from each interval, we see that (—1, 4] is the only

interval that satisfies the inequality.
10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick
p = 1and ¢ = 2 and observe that (1 + 2)% # 1% + 22, In general, (p + ¢)* = p* + 2pq + ¢*.
(b) True as long as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents:
Vab = (ab)"/? = a?8V/2 = Va k.
(c) False. To see this, let p = 1 and ¢ = 2, then /12 + 22 £ 1 + 2.

1+1(2)

(d) False. To see this, let T'= 1 and C' = 2, then #1141

. 1 1 1
(e) False. To see this, let z = 2 and y = 3, then 3-3 # 373

lz
/r —b/x

gz 1 aslongase #£0anda—b 0.

(f) True since
a a—>b

Test B Analytic Geometry

1. (a) Using the point (2, —5) and m = —3 in the point-slope equation of a line, y — y1 = m(x — x1), we get

y—(-5)=-3@x—-2) = y+5=-3z+6 = y=-3r+1

(b) A line parallel to the z-axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2, —5),
the y-coordinate of every point on the line is —5, so the equation isy = —5.

(c) A line parallel to the y-axis is vertical with undefined slope. So the x-coordinate of every point on the line is 2 and so the
equation is x = 2.

(d) Note that 2z —4y =3 = —4y=—-2x+3 = y=1x— 2. Thustheslope of the given line is m = 1. Hence, the
slope of the line we’re looking for is also + (since the line we’re looking for is required to be parallel to the given line).

So the equation of the lineisy — (=5) = 3 (z —2) = y+5=2x—-1 = y=3z—6.

2. First we’ll find the distance between the two given points in order to obtain the radius, r, of the circle:

r=+/[B-(-1)P+(-2—4)2 = /42 + (—6)2 = 1/52. Next use the standard equation of a circle,

(x —h)? 4 (y — k)® = r2, where (h, k) is the center, to get (x + 1)* + (y — 4) = 52.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



4

. (@ A(—7,4)and B(5,—-12) = muap =

Ll DIAGNOSTIC TESTS

. We must rewrite the equation in standard form in order to identify the center and radius. Note that

2249y —6r+10y+9=0 = 2?62+ 9+ 1>+ 10y = 0. For the left-hand side of the latter equation, we
factor the first three terms and complete the square on the last two terms as follows: 2> — 6z + 9+ 3> + 10y =0 =
(2 =3 +1y>+10y+25=25 = (x—3)%+ (y+5)* = 25. Thus, the center of the circle is (3, —5) and the radius is 5.

—12-4 16 4

5—(-7) 12 =~ 3
by—4=—-3r—(-7] = y—-4=-32-2 = 3y—12=—-42-28 = 4z+3y+16=0.Puttingy =0,

we get 4o + 16 = 0, so the x-intercept is —4, and substituting 0 for x results in a y-intercept of —1?6.

(c) The midpoint is obtained by averaging the corresponding coordinates of both points: (#, W) = (-1,-4).

A d=+/[5-(-7)2+ (12 —4)2 = \/122 + (—16)? = /144 + 256 = /400 = 20

(e) The perpendicular bisector is the line that intersects the line segment AB at a right angle through its midpoint. Thus the
perpendicular bisector passes through (—1, —4) and has slope % [the slope is obtained by taking the negative reciprocal of

the answer from part (a)]. So the perpendicular bisector is given by y + 4 = 2[z — (—1)] or 3z — 4y = 13.

(f) The center of the required circle is the midpoint of AB, and the radius is half the length of AB, which is 10. Thus, the

equation is (z + 1)% + (y + 4)* = 100.

. (a) Graph the corresponding horizontal lines (given by the equations y = —1 and Y
y = 3) as solid lines. The inequality y > —1 describes the points (z, y) that lie
on or above the line y = —1. The inequality y < 3 describes the points (z, y) _? v
that lie on or below the line y = 3. So the pair of inequalities —1 <y < 3
describes the points that lie on or between the linesy = —1 and y = 3.

(b) Note that the given inequalities can be writtenas —4 < x < 4and —2 < y < 2, Y
respectively. So the region lies between the vertical lines z = —4 and = = 4 and oo A ,
between the horizontal lines y = —2 and y = 2. As shown in the graph, the —4§ 0 §4 x
region common to both graphs is a rectangle (minus its edges) centered at the R °
origin.

(c) We first graph y = 1 — S as a dotted line. Since y < 1 — 1, the points in the Y
region lie below this line. \\\\1. y=1-g

0 \2 X

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



TESTC FUNCTIONS LI 5

(d) We first graph the parabola y = x® — 1 using a solid curve. Since y > z? — 1, Y
the points in the region lie on or above the parabola.
ol /\
1 X
Ty=x2-1
(e) We graph the circle 2* + y? = 4 using a dotted curve. Since\/z2 + 32 < 2, the Y
24 2=
region consists of points whose distance from the origin is less than 2, that is, },_f ty'=4
the points that lie inside the circle. ! ::2 >

(f) The equation 92 + 16y = 144 is an ellipse centered at (0, 0). We put it in

2 2

standard form by dividing by 144 and get T—G + L —1.The x-intercepts are

9

located at a distance of 1/16 = 4 from the center while the y-intercepts are a

-
NG

distance of /9 = 3 from the center (see the graph).

Test C  Functions

1. (a) Locate —1 on the z-axis and then go down to the point on the graph with an z-coordinate of —1. The corresponding
y-coordinate is the value of the function at z = —1, which is —2. So, f(—1) = —2.
(b) Using the same technique as in part (a), we get f(2) ~ 2.8.
(c) Locate 2 on the y-axis and then go left and right to find all points on the graph with a y-coordinate of 2. The corresponding
z-coordinates are the z-values we are searching for. Sox = —3and =z = 1.
(d) Using the same technique as in part (c), we get z &~ —2.5 and = ~ 0.3.

(e) The domain is all the z-values for which the graph exists, and the range is all the y-values for which the graph exists.

Thus, the domain is [—3, 3], and the range is [—2, 3].

2. Note that (2 4+ h) = (2 + h)® and f(2) = 2* = 8. So the difference quotient becomes
f+h)—f(2) (2+h)>—-8 8+12h+6h>+h>—8 12h+6h%>+h®  h(12+6h+ h?)

— 2
h 5 5 h = h =12+ 6h + h~.

3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: z°> + x —2=0 =
(x—1)(x+2)=0 = x=1orz = —2. Thus, the domain is all real numbers except 1 or —2 or, in interval
notation, (—oo, —2) U (—2,1) U (1, c0).
(b) Note that the denominator is always greater than or equal to 1, and the numerator is defined for all real numbers. Thus, the
domain is (—oo, 00).

(c) Note that the function £ is the sum of two root functions. So & is defined on the intersection of the domains of these two
root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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Ll DIAGNOSTIC TESTS

4—2>0 = z<4andz*-1>0 = (z—1)(z+1)>0 = =z <-1lorz > 1. Thus, the domain of
his (—o0, —1] U [1,4].

. (a) Reflect the graph of f about the z-axis.

(b) Stretch the graph of f vertically by a factor of 2, then shift 1 unit downward.

(c) Shift the graph of f right 3 units, then up 2 units.

. (a) Make a table and then connect the points with a smooth curve: Y
| -2|-1|0]1]2 1l
y| -8 -1]0|1]|8 o 1 X
(b) Shift the graph from part (a) left 1 unit. Y /
1
/
-1 |0 X
(c) Shift the graph from part (a) right 2 units and up 3 units. Y
(2,3)
0 / X
(d) First plot y = 2. Next, to get the graph of f(z) = 4 — 22, i
reflect f about the x-axis and then shift it upward 4 units.
0 2 x
(e) Make a table and then connect the points with a smooth curve: Y
X 0 1 4 9 14 :
ylo]1 3 ol 1 X
(F) Stretch the graph from part (e) vertically by a factor of two. Y e
2,,
0] 1 X
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TESTD TRIGONOMETRY U

(9) First plot y = 2. Next, get the graph of y = —2% by reflecting the graph of

y = 2% about the x-axis.

(h) Notethat y = 1 +2~' = 1 4 1/a. So first plot y = 1/ and then shift it

upward 1 unit.

6. (@ f(—=2)=1—-(-2)>=-3and f(1) =2(1)+1=3

(b) For zz < 0 plot f(z) = 1 — «* and, on the same plane, for = > 0 plot the graph
of f(z) =22+ 1.

7.@) (fog)(z)=f(9(x)) = f(2r —3) = (22 —3)* +2(2x —3) — 1 =42® — 120+ 9+ 4r — 6 — 1 = 42> — 8z + 2
) (go @) =g(f(z)) =g(z* +22—-1)=2(2> +22—-1) -3 =22"+42—-2-3=22"+42 -5

©) (gogog)(z)=g(g(g(z))) = g(9(2z — 3)) = g(2(2z — 3) — 3) = g(4z — 9) = 2(4z — 9) = 3
—8r—18—3 =8z —21

TestD Trigonometry

7

1. (a) 300° = 3000( T ) 300 5w

o_ qgof_ T \_ 18t ™
180°/ — 180 3 (b) —187 = —18 (1800)7 180 10

2. (a)‘r’—”:‘r’—“(lgO ):150° (b)2:2(180 ):ﬂznm"
s s ™

6 6

3. We will use the arc length formula, s = r6, where s is arc length,  is the radius of the circle, and @ is the measure of the

central angle in radians. First, note that 30° = 30° (1;00) = % So s = (12) (%) =27 cm.

4. (a) tan(m/3) = /3 [You can read the value from a right triangle with sides 1, 2, and /3.]
(b) Note that 77 /6 can be thought of as an angle in the third quadrant with reference angle 7/6. Thus, sin(77/6) = —1,
since the sine function is negative in the third quadrant.

(c) Note that 57r/3 can be thought of as an angle in the fourth quadrant with reference angle 7/3. Thus,

sec(bm/3) = m = % = 2, since the cosine function is positive in the fourth quadrant.
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.sinx:%andsin2x+cos2x:1 = cosx = 17—:—A|SO cosy—— = siny =

. We first graph y = sin 2 (by compressing the graph of sin x

Ll DIAGNOSTIC TESTS

.sinf =a/24 = a=24sind and cosf =b/24 = b=24cosl

1 22 . 1_16_3

9 25 5°

So, using the sum identity for the sine, we have

. . : 14 2\/5 3 44+6v2 1
= =-. 242X 22T V2T _ — (4 2
sin(z + y) = sinz cosy + cosz siny 3 5 3§ 5 15( +6\/_)
.2 2
. (a) tand sin @ + cos O = sin 0 sin @ + cos = sin” 6 + cos 0 _ = ! =secl
cos 6 cos @ cos @ cos 6
(b) Ztan;g = 2sinz/(cos z) =232 0523 = 2sinw cosz = sin 2z
1+ tan? x sec? x cosx

.sin2zx =sinz < 2sinz cosx =sinz < 2sinz cosz —sinz =0 < sinz (2cosz—1)=0 &

1 5w
5 2.

sinz =0 or cosx = = z=0%,m 3,

by a factor of 2) and then shift it upward 1 unit.
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1 [0 FUNCTIONS AND LIMITS

1.1 Four Ways to Represent a Function

1. The functions f(z) = = + v/2 — z and g(u) = u + /2 — u give exactly the same output values for every input value, so f

and g are equal.

2. f(z) = a; :193 = m(j:ll) =z forz — 10,50 fand g [where g(z) = x] are not equal because f(1) is undefined and

3. (a) The point (1, 3) is on the graph of f,so f(1) = 3.
(b) When x = —1, y is about —0.2, s0 f(—1) ~ —0.2.
(c) f(z) = lisequivalenttoy = 1. Wheny = 1, we have x = 0 and « = 3.
(d) A reasonable estimate for x wheny = 0 isz = —0.8.

(e) The domain of f consists of all z-values on the graph of f. For this function, the domain is —2 < x < 4, or [—2, 4].

The range of f consists of all y-values on the graph of f. For this function, the range is —1 < y < 3, or [—1, 3].
(f) As z increases from —2 to 1, y increases from —1 to 3. Thus, f is increasing on the interval [—2, 1].
4. (a) The point (—4, —2) is on the graph of f, so f(—4) = —2. The point (3, 4) is on the graph of g, so ¢(3) = 4.

(b) We are looking for the values of « for which the y-values are equal. The y-values for f and g are equal at the points

(—2,1) and (2, 2), so the desired values of - are —2 and 2.
(¢) f(z) = —1isequivalenttoy = —1. Wheny = —1, we have z = —3 and = = 4.
(d) As x increases from 0 to 4, y decreases from 3 to —1. Thus, f is decreasing on the interval [0, 4].

(e) The domain of f consists of all z-values on the graph of f. For this function, the domain is —4 < x < 4, or [—4, 4].

The range of f consists of all y-values on the graph of f. For this function, the range is —2 < y < 3, or [-2, 3].
(f) The domain of ¢ is [—4, 3] and the range is [0.5, 4].

5. From Figure 1 in the text, the lowest point occurs at about (¢, a) = (12, —85). The highest point occurs at about (17, 115).

Thus, the range of the vertical ground acceleration is —85 < a < 115. Written in interval notation, we get [—85, 115].

6. Example 1: A car is driven at 60 mi/h for 2 hours. The distance d miles
traveled by the car is a function of the time ¢. The domain of the 120
function is {¢ | 0 < ¢ < 2}, where ¢ is measured in hours. The range
of the function is {d | 0 < d < 120}, where d is measured in miles. 0 > timein

hours
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10.

11.

12.

13.

14.

Ll CHAPTER1 FUNCTIONS AND LIMITS

Example 2: At a certain university, the number of students NV on
Number
campus at any time on a particular day is a function of the time ¢ after of students

midnight. The domain of the function is {¢ | 0 < ¢ < 24}, where ¢ is

measured in hours. The range of the functionis {IV | 0 < N < &}, | , . . 4
. . . 0 6 12 18 24 time
where N is an integer and k is the largest number of students on (midnight)

campus at once.

Example 3: A certain employee is paid $8.00 per hour and works a pay
maximum of 30 hours per week. The number of hours worked is 2401 °

) 2381 —
rounded down to the nearest quarter of an hour. This employee’s 236+ —o
gross weekly pay P is a function of the number of hours worked .
The domain of the function is [0, 30] and the range of the function is g;
{0,2.00,4.00,...,238.00,240.00}. 0] 025 050 075 20502975 30 hours

. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails

the Vertical Line Test.

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—2, 2] and the range

is [—1,2].

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—3, 2] and the range

is [-3,-2)U[-1,3].
No, the curve is not the graph of a function since for z = 0, £1, and +2, there are infinitely many points on the curve.
The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person’s weight

dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30 years saw a gradual

increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet, exercise, health problems.

First, the tub was filled with water to a height of 15 in. Then a person got into the tub, raising the water level to 20 in. At
around 12 minutes, the person stood up in the tub but then immediately sat down. Finally, at around 17 minutes, the person got

out of the tub, and then drained the water.

The water will cool down almost to freezing as the ice melts. Then, when T

the ice has melted, the water will slowly warm up to room temperature.

Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about
19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C, and then A.
C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first. Finally,

B passed C to finish in second place. All three runners completed the race.
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SECTION 1.1  FOUR WAYS TO REPRESENT AFUNCTION 0 11

15. (a) The power consumption at 6 AM is 500 MW, which is obtained by reading the value of power P when ¢t = 6 from the

graph. At 6 PM we read the value of P when ¢t = 18, obtaining approximately 730 MW.

(b) The minimum power consumption is determined by finding the time for the lowest point on the graph, ¢ = 4, or 4 AM. The

maximum power consumption corresponds to the highest point on the graph, which occurs just before ¢ = 12, or right

before noon. These times are reasonable, considering the power consumption schedules of most individuals and

businesses.

16. The summer solstice (the longest day of the year) is
around June 21, and the winter solstice (the shortest day)
is around December 22. (Exchange the dates for the

southern hemisphere.)

Hours of
daylight

| June 21 Dec.22 ¢

18. The value of the car decreases fairly rapidly initially, then
somewhat less rapidly.

value

0 5 10 15 20 ¢
(in years)

20. The temperature of the pie would increase rapidly, level
off to oven temperature, decrease rapidly, and then level

off to room temperature.

T

22. (a) (1)
400

17. Of course, this graph depends strongly on the
geographical location!
T

-

midnight noon

19. As the price increases, the amount sold

decreases. amount

0 price

21. Height
of grass

Wed.  Wed. Wed. Wed. Wed. !

()

35,000
feet

30 60 1
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23.

24.

(d)

vertical
velocity

(b) From the graph, we estimate the number of US cell-phone

subscribers to be about 126 million in 2001 and 207 million
in 2005.

(b) From the graph in part (a), we estimate the temperature at

9:00 AM to be about 87 °F

O CHAPTER1 FUNCTIONS AND LIMITS
(C) ground
speed
500
miles
per hour
60 1
(@) N /
B e e e /
o |
100 // ; ;
50 r/ : :
1996 1998 2000 2002 2004 2006 1
(midyear)
T
a
@ o[
704 |
5 4 6 8 10 12 14
flz) =3z -z +2
f(2) =322 -2+2=12-2+2=12.
f(=2)=3(-2)> - (-2)+2=12+2+2=16.
fla) =3a* —a+2
f(=a) =3(—a)® — (—a) +2=3a>+a+2.
3
2f(a) =2 f(a) = 2(3a*> — a +2) = 6a® — 2a + 4.
f(2a) = 3(2a)® — (2a) + 2 = 3(4a®) — 2a + 2 = 12a*> — 2a + 2.
f(a®) =3(a*)? — (a®) +2 =3(a*) — a®> + 2 = 3a* — a® + 2.
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SECTION1.1 FOUR WAYS TO REPRESENT AFUNCTION O 13

[f(a)]? = [3a® —a+ 2}2 = (30> —a+2)(3a® —a+2)

=9a* — 3a® + 6a® — 3a® + a® — 2a + 6a® — 2a + 4 = 9a* — 6a® + 13a® — 4a + 4.
fla+h)=3(a+h)?—(a+h)+2=3*+2ah+h?)—a—h+2=3a>+6ah+3h> —a—h+2.
A spherical balloon with radius r -+ 1 has volume V (r + 1) = 4x(r + 1)* = $7(r® + 3r® + 3r + 1). We wish to find the
amount of air needed to inflate the balloon from a radius of » to » + 1. Hence, we need to find the difference
V(r4+1)=V(r)=37(r® +3r* + 3r +1) — 37 = 37(3r° + 3r + 1).
fz)=4+3c 2250 f(3+h)=4+3B8+h)—B+h)?>=4+9+3h— (9+6h+h?) =4—3h—h?

g BN I _ (=3h W) =4 BB _

h h
flx) =2 50 f(a+ h) = (a + h)® = a® + 3a*h + 3ah® + 13,

_ 3 2 2, 13y _ 3 2 2
and flat+h)—f(a) _ (a”+3a"h+3ah” +h°) —a” _ h(3a +3ah+h):3a2+3ah+h2.

h h h

1 1 a—x
J@)-f@) I a_ 58 _ _a-z _-la-a)_ 1
T —a T —a z—a za(lr—a) za(z—a) azx

r+3 9 r+3—-2x+1)

f@)—fQ)  z+1 " z+1 _rx+3—-2x—2
x—1 Tooz—-1 z—1 T+ D(z—-1)
—z+1 —(x—1) 1

T+ )(z-1) (@+D)@@-1) z+1
f(z) = (z +4)/(2* — 9) is defined for all 2 exceptwhen0 =2> -9 < 0= (z+3)(x—3) < = —3o0r3,sothe
domainis {z € R | x # —3,3} = (—00, —3) U (—3,3) U (3, 00).
f(z) = (22® — 5)/(2® + = — 6) is defined for all z exceptwhen 0 = 2* + -6 < 0= (z+3)(xr—2) <«
x = —3o0r2,s0thedomainis {x € R |z # —3,2} = (—o0, —3) U (—3,2) U (2,00).
f(t) = /2t — 1 is defined for all real numbers. In fact {/p(t), where p(¢) is a polynomial, is defined for all real numbers.
Thus, the domain is R, or (—o0, c0).
g(t) =3 —t—+2+tisdefinedwhen3 —¢t >0 <& t<3and2+t>0 <« ¢> —2. Thus, the domain is

—2<t<30r[-23]

h(z) =1 /v/2% — 5z is defined when 2° — 52 > 0 < x(z —5) > 0. Note that 2° — 5z # 0 since that would result in
division by zero. The expression x(z — 5) is positive if z < 0 or z > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (—oo, 0) U (5, 00).

f(u):U—Jriisdeﬁnedwhenu+1;éo[u;é—l]andH—L;AO.Since1+L:O
1+ u—+1 u—+1
u—+1
11:71 = 1= —u—1 = w=—2 thedomainis{u|u+—2u#—1} = (=00, —2)U(=2,—1)U(~1,00).
u
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14 [ CHAPTER1 FUNCTIONS AND LIMITS

37. F(p) = /2 — \/pisdefinedwhenp >0and2 - ,/p > 0. Since2-,/p>0 = 2>.p = /p<2 =
0 < p < 4, the domain is [0, 4].

38 h(z)=vV4d—a2. Nowy=+v4—-22 = y’=4—2> & 224+9y*>=4,% Y
2
the graph is the top half of a circle of radius 2 with center at the origin. The domain
5
1

is{z|4—2®>0} ={z|4>2"} ={z|2> |z} =[-2,2]. From the graph, Ee—

the range is 0 < y < 2, or [0, 2].

39. f(z) = 2 — 0.4z is defined for all real numbers, so the domain is R, Y
2
or (—oo, 00). The graph of f is a line with slope —0.4 and y-intercept 2.

2 X
'\x

0

40. F(z) = 2® — 22+ 1 = (z — 1) is defined for all real numbers, so the y

domain is R, or (—oo, 00). The graph of F is a parabola with vertex (1,0).

X

41, f(t) =2t + t? is defined for all real numbers, so the domain is R, or Y
(—o00, 00). The graph of f is a parabola opening upward since the
coefficient of ¢2 is positive. To find the ¢-intercepts, let y = 0 and solve

fort. 0=2t+t>=1t2+t) = t=0o0rt=—2. Thet-coordinate of

the vertex is halfway between the ¢-intercepts, that is, at ¢ = —1. Since

f(=1) =2(=1) + (-1)> = =2+ 1 = —1, the vertex is (—1, —1).

f— 2 p—
2. H(t) = 42 _tt = (2 +2t)_(2t D ,sofort # 2, H(t) =2+ t. The domain Y

2,4
is {t | t # 2}. So the graph of H is the same as the graph of the function @9

2
f(t) =t + 2 (aline) except for the hole at (2, 4). /

43. g(x) = v/« — 5 is defined when 2 — 5 > 0 or « > 5, so the domain is [5, c0). Y

Sincey=vr—5 = y’=z-5 = x=y>+5, weseethatgisthe /
top half of a parabola. 0 5 X
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2z +1
4. F(z) =2z + 1| = e+1)

20+ 1
|l -22-1
The domain is R, or (—oo, 00).

45@@:ﬁ%ﬁlmwm={

3z +x
G(x) = v

3r—x

if >0

ifz<0

xT

if 2c+1>0
if 2r+1<1

ifxzf%

if o< —1

N

ifz>0
] , we have
if <0

€T .

— if 0

o xT > _{4
2 Gtp<o 2
xT

SECTION 1.1

if x>0
if <0

Note that G is not defined for = 0. The domain is (—oo, 0) U (0, c0).

Tr—

—Tr —X

46. g<m>—|x—m—{

The domain is R, or (—oo, 00).

4. f(2) z+2 ifz<O
. X)) =
1—2z ifz>0
The domain is R.
% f(2) 3—%1‘ if £ <2
. Xr) =
20 —5 if x> 2
The domain is R.
Fa) r+2 ifx<-1
49, f(x) =
22 if o> -1

ifz>0 0
ifz<0 | -2z

if x>0
if 2<0°

Note that for = = —1, both = + 2 and = are equal to 1. The domain is R.

FOUR WAYS TO REPRESENT A FUNCTION

=)
=N
=

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

O

15



16

50.

51

52.

53.

54.

55.

56.

Ll CHAPTER1 FUNCTIONS AND LIMITS

z+9 if z<-3

fl@)y=<¢ —2z if |z|<3 y
B (—3,6)
-6 if >3
Note that for 2 = —3, both 2 4 9 and —2x are equal to 6; and for = = 3, both —2x /_9 0 >
and —6 are equal to —6. The domain is R.
(3,-6)
Recall that the slope m of a line between the two points (z1,y1) and (z2,y2) ism = Y2 "Y1 and an equation of the line
T2 —I1

connecting those two points is y — y1 = m(z — x1). The slope of the line segment joining the points (1, —3) and (5, 7) is

75%(_13) = g so an equation is y — (—3) = 2(z — 1). The function is f(z) = o — 4,1 <z <5.
. I . . —10—-10 5 L
The slope of the line segment joining the points (—5, 10) and (7, —10) is T—(5) =3 SO an equation is

y — 10 = —2[z — (=5)]. The functionis f(z) = =22 + 3, -5 <z < 7.

We need to solve the given equation fory. =+ (y—1)°=0 & (y—-1>=-2z & y—-1l=+/—z &
y = 1 + +/—z. The expression with the positive radical represents the top half of the parabola, and the one with the negative

radical represents the bottom half. Hence, we want f(z) = 1 — v/—z. Note that the domain is < 0.

P+ y—2°%=4 & (y—-20P%=4-2> & y—-2=%V4—22 & y=2%+4— 22 Thetop half is given by
the function f(z) =2+ V4 — 22, -2 <z < 2.
For 0 < z < 3, the graph is the line with slope —1 and y-intercept 3, that is, y = —x + 3. For 3 < & < 5, the graph is the line
with slope 2 passing through (3, 0); that is, y — 0 = 2(z — 3), or y = 2z — 6. So the function is

—xz+3 if0<zxz<3

flx) = )

20 —6 if3<z<5
For —4 < x < —2, the graph is the line with slope —2 passing through (—2,0); thatis, y — 0 = —3[z — (—2)], or
y = —32x— 3. For —2 < & < 2, the graph is the top half of the circle with center (0, 0) and radius 2. An equation of the circle
is z2 + y? = 4, so an equation of the top half is y = /4 — 22. For 2 < z < 4, the graph is the line with slope % passing
through (2, 0); thatis, y — 0 = 3 (x — 2), or y = 3 — 3. So the function is

—3z-3 if -4<z<-2
flz)=qV4—2? if 2<z<2

3z-3 if 2<z<4
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SECTION 1.1  FOUR WAYS TO REPRESENT AFUNCTION [0 17

Let the length and width of the rectangle be L and WW. Then the perimeter is 2L + 21/ = 20 and the areais A = LW.
20 — 2L

Solving the first equation for W in terms of L gives W = = 10— L. Thus, A(L) = L(10 — L) = 10L — L?. Since

lengths are positive, the domain of A is0 < L < 10. If we further restrict L to be larger than W, then 5 < L < 10 would be
the domain.

Let the length and width of the rectangle be L and W. Then the area is LW = 16, so that W = 16/ L. The perimeter is

P =2L+2W,so P(L) =2L+ 2(16/L) = 2L + 32/L, and the domain of P is L > 0, since lengths must be positive

quantities. If we further restrict L to be larger than 1/, then L > 4 would be the domain.

Let the length of a side of the equilateral triangle be . Then by the Pythagorean Theorem, the height y of the triangle satisfies

y? + (%I)Q =z% sothaty® = 2> — 22° = 322 and y = @m Using the formula for the area A of a triangle,

A = $(base)(height), we obtain A(z) = 1 () (@x) = %xz, with domain z > 0.

1
2
Let the volume of the cube be V" and the length of an edge be L. Then V = L® so L = {/V, and the surface area is

2
S(V)=6L*= 6(\3/7) = 6V?/3, with domain V > 0.

Let each side of the base of the box have length x, and let the height of the box be h. Since the volume is 2, we know that
2 = ha?, so that h = 2/2?, and the surface area is S = z? + 4xh. Thus, S(z) = 2® + 42(2/2°) = 2* + (8/x), with
domain z > 0.

2
The area of the window is A = zh + %W(%x)z =xzh+ % where h is the height of the rectangular portion of the window.

The perimeter is P = 2h + 2+ in2 =30 < 2n=30—2— imz & h = 1(60— 2z — 7z). Thus,
— 2z — ? 4
A(gg):xW-k%:15;18—%302—%352—&—%382:15x—%x2—%x2:15x—x2(ﬂ_8‘_ )

Since the lengths = and A must be positive quantities, we have x > 0and A > 0. For h > 0, we have 2h > 0 <

60
247

307:1:f%7rm>0 & 60 >2r+7mr & m<%.Hence,thedomainofAisO<m<
s

The height of the box is = and the length and width are L = 20 — 2z, W = 12 — 2x. Then V' = LWz and so
V(z) = (20 — 22)(12 — 2z)(x) = 4(10 — 2)(6 — z)(z) = 42(60 — 162 + 2?) = 42 — 6422 + 240z.
The sides L, W, and = must be positive. Thus, L >0 < 20—-2x >0 < z<10;

W>0 & 12—2x>0 < x<6;andx > 0. Combining these restrictions gives us the domain 0 < x < 6.

We can summarize the monthly cost with a piecewise ¢

defined function. 557 _—
351

35 if 0 <ax <400
C(z) = .
35 4 0.10(z — 400)  if & > 400

0 400 600 X
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65.

66.

67.

68.

69.

70.

Ll CHAPTER1 FUNCTIONS AND LIMITS

We can summarize the amount of the fine with a
piecewise defined function.

15(40 — z) if 0 <z < 40
F(z)=<10 if 40 <z <65
15(z —65) if = > 65

For the first 1200 kWh, E(x) = 10 + 0.06z. Ej Cost ($)
138 1
For usage over 1200 kWh, the cost is
E(x) = 10 + 0.06(1200) 4 0.07(z — 1200) = 82 4 0.07(z — 1200).
Thus, 821 (1200, 82)
( 10 + 0.06x if 0 <z <1200
82+ 0.07(x — 1200) if = > 1200
101
0 1200 2000 x
(KWh)
@ R%) (b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.
154 o On $26,000, tax is assessed on $16,000, and
10t S 10%($10,000) + 15%($6000) = $1000 + $900 = $1900.
0l 10000 20000 1 (in dollars)
(c) As in part (b), there is $1000 tax assessed on $20,000 of income, so T (in dollars)
the graph of 7" is a line segment from (10,000, 0) to (20,000, 1000). 25004

The tax on $30,000 is $2500, so the graph of 7" for x > 20,000 is

the ray with initial point (20,000, 1000) that passes through

(30,000, 2500).

One example is the amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour.

600+ (100, 525)

0 40 65 100 *

1000 T

0] 10,000 20,000 30,000 I (in dollars)

Another example is the amount paid by a student in tuition fees, if the fees vary according to the number of credits for which

the student has registered.

f is an odd function because its graph is symmetric about the origin. g is an even function because its graph is symmetric with

respect to the y-axis.

f is not an even function since it is not symmetric with respect to the y-axis. f is not an odd function since it is not symmetric

about the origin. Hence, f is neither even nor odd. g is an even function because its graph is symmetric with respect to the

y-axis.
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SECTION 1.1  FOUR WAYS TO REPRESENT AFUNCTION [0 19

71. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,

the point (—5, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (—5, —3) must also be on its graph.

72. (a) If f is even, we get the rest of the graph by reflecting

about the y-axis.

—T —T T

fl=w) = = = =~/ ().

(—2)2+1 22+1  a22+1

So f is an odd function.

]

JZ
-z x
—z+1 z-—1

x
z+1’

7. f(x) = s0 f(—z) =

Since this is neither f(x) nor — f(x), the function f is

neither even nor odd.

(b) If fis odd, we get the rest of the graph by rotating
180° about the origin.

0
74, f(z) = if—ﬂ
I ) S S
f(—.l’)— (—I)4+1 _1'4+1 —f(.l’)

So f is an even function.

2{ t t JZ
76. f(z) = z |z|.

f(=2) = () |=a| = (~2) o] = —( a])
— /@)

So f is an odd function.

|
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20 [ CHAPTER1 FUNCTIONS AND LIMITS

77. f(z) = 14 32% — z*. 78. f(x) = 1+ 32® — 5, s0
f(=2) = 143(-2)* —(—2)" = 14+32° —2* = f(2). f(=2) =14 3(—2)* — (—2)° = 1 + 3(—2®) — (—2°)

So f is an even function. —1-3% 4 2°

Since this is neither f(x) nor — f(x), the function f is

/\/\ neither even nor odd.
-2 V } ! V 2 >
- /\
iy , \Jz

o

79. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(f +9)(—=x) = f(=z) + g(—z) = f(z) + g(x) = (f + g)(x), 50 f + g is an even function.
(ii) If f and g are both odd functions, then f(—z) = —f(z) and g(—z) = —g(z). Now
(f+9)(=z) = f(=2) + g(=2) = = f(z) + [-9(2)] = =[f(2) + g(2)] = =(f + 9)(x), s0 f + g is an odd function.
(i) If f is an even function and g is an odd function, then (f + g)(—z) = f(—z) + g(—z) = f(z) +[—g(z)] = f(z) — g(z),
which is not (f + g)(z) nor —(f + g)(z), so f + g is neither even nor odd. (Exception: if f is the zero function, then
f + g will be odd. If g is the zero function, then f + g will be even.)
80. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(F9)(=z) = f(=2)9(=z) = f(x)g(z) = (fg)(x), S0 fg is an even function.
(ii) If f and g are both odd functions, then f(—z) = —f(x) and g(—z) = —g(z). Now
(f9) (=) = f(=x)g(—x) = [-f(2)][-9(2)] = f(z)g(x) = (fg)(x), s0 fg is an even function.
(iii) If f is an even function and g is an odd function, then

(f9)(=z) = f(=2)g(—2) = f()[-g(x)] = —[f(z)g(x)] = =(fg)(x), s0 fg is an odd function.

1.2 Mathematical Models: A Catalog of Essential Functions

1. (@) f(x) = log, x is a logarithmic function.

(b) g(z) = x isaroot function with n = 4.

3

T is a rational function because it is a ratio of polynomials.
— X

(©) h(z) =
(d) u(t) = 1 — 1.1t + 2.54¢? is a polynomial of degree 2 (also called a quadratic function).
(e) v(t) = 5" is an exponential function.

(f) w(#) = sin @ cos> is a trigonometric function.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS [0 21

. (a) y = «® is an exponential function (notice that x is the exponent).
(b) y = =™ is a power function (notice that « is the base).

(©) y = 2*(2 — 2®) = 22® — z° is a polynomial of degree 5.

(d) y = tant — cost is a trigonometric function.

(e) y = s/(1 + s) is a rational function because it is a ratio of polynomials.
(f) y = v23 — 1/(1 + /=) is an algebraic function because it involves polynomials and roots of polynomials.

. We notice from the figure that g and h are even functions (Ssymmetric with respect to the y-axis) and that f is an odd function
(symmetric with respect to the origin). So (b) [y = x5] must be f. Since g is flatter than A near the origin, we must have

(©) [y = 2®] matched with g and (a) [y = z*] matched with h.

. (a) The graph of y = 3z is a line (choice G).

(b) y = 3% is an exponential function (choice f).

(c) y = z* is an odd polynomial function or power function (choice F).

(d) y = ¥z = x*/3 is aroot function (choice g).

. (&) An equation for the family of linear functions with slope 2 Y b=-1

isy = f(x) = 2z + b, where b is the y-intercept.

(b) £(2) = 1 means that the point (2, 1) is on the graph of f. We can use the
point-slope form of a line to obtain an equation for the family of linear

functions through the point (2,1). y — 1 = m(xz — 2), which is equivalent

to y = max + (1 — 2m) in slope-intercept form.

/
/ y—1=mkx—2)

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = mx + (1 — 2m),

becomes y = 2z — 3. It is the only function that belongs to both families.

. All members of the family of linear functions f(z) = 1 + m(z + 3) have

graphs that are lines passing through the point (—3, 1). V/
m=z

AN
7N :
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7. All members of the family of linear functions f(z) = ¢ — « have graphs y
that are lines with slope —1. The y-intercept is c. |
c=—
SENNIN
0 x
N
c=
c=0
8. The vertex of the parabola on the left is (3, 0), so an equation is y = a(x — 3)* + 0. Since the point (4, 2) is on the
parabola, we’ll substitute 4 for z and 2 for y to find a. 2 =a(4 —3)> = a = 2,s0an equation is f(z) = 2(x — 3)%.
The y-intercept of the parabola on the right is (0, 1), so an equation is y = az® + ba + 1. Since the points (—2, 2) and
(1,—2.5) are on the parabola, we’ll substitute —2 for = and 2 for y as well as 1 for « and —2.5 for y to obtain two equations
with the unknowns a and b.
(-2,2): 2=4a—-2b+1 = 4a—-2b=1 (1)
(1,-2.5) —25=a+b+1 = a+b=-35 (2
2-(2) + (1) givesus6a = —6 = a=-—1.From(2), —-1+b=—-3.5 = b= —2.5,50an equation
isg(z) = —2® — 2.50 + 1.
9. Since f(—1) = f(0) = f(2) =0, f has zeros of —1, 0, and 2, so an equation for f is f(z) = alz — (—1)](z — 0)(x — 2),
or f(z) = axz(x + 1)(x — 2). Because f(1) = 6, we’ll substitute 1 for z and 6 for f(z).
6=a(1)(2)(-1) = —-2a=6 = a=—3,s0anequationfor fis f(z) =—3z(z+ 1)(z — 2).
10. (a) For T' = 0.02t + 8.50, the slope is 0.02, which means that the average surface temperature of the world is increasing at a
rate of 0.02 °C per year. The T-intercept is 8.50, which represents the average surface temperature in °C in the year 1900.
(b) t = 2100 — 1900 = 200 = T = 0.02(200) + 8.50 = 12.50°C
11. (8) D =200, 50 ¢ = 0.0417D(a + 1) = 0.0417(200)(a + 1) = 8.34a + 8.34. The slope is 8.34, which represents the
change in mg of the dosage for a child for each change of 1 year in age.
(b) For a newborn, a = 0, so ¢ = 8.34 mg.
12. (a) y (b) The slope of —4 means that for each increase of 1 dollar for a
2001

rental space, the number of spaces rented decreases by 4. The

y-intercept of 200 is the number of spaces that would be occupied

100+ . . .
if there were no charge for each space. The z-intercept of 50 is the

smallest rental fee that results in no spaces rented.

0] 10 20 30 40 50 60 *
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13. (a) F (b) The slope of % means that F' increases % degrees for each increase
e of 1°C. (Equivalently, F" increases by 9 when C' increases by 5
F=3C+32 and I decreases by 9 when C decreases by 5.) The F-intercept of
2 32 is the Fahrenheit temperature corresponding to a Celsius
(40,~40) ¢ temperature of 0.
14. (a) Let d = distance traveled (in miles) and ¢ = time elapsed (in hours). At by 4
t=0,d=0andatt = 50minutes = 50 - & = 2 h, d = 40. Thus we %
have two points: (0,0) and (3,40), so m = 4§0 —0_ 4gandsod — 48,
6

(c) The slope is 48 and represents the car’s speed in mi/h.

Ts — T} — 1 1 i
21 80— 70 0 _ 1 soatinear

15. (a) Using NV in place of = and T in place of y, we find the slope to be = = —
(8) Using NVin p v P y P No— N, 173-113 60 6

equationis7 —80 = g(N —173) & T—-80=3iN -8 & T=1N+4+3¢ [3 —5116].

(b) The slope of é means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket

chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1°F.

(c) When N = 150, the temperature is given approximately by 7" = £(150) + 2 = 76.16 °F ~ 76 °F.

16. (a) Let x denote the number of chairs produced in one day and y the associated "
cost. Using the points (100, 2200) and (300, 4800), we get the slope 50001
48002200 — 2000 — 13. So y — 2200 = 13(z — 100) < jzzz
y = 13z + 900. 20001
(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars) 10005:

of producing each additional chair. o 100 200 300 *

(c) The y-intercept is 900 and it represents the fixed daily costs of operating

the factory.

17. (a) We are given T OCfZ aer’:g(’:i;rr]]g;?:;)th = % = 0.434. Using P for pressure and d for depth with the point

(d, P) = (0, 15), we have the slope-intercept form of the line, P = 0.434d + 15.

en = , then = U. -+ = . = = = — & . eet. us, the pressure Is
b) When P = 100, then 100 = 0.434d + 15 0.434d = 85 d 85 195.85 feet. Thus, the p i

0.434

100 Ib/in? at a depth of approximately 196 feet.

. . . Co—C1 460 — 380 80 1
18. U dinpl f d | f find the slope to b = =— ="
(a) Using d in place of z and C' in place of y, we find the slope to be pA— 800 480 — 320 — 1

So a linear equation is C' — 460 = ; (d —800) <« C —460=3d—200 < C = 3d+ 260.
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(b) Letting d = 1500 we get C = % (1500) + 260 = 635. () "

The cost of driving 1500 miles is $635. 10007

500
(d) The y-intercept represents the fixed cost, $260. /

0 500 1000 *

The slope of the line represents the cost per
mile, $0.25.
(e) A linear function gives a suitable model in this situation because you have fixed monthly costs such as insurance and car
payments, as well as costs that increase as you drive, such as gasoline, oil, and tires, and the cost of these for each

additional mile driven is a constant.

19. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

f(z) = acos(bx) + ¢ seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form f(z) = max + b seems appropriate.

20. (a) The data appear to be increasing exponentially. A model of the form f(z) = a - b” or f(z) = a - b” 4 ¢ Seems appropriate.

(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of the form f(z) = a/x seems

appropriate.

Exercises 21— 24: Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is left
to the reader.

21 (@) 5 (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain
8.2 —14.1
60,000 — 4000
y ~ —0.000105357x + 14.521429.

y—14.1= (z — 4000) or, equivalently,

15

0 . ) . ) . 61,000

A linear model does seem appropriate.

0 . . . . . 61,000

(c) Using a computing device, we obtain the least squares regression line y = —0.00009978552 + 13.950764.
The following commands and screens illustrate how to find the least squares regression line on a T1-84 Plus.

Enter the data into list one (L1) and list two (L2). Press |STAT||1] to enter the editor.

L] Lz L2 1 Li Lz L: z
yooo (444 | oo igoon [ 128
gion |1z igoon |1z
Biog 1%y Eogon | 12y
izoon [1EE Zogon | 10E
ieoon |1z BEQon | By
Eooon [ 1Ey B
Bow (fee | || Slll
L ={48006. cA0H. 3. L1l =
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Find the regession line and store it in Y1. Press [2nd][QUIT][STAT] [»] [4] [VARS] ] [ENTER].

LinEeglax+bs Y10 LinkEeg A Flokz Flok:
ax+hb ~HM1E-9. 978545618
a2=-9, 978545 -5 FE9IE-SE+13, 9587
3.9587E4AS 63@??@85
W=
wMr=
My=
[ | sMe=

Note from the last figure that the regression line has been stored in Y; and that Plot1 has been turned on (Plotl is

highlighted). You can turn on Plot1 from the Y= menu by placing the cursor on Plotl and pressing ENTER| or by

pressing [2nd][STAT PLOT|[1][ENTER] .

Flokz  Floks
B
aFed B8 = dhy

HH- HIH [T
alistilq
Ylistilez

Mark:s B +

Now press ZOOM][9] to produce a graph of the data and the regression

line. Note that choice 9 of the ZOOM menu automatically selects a window

that displays all of the data.

(d) When x = 25,000, y ~ 11.456; or about 11.5 per 100 population.
() When z = 80,000, y ~ 5.968; or about a 6% chance.

(fF) When = = 200,000, ¥ is negative, so the model does not apply.

22. (a) 230 (chirps/min)

as . JoseR
0

(c) When 2z = 100°F, y = 264.7 ~ 265 chirps/min.

23. (a) A linear model seems appropriate over the time interval

considered.

(b) 270 (chirps/min)

45

- 105 (°F)
0
Using a computing device, we obtain the least squares

regression line y = 4.856x — 220.96.

height (m)
6.0 4 1cight(

.

45 $e
/ i
L
4.0 s
.
3.5

/{1900 1920 1940 1960 1980 2000 year
1896
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(b) Using a computing device, we obtain the regression line y ~ 0.0265x — 46.8759. It is plotted in the graph in part (a).

(c) For x = 2008, the linear model predicts a winning height of 6.27 m, considerably higher than the actual winning height
of 5.96 m.

(d) It is not reasonable to use the model to predict the winning height at the 2100 Olympics since 2100 is too far from the
1896-2004 range on which the model is based.

24. By looking at the scatter plot of the data, we rule out 35 %)

the power and logarithmic models.

We try various models: 19505 2005 (year)

Scatter plot

Linear y = —0.430 545 454 5 + 870.183 636 4

Quadratic: y = 0.004893 939 42> — 19.786 075 762 + 20 006.954 85

Cubic: y = —0.000073193 472> + 0.439 114 219 12* — 878.429 871 8z + 585 960.983

Quartic: y = 0.000007 902 097 9z* — 0.062 578 787 92° + 185.842 283 82 — 245290.9304z + 121409 472.7

Exponential:  y = 2.6182302 x 10*(0.976 789 309 4)"

35 (%) 35 (%) 35 (%)

19500 2005 (year) 1950 0 2005 (year) 19500 2005 (year)
Linear model Quadratic model Cubic model
35 (%) 35 (%)
19500 2005 (year) I9500 2005 (year)
Quartic model Exponential model

After examining the graphs of these models, we see that all the models are good and the quartic model is the best.
Using this model, we obtain estimates 13.6% and 10.2% for the rural percentages in 1988 and 2002 respectively.

25. If zz is the original distance from the source, then the illumination is f(z) = kx 2 = k/22. Moving halfway to the lamp gives
us an illumination of f(1z) = k(4z) ™ = k(2/x)? = 4(k/«?), so the light is 4 times as bright.

26. (a) If A = 60, then S = 0.7A4°3 =~ 2.39, so you would expect to find 2 species of bats in that cave.

(b)S=4 = 4=07A4" = D =4310 = A= (4—70)10/3 ~ 333.6, so we estimate the surface area of the cave
to be 334 m?.

27. (a) Using a computing device, we obtain a power function N = c¢A®, where ¢ ~ 3.1046 and b = 0.308.
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(b) If A = 291, then N = cA® ~ 17.8, so you would expect to find 18 species of reptiles and amphibians on Dominica.

28. (a) T = 1.000431 2274 499528750

(b) The power model in part (a) is approximately 7" = d*-5. Squaring both sides gives us 72 = d?, so the model matches

Kepler’s Third Law, 72 = kd 3.

1.3 New Functions from Old Functions

27

1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f(x) + 3.
(b) If the graph of f is shifted 3 units downward, its equation becomes y = f(x) — 3.
(c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(z — 3).
(d) If the graph of f is shifted 3 units to the left, its equation becomes y = f(x + 3).
(e) If the graph of f is reflected about the z-axis, its equation becomes y = — f(x).
() If the graph of f is reflected about the y-axis, its equation becomes y = f(—x).
(g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3f(z).
(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = % f(x).

2. (a) To obtain the graph of y = f(z) + 8 from the graph of y = f(x), shift the graph 8 units upward.
(b) To obtain the graph of y = f (= + 8) from the graph of y = f(x), shift the graph 8 units to the left.
(c) To obtain the graph of y = 8 f(x) from the graph of y = f(x), stretch the graph vertically by a factor of 8.
(d) To obtain the graph of y = f(8z) from the graph of y = f(x), shrink the graph horizontally by a factor of 8.

(e) To obtain the graph of y = — f(x) — 1 from the graph of y = f(x), first reflect the graph about the z-axis, and then shift it

1 unit downward.

(f) To obtain the graph of y = 8 f (£ ) from the graph of y = f(x), stretch the graph horizontally and vertically by a factor
of 8.

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y = f(xz — 4).

(b) (graph 1) The graph of f is shifted 3 units upward and has equation y = f(z) + 3.

(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = %f(x).

(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the z-axis. Its equationisy = — f(z + 4).

(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

y=2f(z +6).

4. (a) Tography = f(x) — 2, we shift the graph of f, 2 (b) To graph y = f(x — 2), we shift the graph of f,
units downward. The point (1, 2) on the graph of f 2 units to the right. The point (1, 2) on the graph of f
corresponds to the point (1,2 — 2) = (1, 0). corresponds to the point (1 + 2,2) = (3,2).

y y
il
0 A 2
0 3 x
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(c) To graph y = —2f(x), we reflect the graph about the
x-axis and stretch the graph vertically by a factor of 2.
The point (1, 2) on the graph of f corresponds to the
point (1, —2-2) = (1, —4).

y

1
0] 1

N/

5. (a) To graph y = f(2x) we shrink the graph of f
horizontally by a factor of 2.

=Y

The point (4, —1) on the graph of f corresponds to the
point (3 -4,-1) = (2,-1).

(c) To graph y = f(—=) we reflect the graph of f about
the y-axis.

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1) = (—4,-1).

(d) To graph y = f(3x) + 1, we stretch the graph
horizontally by a factor of 3 and shift it 1 unit upward.
The point (1, 2) on the graph of f corresponds to the
point (1-3,2+ 1) = (3,3).

y

(b) To graph yy = f(5x) we stretch the graph of f
horizontally by a factor of 2.

v
1

0 } 2 X

The point (4, —1) on the graph of f corresponds to the
point (2 -4, —1) = (8,—1).

(d) To graph y = — f(—=x) we reflect the graph of f about
the y-axis, then about the z-axis.

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1-—1) = (—4,1).

6. The graph of y = f(x) = v/3x — 2 has been shifted 2 units to the right and stretched vertically by a factor of 2.

Thus, a function describing the graph is

y=2f(z—2)=23(x—-2)—(z—-2)2=23c—-6— (22 —4do+4)=2V—22+ Tz — 10

7. The graph of y = f(z) = v/3x — 22 has been shifted 4 units to the left, reflected about the z-axis, and shifted downward

1 unit. Thus, a function describing the graph is

y= -1
N~
reflect

about z-axis

This function can be written as

[ (z+4) -1
—— ——
shift shift

4 units left 1 unit left

y=—flz+4)—1=—B@+4) —(z+4)2-1=—\Bx+12— (22 +82+16) —1=—/—22 -5z —4—1
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8. (a) The graph of y = 2 sin z can be obtained from the graph

of y = sin x by stretching it vertically by a factor of 2.

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

29

(b) The graph of y = 1 + /x can be obtained from
the graph of y = \/x by shifting it upward 1 unit.

y
2
_m 37
/\ 2 2
: ' : : ' 1,2)
- 0 E [ m 37 3 x 1
2 2
dLus O| x
y = —— Start with the graph of the reciprocal function y = 1 /2 and shift 2 units to the left.
y y==2 y
1
Y=3%2
&
0 X 0 X
10. y = (@ — 1)*: Start with the graph of y = 2® and shift 1 unit to the right.
y y
y=x°
0 X 0 /1 X
y=@—1

11. y = — /= Start with the graph of y = /z and reflect about the z-axis.

y

y=i

y=-

X

12 y=a>+62+4=(2°+6x+9) — 5= (z+ 3)% — 5: Start with the graph of y = =2, shift 3 units to the left, and then shift

5 units downward.

ylg y/
y=(x+3) /4
!3 0 X v 0 X
=5
y=(@x+3)?*-5
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13. y = /x — 2 — 1: Start with the graph of y = /z, shift 2 units to the right, and then shift 1 unit downward.

y y

2.-1)

14. y = 4sin 3z: Start with the graph of y = sin z, compress horizontally by a factor of 3, and then stretch vertically by a
factor of 4.

y=sinx Y y=sin3x 7 y=4sin3x 7

e anppiana L
o i i

15. y = sin(z/2): Start with the graph of y = sin « and stretch horizontally by a factor of 2.

—_
—_

=

y y
y=sinx y =sin(x/2)

16. y = % — 2: Start with the graph of y = é stretch vertically by a factor of 2, and then shift 2 units downward.

y y y

(1.2)

2
y=%"2
0 1\
0 X

(1, 1)

17. y = 3(1 — cos z): Start with the graph of y = cos x, reflect about the z-axis, shift 1 unit upward, and then shrink vertically by

a factor of 2.

y Y
1 y=cosx y=—cos x
0 ™ X 0 k X
-1
y ) Y
14+
T T
0 _ ‘ - 0 1 ‘ X
y=1—cosx y=5(1—cosx)
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18. y = 1 — 24/ + 3: Start with the graph of y = +/z, shift 3 units to the left, stretch vertically by a factor of 2, reflect about the

2-axis, and then shift 1 unit upward.

y y y
_ y=+yx+3 y=2yx+3
y=x S
/ / 21
1,,
0 X -3 :2 0 -3 ;2 0 X
y
1
|2
3& 4 X
y=1-— 2Jx+3

19 y=1-20—a2%=—(2* +22) + 1= —(2® + 22+ 1) + 2 = —(z + 1)* + 2: Start with the graph of y = =2, reflect about

the z-axis, shift 1 unit to the left, and then shift 2 units upward.

Y y

y=—(r+12+2

20. y = |z| — 2: Start with the graph of y = |z| and shift 2 units downward.

v
y=Ix|

21. y = |x — 2|: Start with the graph of y = |z| and shift 2 units to the right.

y

y=lal :

0 i x 0

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



32 [ CHAPTER1 FUNCTIONS AND LIMITS

2. y= % tan(z — £): Start with the graph of y = tan =, shift £ units to the right, and then compress vertically by a factor of 4.

y=tan x y=tan(x—774r) y=%tan(x—%’)

/ )
0 X 0 X (0( X

(=T =2F 17
X 3 =7 x=7

,«
|
|
Iy
=
|
w1y
.
i
=
|
|
ISN)
-
i
|
“
|
N

23. y = |\/x — 1]: Start with the graph of y = /z, shift it 1 unit downward, and then reflect the portion of the graph below the
x-axis about the z-axis.

y y y

y=vx

24. y = |cos z|: Start with the graph of y = cos z, shrink it horizontally by a factor of 7, and reflect all the parts of the graph
below the z-axis about the z-axis.

y

(| y=cosx

0 pa X

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30°N curve in Figure 9 on June 21) is
14 — 12 = 2. So the function is L(t) = 12 + 2sin[ 2 (¢ — 80)]. March 31 is the 90th day of the year, so the model gives
L(90) ~ 12.34 h. The daylight time (5:51 AM to 6:18 PMm) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 12431234 ~ 0.009, less than 1%.

26. Using a sine function to model the brightness of Delta Cephei as a function of time, we take its period to be 5.4 days, its
amplitude to be 0.35 (on the scale of magnitude), and its average magnitude to be 4.0. If we take ¢ = 0 at a time of average
brightness, then the magnitude (brightness) as a function of time ¢ in days can be modeled by the formula
M(t) = 4.0 4 0.35sin (25 1).

27. (a) To obtain y = f(]z|), the portion of the graph of y = f(z) to the right of the y-axis is reflected about the y-axis.

(b) y = sin || © y=+ll

y = sin |x|
\ /,

~

0 | X

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



28. The most important features of the given graph are the x-intercepts and the maximum y

29.

30.

3L

32.

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

and minimum points. The graph of y = 1/ f(z) has vertical asymptotes at the z-values

where there are z-intercepts on the graph of y = f(«). The maximum of 1 on the graph x

of y = f(x) corresponds to a minimum of 1/1 = 1 ony = 1/f(z). Similarly, the

minimum on the graph of y = f(x) corresponds to a maximum on the graph of y
y = 1/f(x). As the values of y get large (positively or negatively) on the graph of K] k

y = f(z), the values of y get close to zero on the graph of y = 1/ f(x). \ x
f(z) =a®+ 227 g(z) =32> — 1. D =Rforboth f and g.

@ (f +9)(x) = (2 + 227) + (32> — 1) =2® + 52> = 1, D =R.

) (f —g)(x) = (2° + 22®) — (32® = 1) =2® —2® +1, D=R.

© (f9)(z) = («® + 22*)(32” — 1) = 32" + 62* —2® — 22, D=R.
L@y = 2022 FR U
(d)(g)(:r)* 321 —{xI:E;ré \/_}smceii:p 140.

flz)=v3—z, D=(—00,3]; g(z)=+vz2—-1, D= (—00,—1]U][1,00).
@ (f+9)(z)=+v3—z+ V2?2 —1, D= (—o0,—1] UL, 3], which is the intersection of the domains of f and g.
() (f —9)(@) = VE— 7 —VaZ —1, D= (~o0,~1]U[L,3].

© (f9)(x) =v3—xz- Va2 —1, D= (—oo,—1]U[L,3].

33

(d) (i> (z) == S v , D = (—o00,—1) U (1,3]. We must exclude = = +1 since these values would make ! undefined.
g g

2 —1

flz)y=2?-1, D=R; g(z)=2z+1, D=R.
@ (fog)(x)=flgx) =fRr+1)=QRe+1)>—1=(4z® + 4z +1) —1=42> + 4z, D =R.

(0) (g0 f)(@) = g(f(x))

© (fof)z)=f(f(x)) = f(a® - 1) = (2* - 1) 1= (2" = 22" +1) -1 =2" - 2%, D=R.

gz —1) =2 -1)+1=22>-2)+1=22> -1, D=R.

d) (gog)(z)=9g(g(z)) =gz +1)=2Q2z+1)+1=4x+2)+1=42+3, D=R.

fx) =2 —2; g(x) =2®> + 3z +4. D = Rforboth f and g, and hence for their composites.
@ (fo )() flg(x)) = f(@® + 32 4+4) = (2* + 32 +4) -2 =2+ 32 + 2.

(0) (g0 f)(x) = g(f(x))
© (feN@)=ff)=flz-2)=(@-2)-2=2—-4

gx—2)=(x—22+3@x—-2)+4=a2—4dr+4+3x—6+4=2" -z +2

@ (g0 9)(z) = 9(9(z)) = g(z* + 3z +4) = (2* + 3z +4)* +3(a® + 3z +4) +4

(z* 492 + 16 + 62° + 822 4 24x) + 32> + 9z + 12+ 4

2t + 62° 4 2022 + 33z + 32
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33. f(z) =1-3x; g(x) =cosz. D =R forboth f and g, and hence for their composites.
@) (fog)(z) = f(g9(x)) = f(cosz) =1 — 3cosz.
(0) (go f)(x) =g(f(z)) = g(1 — 3z) = cos(1 — 3x).
© (foNx)=f(f(zx)=f1-32)=1-3(1—-3z)=1—3+92 =9z — 2.
(d) (gog)(z) =g(g(z)) = g(cosz) = cos(cosz) [Note that this is not cos = - cos z.]
3. f(z) =/, D=[0,00); g(z)=+Y1—=x, D=R.
@ (fog)(z)=flg(x)=f(V1-2)=VV1-z=V1—-u
Thedomainof fogis{z | V1 —2>0}={z|1—2 >0} ={z |z <1} = (—o0,1].
(0) (g0 N)(x) = 9(f(2)) = 9(Vz) = V1 - V.
The domain of g o f is {z | = is in the domain of f and f(z) is in the domain of g}. This is the domain of f,

that is, [0, c0).
© (fo Nx) = f(f(x)) = (V&) = V& = /. The domain of f o fis {x | > 0and \/z > 0} = [0, 00).

(d) (gog)(z) =glg(z)) = g(VT—z) = ¥/1 — Y1 — z, and the domain is (—oo, c0).
x+1
ot D={x]|x# -2}

z+1) xz+1 1 z+1  x+42
x+2) 42 +1 7 42 x+4+1
T+ 2

35. f(x)zx—&-%, D={z|z#0} g(z)=

@ (f o 9)(@) = f(g()) = f(

+D)@E+1)+@+2)(+2) (@P+22+1)+ (@°+42+4) 222 +62+5

(z+2)(z +1) - (z+2)(z+1) CEPICES))

Since g(x) is not defined for x = —2 and f(g(z)) is not defined for x = —2 and z = —1,
the domain of (f o g)(z) is D = {z | z # —2,—1}.

(x—&—l)—é—l 224+ 1+z
T

. B B l _ . z _:1:2+:1:+1_x2+x+1
(b) (g f)(x)_g(f(x))_g(x_'_m)_<x+l>+2_$2+1+2x_$2+2m+1_ (z+1)
€T €T

Since f(x) is not defined for z = 0 and g(f(z)) is not defined for x = —1,

the domain of (g o f)(z)is D = {z | x # —1,0}.

@ Gon@ =@ =1(s+1) = (e+3) + T =+ 1+ mr —o+ 3+ 7o
Cz@) (@ + 1)+ 12+ 1) +a@) 24 a4 14a?
o z(x? +1) N z(x? +1)

4 2
_x+37+1 _
T ox(@2+1) D ={z|xz#0}
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37.

38.

39.

40.

41.

42.

43.

44,

45.
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m+1+1 z+1+1(z+2)

. o (x+1\ 42 _ T+ 2 o x+l+x+2  2x+3
@ (gog)(m)_g(g(m))_g<x+2> TaAl T wFl+2@+2) a+lt2e+4 3345
42 T+ 2

Since g(x) is not defined for z = —2 and g(g(x)) is not defined for z = —5,

the domain of (g o g)(z) is D = {z | z # _27_2}.

f(z) = 111‘ D={z|z#—1}; g(z)=sin2z, D=R.
@) (f 0 9)(x) = F(g(x)) = f(sin2) = - j‘;jf%

Domain: 1 +sin2z #0 = sin2z # -1 = 2;37&3%+27rn = x;ﬁ%—l—ﬂn [n an integer].

®) (90 (@) = a(@) =9 ( T ) =sin( T2 ).

Domain: {z | z # —1}

(c)(fof)(x)zf(f(x»:f(lﬁm)— % = <1:’”>'(1H) =T T

o €T
i <1+1+—m>'(1+1‘)

Since f(x) is not defined for x = —1, and f(f(z)) is not defined for x = —

the domain of (f o f)(z)isD ={z |z # —1,—3}.

(d) (g0 9)(9) = g(g(x)) = g(sin 2z) = sin(2sin 2z).
Domain: R

(fogom)(@) = flg(h(@)) = f(9(a*)) = f(sin(a®)) = 3sin(a?) - 2
(fogoh)(@) = f(g(h(2)) = F(9(vD) = F@VT) = 277 4

(fogoh)(z) = fg(h(x))) = f(g(=® +2)) = f[(z* +2)*]
= f(a® +42° +4) = /(25 + 423 +4) =3 = Vab + 423 + 1

(fogoh)(z) = f(g(h(x))) = f(g(Vx)) = f(\%/f 1) :tan<%€/f 1)

Let g(x) = 2z + 22 and f(x) = 2. Then (f o g)(z) = f(g(x)) = f(2x + 2?) = (22 + 2*)* = F(x).

Let g(x) = cosx and f(z) = 2. Then (f o g)(z) = f(g9(x)) = f(cosz) = (cosz)? = cos® v = F(x).

Let () = ¢/ and /() = 1= Then (0 9)(x) = f(9(2)) = F(7) = § fﬁ = F(z)

T

L and f() = 9. Then (£ 0.)(e) = f(a(o)) = /(1 ) = §/ 75 = 610

Let g(t) = t*> and f(t) = secttant. Then (f o g)(t) = f(g(t)) = f(t*) = sec(t®) tan(t?) = v(t).

Letg(z) = T
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47,

48.

49.

50.

51

52.

53.

54.
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tant

Let g(t) =tantand f(t) = o Then (f o g)(t) = f(g(t)) = f(tant) = T tani =

1+t

u(t).
Let h(z) = vz, g(x) = = — 1, and f(z) = v/z. Then

(fogoh)(z) = fg(h(z)) = flg(va) = F(Vz—1) = /& — 1 = R(x).

Let h(z) = |z, g(x) = 2+ x, and f(z) = /. Then

(fogoh)(x) = f(g(h(x))) = f(g(|z])) = f 2+ |z]) = V2 + || = H(z).

Let h(x) = /z, g(x) = secx, and f(x) = z*. Then

(fogoh)(@) = fg(h(x))) = f(g(vx)) = f(secy/T) = (sec/z )" = sec* (Vz) = H(z).

@ f(g(1)) = f(6) =5 (0) g(f(1)) = 9(3) =2

© f(F(1) =f(3) =4 () 9(9(1)) = 9(6) = 3

© (g0 /)(3) =9(f(3)) =g(4) =1 (F) (fog)(6) = f(9(6)) = f(3) =4

(@) g(2) = 5, because the point (2, 5) is on the graph of g. Thus, f(g(2)) = f(5) = 4, because the point (5,4) is on the
graph of f.

() 9(£(0)) = 9(0) =3
©) (f29)(0) = f(9(0)) = f(3) =0

(d) (go f)(6) = g(f(6)) = g(6). This value is not defined, because there is no point on the graph of ¢ that has

x-coordinate 6.
©) (go9)(=2) =g(9(-2)) =g(1) =4
(F) (f o /)(4) = f(F(4) = f(2) = =2
To find a particular value of f(g(x)), say for z = 0, we note from the graph that ¢(0) ~ 2.8 and f(2.8) ~ —0.5. Thus,

f(g(0)) = f(2.8) =~ —0.5. The other values listed in the table were obtained in a similar fashion.

z | g(z) | flg(x)) z | g(x) | flg(x)) ;
5| 02| -4 o] 28|05 !
4| 12| -33 1| 22| -17 R /
3| 22| -17 2| 12| -33 N *
2| 28] -05 31 -02]| -4 i
“1| 3 | -02 4| —19]| —22 1

5| 41| 19

(a) Using the relationship distance = rate - time with the radius r as the distance, we have r(¢) = 60¢.

(b) A=7r? = (Aor)(t) = A(r(t)) = n(60t)* = 36007t This formula gives us the extent of the rippled area

(in cm?) at any time ¢.

(a) The radius r of the balloon is increasing at a rate of 2 cm/s, s0 r(t) = (2 cm/s) (¢ s) = 2¢ (in cm).
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(b) Using V = 37r%, we get (V o r)(t) = V(r(t)) = V(2t) = 3m(2t)° = L7¢®.

The result, V = 227¢%, gives the volume of the balloon (in cm®) as a function of time (in s).

(a) From the figure, we have a right triangle with legs 6 and d, and hypotenuse s. ship ¢
By the Pythagorean Theorem, d* + 6% = s> = s = f(d) = v/d2 + 36. 6
! S
(b) Using d = rt, we get d = (30 km/h) (¢ hours) = 30t (in km). Thus, P
d = g(t) = 30t. lightzouse shoreline

(©) (fog)(t) = f(g(t)) = f(30t) = 1/(30t)% + 36 = /900¢2 + 36. This function represents the distance between the

lighthouse and the ship as a function of the time elapsed since noon.

@d=rt = d(t) =350t

(b) There is a Pythagorean relationship involving the legs with lengths d and 1 and the hypotenuse with length s:
d?* +1% = % Thus, s(d) = Vd2 + 1.

(©) (sod)(t) = s(d(t)) = s(350t) = 1/(350t) + 1

(@ H (b) v
' 120
of ! of '
i 0 if t<0
ap={" <0 vip={ S0 V(1) = 120H ().
1 ift>0 120 if t>0
(c) 4 Starting with the formula in part (b), we replace 120 with 240 to reflect the
240 -—_—

different voltage. Also, because we are starting 5 units to the right of ¢ = 0,

we replace ¢ with ¢ — 5. Thus, the formula is V' (¢) = 240H (t — 5).

(@) R(t) = tH (1) o= T’ OV =1" et
Q) R(t) = tH(t t) = Q) V(t) =
2% if0<t<60 A(t—7) ifFT7T<t<32
0 ift<O
N\t ife>o0 so V(t) = 2tH(t), t < 60. soV(t)=4(t—T)H({t—T7),t < 32.
v %
R 120
100
1 /
of 1 ! o 60 of 7 321

If f(z) = miz + b1 and g(x) = maex + b, then

(fog)(x) = f(g(x)) = f(max + b2) = mai(maz + b2) + b1 = mimax + miba + b1.
So f o g isa linear function with slope mima.

If A(z) = 1.04x, then

(Ao A)(z) = A(A(z)) = A(1.04x) = 1.04(1.04z) = (1.04)z,
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(AoAoA)(z) = A((Ao A)(x)) = A((1.04)*x) = 1.04(1.04)%z = (1.04)*z, and
(AoAoAoA)(z)=A((Ao Ao A)(z)) = A((1.04)%z) = 1.04(1.04)>z, = (1.04)"x.
These compositions represent the amount of the investment after 2, 3, and 4 years.

Based on this pattern, when we compose n copies of A, we get the formula (Ao Ao --- 0 A)(x) = (1.04)"x.
N —
n A’s

(a) By examining the variable terms in g and h, we deduce that we must square g to get the terms 422 and 4z in h. If we let
f(z) =2 + ¢ then (fog)(z) = f(g9(x)) = f(2x + 1) = (22 + 1)® + ¢ = 42® + 42 + (1 + ¢). Since
h(z) = 42® + 42 + 7, we musthave 1 + ¢ = 7. So ¢ = 6 and f(z) = 2° + 6.

(b) We need a function g so that f(g(x)) = 3(g9(x)) + 5 = h(z). But

h(z) =32% + 3z +2 =3(2® + x) + 2 = 3(2® + = — 1) + 5, so we see that g(z) = 2° + = — 1.

We need a function g so that g(f(z)) = g(z +4) = h(z) = 4o — 1 = 4(x + 4) — 17. So we see that the function g must be
g(x) =4z — 17,

We need to examine h(—z).

h(—z) = (f o g)(—z) = f(9(—=x)) = f(g(x)) [because giseven] = h(z)

Because h(—x) = h(z), h is an even function.

h(—z) = f(g9(—x)) = f(—g(x)). At this point, we can’t simplify the expression, so we might try to find a counterexample to
show that k is not an odd function. Let g(z) = z, an odd function, and f(x) = x 4 2. Then h(x) = 2 4 z, which is neither
even nor odd.

Now suppose f is an odd function. Then f(—g(z)) = —f(g(x)) = —h(z). Hence, h(—z) = —h(x), and so h is odd if
both f and g are odd.

Now suppose f is an even function. Then f(—g(z)) = f(g(x)) = h(z). Hence, h(—x) = h(z), and so h is even if g is

odd and f is even.

1.4 The Tangent and Velocity Problems

1

(a) Using P(15,250), we construct the following table: (b) Using the values of ¢ that correspond to the points
closest to P (t = 10 and ¢t = 20), we have
t Q slope = mpq
5 | (5,694) | 8=20 _ _ddi _ 444 w — 333

10 (10,444) 44250 — 194 — 388

20 | (20,111) | 1l=250 _ 139 _ 97

20—-15 5
25 (25,28) 2820 — 22 = 922
30 | (30,0) 8250 — 20 — _16.6
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(c) From the graph, we can estimate the slope of the

tangent line at P to be =3% = —33.3.

2948 — 2530 418

__ 2948 — 2806 __ 142 __
(c) Slope = ==~ = 5~ =71

V (gallons)

SECTION 1.4  THE TANGENT AND VELOCITY PROBLEMS [ 39

7001 .
| _—approximate

650 raph of function
600+ srap
5501 approximate
5001 tangent line
4501
400
3501
3001
a0t 300 N
2001

150 =

100

501 F—9—

0 5 10 15 20 25 30
t (minutes)

(b) Slope — 22482661 _ 287 _ 71 75

— 38 4

(d) Slope = 30302948 _ 132 _ g6

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes.
After being stable for a while, the patient’s heart rate is dropping.

3. (@) y = %I P(2,—1)

1
x Q(z,1/(1 —x)) mpQ
|15 | @s-2 2
Giy | 1.9 | (1.9,—1.111111) | 1111111
(iii) | 1.99 (1.99,—-1.010101) 1.010101
(iv) | 1.999 | (1.999,—-1.001001) | 1.001001
W) | 25 | (2.5,-0.666667) | 0.666667
i) | 21 | (2.1,-0.909091) | 0.909091
(i) | 2.01 | (2.01,-0.990099) | 0.990099
(viii) | 2.001 | (2.001,—0.999001) | 0.999001
4. (a) y = cosmz, P(0.5,0)
x Q mpQ
@0 (0,1) —2
Gi) | 0.4 | (0.4,0.309017) ~3.090170
(iii) | 0.49 (0.49,0.031411) —3.141076
(iv) | 0.499 | (0.499,0.003142) | —3.141587
W |1 (1,-1) —2
(vi) | 0.6 (0.6, —0.309017) —3.090170
(ii) | 0.51 | (0.51,-0.031411) | —3.141076
(viii) | 0.501 | (0.501, —0.003142) | —3.141587

(b) The slope appears to be 1.
(c) Using m = 1, an equation of the tangent line to the
(-1)=1(z—2),0r

curveat P(2,—1)isy —

y=ux—3.

(b) The slope appears to be —.

(C) y—O: 777(53705) or Yy = —7Tx + %ﬂ—.

(d) i\ \__— tangent line

=i

secant line at "\
x=0andx=1
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5 (a) y = y(t) = 40t — 16t>. Att = 2, y = 40(2) — 16(2)* = 16. The average velocity between times 2 and 2 + h is
y(2+h)—y(2) [40(2+h) —16(2+h)*] —16  —24h — 16h> ,
ave — == = =-24-1 h, fh .
v 2+ h) 2 7 R 6h, 1fh 70
(i) [2,2.5]: h = 0.5, vaye = —32 ft/s (ii) [2,2.1]: = 0.1, vave = —25.6 ft/s
(iii) [2,2.05]: h = 0.05, vaye = —24.8 ft/s (iv) [2,2.01): h = 0.01, vaye = —24.16 ft/s
(b) The instantaneous velocity when ¢ = 2 (h approaches 0) is —24 ft/s.
6. () y = y(t) = 10t — 1.86t>. Att =1,y = 10(1) — 1.86(1)> = 8.14. The average velocity between times 1 and 1 + h is

y(L+h) —y(1) _
(1+h)—1

[10(1+h) — 1.86(1 + h)?] —8.14  6.28h — 1.86h>
h - h

Vave =

= 6.28 — 1.86h, if h # 0.

(i) [1,2]: h =1, Vaye = 4.42m/s (i) [1,1.5]: h = 0.5, Vave = 5.35 M/S

(iii) [1,1.1]: o = 0.1, vaye = 6.094 M/s (iv) [1,1.01): h = 0.01, vaye = 6.2614 m/s
(V) [1,1.001]: h = 0.001, Vave = 6.27814 M/s

(b) The instantaneous velocity when ¢ = 1 (h approaches 0) is 6.28 m/s.

_s(@)—s(1) _107-14 93

7. (@) (i) Ontheinterval [1, 3], vave = 31 5 =— =4.65m/s.
(ii) On the interval [2, 3], vave = 8(3?)) : ;(2) = 10'7; 51 =5.6m/s.
(ili) On the interval [3, 5], vave = S22 =5G) _ 2582107 151 _ o oo o
5—3 2 2
(iv) On the interval [3, 4], vave = s(4) —5(3) = 177-10.7 =7m/s.
4—-3 1
(b) s Using the points (2, 4) and (5, 23) from the approximate tangent
BT line, the instantaneous velocity at ¢ = 3 is about 253:24 ~ 6.3 m/s.
201
154
101
5,,
o 1 2 3 4 5 1
8. (@) (i) s = s(t) = 2sinnt + 3coswt. On the interval [1, 2], vVave = 8(2% : i(l) _ 3= 5_3) =6cm/s.
(i) On the interval [1,1.1], Vave = s(1-1) — 5(1) ~ —3471 — (=3) _ —4.71 cm/s.

1.1-1 0.1
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. _ s(1.01) —s(1)  —3.0613—(=3)
(iii) On the interval [1,1.01], vave = Toi=1 ™ 0.01 = —6.13cm/s.

5(1.001) — s(1) _ —3.00627 — (—3)
1.001—1 ~ 1.001—1
(b) The instantaneous velocity of the particle when ¢ = 1 appears to be about —6.3 cm/s.

(iv) On the interval [1,1.001], vave = = —6.27cm/s.

9. (a) For the curve y = sin(10x/z) and the point P(1,0):

T Q mpQ T Q mpQ
2 (2,0) 0 0.5 | (0.5,0) 0

1.5 | (1.5,0.8660) 1.7321 0.6 | (0.6,0.8660) —2.1651
1.4 | (1.4,-0.4339) | —1.0847 0.7 | (0.7,0.7818) —2.6061
1.3 | (1.3,—0.8230) | —2.7433 0.8 | (0.8,1) -5

1.2 | (1.2,0.8660) 4.3301 0.9 | (0.9,—0.3420) 3.4202
11| (1.1,-0.2817) | —2.8173

As x approaches 1, the slopes do not appear to be approaching any particular value.

b 1 We see that problems with estimation are caused by the frequent
p y q
n Jﬁ( /\ oscillations of the graph. The tangent is so steep at P that we need to
0.5 \ take z-values much closer to 1 in order to get accurate estimates of
\d / \ A its slope.

(c) If we choose x = 1.001, then the point @ is (1.001, —0.0314) and mpq ~ —31.3794. If z = 0.999, then Q is

-1

(0.999,0.0314) and mpg = —31.4422. The average of these slopes is —31.4108. So we estimate that the slope of the

tangent line at P is about —31.4.

1.5 The Limit of a Function

1. As z approaches 2, f(x) approaches 5. [Or, the values of f(z) can be made as close to 5 as we like by taking = sufficiently

close to 2 (but = # 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) =

2. As z approaches 1 from the left, f(x) approaches 3; and as z approaches 1 from the right, f(x) approaches 7. No, the limit

does not exist because the left- and right-hand limits are different.
3. (@) 1in_13 f(z) = oo means that the values of f(x) can be made arbitrarily large (as large as we please) by taking

sufficiently close to —3 (but not equal to —3).

(b) hm+ f(x) = —oo means that the values of f(x) can be made arbitrarily large negative by taking z sufficiently close to 4
r—4

through values larger than 4.
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4. (a) As x approaches 2 from the left, the values of f(x) approach 3, so zlirg— f(z) =3.
(b) As x approaches 2 from the right, the values of f(x) approach 1, so lllr;r fz) =1.
(c) iLm2 f(x) does not exist since the left-hand limit does not equal the right-hand limit.

(d) Whenz =2,y = 3,50 f(2) = 3.

(e) As x approaches 4, the values of f(x) approach 4, so lin[}1 f(z) =4.

(f) There is no value of f(x) when z = 4, so f(4) does not exist.

5. (a) As x approaches 1, the values of f(x) approach 2, so iLmI flz)=2.
(b) As z approaches 3 from the left, the values of f(x) approach 1, so Iliglﬁ flx)=1.
(c) As x approaches 3 from the right, the values of f(z) approach 4, so mlﬂﬁ f(z) =4.
(d) ;1313 f () does not exist since the left-hand limit does not equal the right-hand limit.
() Whenz =3,y = 3,50 f(3) = 3.

6. (a) h(x) approaches 4 as x approaches —3 from the left, so lim h(z) =4.

r——3"

(b) h(x) approaches 4 as z approaches —3 from the right, so lim+ h(z) = 4.

r——3

() lin[}3 h(x) = 4 because the limits in part (a) and part (b) are equal.

(d) h(—3) is not defined, so it doesn’t exist.

(e) h(z) approaches 1 as x approaches 0 from the left, so lim h(z) = 1.

z—0"

(f) h(x) approaches —1 as x approaches 0 from the right, so lim h(z) = —1.

x—0
(9) lir% h(z) does not exist because the limits in part (e) and part () are not equal.
(h) h(0) = 1 since the point (0, 1) is on the graph of h.

(i) Since lim h(z) =2and lim+ h(z) = 2, we have lirré h(z) = 2.
r—27" r—2 T—

(i) ~(2) is not defined, so it doesn’t exist.

(k) h(x) approaches 3 as x approaches 5 from the right, so lim h(z) = 3.

r—5

(I) h(x) does not approach any one number as x approaches 5 from the left, so lim h(z) does not exist.

r—5"
7. (@) lim g(t) =-1 () lim g(t) =-2
t—0~ t—0+
(c) tliné g(t) does not exist because the limits in part (a) and part (b) are not equal.
(d) lim g(t) =2 (e) lim g(¢t)=0
t—2— t—2t
(f) thné g(t) does not exist because the limits in part (d) and part (e) are not equal.

9 g9(2) =1 (h) lim g(t) = 3
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11.

12.

13.

14.

SECTION 1.5 THELIMITOFAFUNCTION [ 43

G iLn12 R(z) = —c0 () ilg}s R(z) = o0
() lim R(z)=—o0 (d) lim R(z)=o0
T——3" z——3+

(e) The equations of the vertical asymptotes are x = —3, z = 2, and x = 5.

@ lim_f(z) = oo (b) lim_f(z) = oo (©) lim f(x) = o0
(d) lim f(z)=—o0 (e) lim f(xz)=o00
z—6" z—671

() The equations of the vertical asymptotesare x = —7, x = -3,z = 0,and x = 6.

lim f(¢) = 150 mg and lim+ f(t) =300 mg. These limits show that there is an abrupt change in the amount of drug in
t—12— t—12

the patient’s bloodstream at ¢ = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

From the graph of Y
14z ifx<-—1
flz) =<2 if —1<z<1,
2—z ifz>1 0 1 X

we see that lim f(z) exists for all a except a = —1. Notice that the

right and left limits are differentat a = —1.

From the graph of

1+sinze if <0 /
f(x) = { cosx if 0<z<m, o \7‘\/2# >
sinz if x>n

we see that lim f(z) exists for all a except a = . Notice that the
r—a

right and left limits are different at a = .

(@ lim f(z)=1 15
rz—0~"
1
(b) lim f(z)=0 YT
z—0t
(c) lim f(x) does not exist because the limits in
z—0 *2L J2
part (a) and part (b) are not equal. o
(@ lim f(z)=-1 2
r—0—

(b) 1im+ flx)y=1

z—0 -2 {

(c) li does not exist because the limits \ SR
III% f(ﬂ:) Y \/X3 + xz
in part (a) and part (b) are not equal. -2
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FUNCTIONS AND LIMITS

15. lim f(z)=-1, lim f(z)=2, f(0)=1

x—0—

17. lim f(z)=4, lim f

xr—3

z—0t

>

fB)=3, f(=2)=1

% — 2z
19. For ="
S. For f(z) 2 —x—2
T f(z) T f(z)
2.5 0.714286 1.9 0.655172
2.1 0.677419 1.95 0.661017
2.05 0.672131 1.99 0.665552
2.01 0.667774 1.995 | 0.666110
2.005 | 0.667221 1.999 | 0.666556
2.001 | 0.666778
. z? — 2z _
It appears that ;Lr% prp— 0.6 = 3.

16. lim f(z) =1, lim f(z) = -2, lim f(z) =2,
z—0 z—3~ z—3+

f0)=-1,f@3) =1

24

I\

—1e

18. lim f(x) =2, lim

rz—0~

z—0t

0

(z) =0, lim f(x) =3,

r—4=

dim f(z) =0, f(0) =2, f(4) =1

20. For f(x) = me_;Q_J:Q
x /() x f(x)
0 0 —2 2
—0.5 —1 —1.5 3
-0.9 -9 —1.1 11
—0.95 —-19 —1.01 101
—-0.99 -99 —1.001 | 1001
—0.999 | —999

It appears that lim

f(x) - ccasx — —1" and f(z) —» —ccasx — —17.

2

2

x° — 2x L
——— does not exist since
1 —x—2
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_ sinz | ~ (2+h)°—32,
21. For f(z) = I 22. For f(h) = b :
T f(x) h f(h) h f(h)
+1 0.329033 0.5 131.312500 —0.5 48.812500
+0.5 0.458209 0.1 88.410100 —0.1 72.390100
+0.2 0.493331 0.01 80.804010 —0.01 79.203990
+0.1 0.498333 0.001 80.080040 —0.001 79.920040
+0.05 | 0.499583 0.0001 80.008000 —0.0001 | 79.992000
+0.01 | 0.499983 5
It appears that %imo W = 80.
sinx 1
| hat lim —— = 0.5 = =.
t appears that D S 0.5 3
23. For f(z) = vrrd-2, 24. For f(z) = 22 5,
T tan bx
¢ | J@ v | f@) v /()
1| 0.236068 -1 | 0.267949 102 | 0439279
0.5 0.242641 —0.5 0.258343 +0.1 0.566236
0.1 0.248457 —0.1 0.251582 40.05 0.591893
0.05 | 0.249224 —0.05 | 0.250786
+0.01 0.599680
0.01 | 0.249844 —0.01 | 0.250156 40.001 | 0.599997
. VI =4 4 -2 1 t 3
It appears that lim Y~———= = .25 = 1, im 29T =2
o - 1 It appears that ili% tonte 0.6 =z.
25. For f(z) = w1 26 Forf(x)—gm_g)z'
' Togl0 1" ' -z
z f(z) x f(z) z f(x) z f(z)
0.5 0.985337 1.5 0.183369 0.5 1.527864 —0.5 0.227761
0.9 0.719397 1.1 0.484119 0.1 0.711120 —0.1 0.485984
0.95 0.660186 1.05 0.540783 0.05 0.646496 —0.05 0.534447
0.99 0.612018 1.01 0.588022 0.01 0.599082 —0.01 0.576706
0.999 | 0.601200 1.001 | 0.598800 0.001 | 0.588906 —0.001 | 0.586669
28 —1 .97 -5 i
It appears that lim —0.6=3. It appears that lim = 0.59. Later we will be able
z—1 ¢l0 — 1 5 z—0

to show that the exact value is In(9/5).
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. 20 —
27. (a) From the graphs, it seems that 1in% w = —1.5. (b)
’ * z f(x)
1 1 +0.1 —1.493759
| | +0.01 —1.499938
- ‘ ‘ 6-05 05 £0.001 | —1.499999
4+0.0001 | —1.500000
-2 -2
. . sin x
28. (a) From the graphs, it seems that lim — =0.32. (b)
z—0 SIN TX T f(.T)
2 0.5 +0.1 0.323068
+0.01 0.318357
40.001 0.318310
4+0.0001 | 0.318310
Later we will be able to show that
-1 1-02 0.2
0 0 .1
the exact value is —.
™
29. 1im+ z I ; = —oo0 since the numerator is negative and the denominator approaches 0 from the positive side as = — —3*.
x——3
30. lim i I § = oo since the numerator is negative and the denominator approaches 0 from the negative side as z — —3™.
r——3"
31 lim1 (5:7155)2 = oo since the numerator is positive and the denominator approaches 0 through positive values as x — 1.
. z—1 . 5 z—1
32. lim —— = —oosincez® — 0asz — 0and — < 0for0 <z < landfor -2 <z < 0.
2—0 x2(z + 2) x2(x + 2)
B lm 1 —ocosince (z+2) — 0asz — —2* and 2=l gfor—2<2<0
' z——27F xQ(x+2) o :L‘z(l‘-‘v-Q) '
34. lim cotz = lim % = —oo since the numerator is negative and the denominator approaches 0 through positive values
asx — m .
35, lim zcscx = lim shf = —oo since the numerator is positive and the denominator approaches 0 through negative
T—2m T—2mT
values as x — 27~ .
2 J— —
36. lim e lim 2z =2 — lim —=— = —oo since the numerator is positive and the denominator
w2 @2 —dx+4 o2 (—2)2 so2-x—2
approaches 0 through negative valuesas z — 2.
2 — — —
37. lim v o228y W = oo since the numerator is negative and the denominator approaches 0 through

r—2t+ 72 — 51+ 6 a z—2+ (I — 3)(113 —

negative values as 2 — 2.

2)
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38. (a) The denominator of y = = is equal to zero when (b)

3z — 222 (3 - 2x)

r=0andz = % (and the numerator is not), so x = 0 and x = 1.5 are

vertical asymptotes of the function.

=

-5
2. (a) f(z) = ﬁ
0.5 —1.14 1.5 0.42
From these calculations, it seems that 0.9 —3.69 1.1 3.02
1111{1_ f(z) = —oc and xlirﬁ_ f(z) = o0. 0.99 —33.7 1.01 33.0
0.999 —333.7 1.001 333.0
0.9999 —3333.7 1.0001 3333.0
0.99999 | —33,333.7 1.00001 | 33,333.3

(b) If x> is slightly smaller than 1, then 2® — 1 will be a negative number close to 0, and the reciprocal of 2® — 1, that is, f(z),

will be a negative number with large absolute value. So lim f(x) = —oo.
r—1—

If 2 is slightly larger than 1, then ® — 1 will be a small positive number, and its reciprocal, f(z), will be a large positive

number. So lim+ flx) = oc0.
r—1

(c) It appears from the graph of f that

lim f(z) = —occand lim f(x) = oo.

rz—1" x—1

40. (a) From the graphs, it seems that lim tal;% =4
10 ;
l{ \ [ }1
-10 -02 L
(b)
v f(z)
+0.1 4.227932

+0.01 4.002135
+0.001 4.000021
+0.0001 | 4.000000

(.
.
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41. For f(z) = 2* — (2%/1000):
(@)

b)
) v | J@
1 0.998000
0.04 0.000572
0.8 | 0.638259
0.02 —0.000614
0.6 | 0.358484
0.01 —0.000907
0.4 | 0.158680
0.005 | —0.000978
0.2 | 0.038851
0.003 | —0.000993
0.1 0.008928
0.001 | —0.001000
0.05 | 0.001465
tanx — x|
(@) b) It seems that lim h(z) = %.
. o (b) lim h(z) = 3
1.0 0.55740773
0.5 0.37041992
0.1 0.33467209
0.05 | 0.33366700
0.01 0.33334667
0.005 | 0.33333667
(c) Here the values will vary from one
x h(z) .
calculator to another. Every calculator will
0.001 0.33333350

eventually give false values.
0.0005 0.33333344 ventually giv vaid

0.0001 0.33333000
0.00005 0.33333600
0.00001 0.33300000
0.000001 | 0.00000000

(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

1 0.4
'd Y 4 N\
—1 N 7/ —0.1 . J 1
0 0 0
0.4
'd 7\
—5x107° ™ 05 7 5%10°° -107°
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43. No matter how many times we zoom in toward the origin, the graphs of f(x) = sin(7/x) appear to consist of almost-vertical

lines. This indicates more and more frequent oscillations as x — 0.

Ay TR
ml

e

1.2 12

—0.01 —0.0001 0.0001

-12
44, lim m = lim %. Asv — ¢, /1 —0v?/c? — 0", and m — oo.
v—CcT v—CcT — e/ C
45, 6 There appear to be vertical asymptotes of the curve y = tan(2sinz) at z ~ +0.90
U and z =~ +2.24. To find the exact equations of these asymptotes, we note that the
o - graph of the tangent function has vertical asymptotes at x = £ + mn. Thus, we
/\ must have 2sinz = Z + 7n, or equivalently, sinz = Z 4 Zn. Since
6 —1 <sinz <1, we musthave sinz = £% and so x = +sin~? Z (corresponding
to x ~ +0.90). Just as 150° is the reference angle for 30°, 7 — sin~" Z is the
reference angle for sin ™" Z. So 2 = + (7 — sin~" Z) are also equations of
vertical asymptotes (corresponding to = &~ +2.24).
3
—1
4. (@) Lety = —=—. o5 - \
V- x Y Q y=65
From the table and the graph, we guess 0.99 5.92531 y = —’53 —1
N |
that the limit of y as x approaches 1 is 6. 0.999 5.99250
0.9999 [ 5.99925 P y=155
1.01 6.07531 07, L 713
1.001 | 6.00750 '
1.0001 | 6.00075

-1
V-1
and Q(1.0649,6.5). Now 1 — 0.9314 = 0.0686 and 1.0649 — 1 = 0.0649, so by requiring that = be within 0.0649 of 1,

we ensure that y is within 0.5 of 6.

(b) We need to have 5.5 < < 6.5. From the graph we obtain the approximate points of intersection P(0.9314, 5.5)
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1.6 Calculating Limits Using the Limit Laws

L (a) lim [f(2) + 5g(2)] = lim f(z) + lim [59(a)] [LimitLaw1]  (b) lim [g())° = [nm g(;r)]s [Limit Law 6]

r—2

= 1Ln12 f(z)+5 liﬁm2 g(xz)  [Limit Law 3] =(-2°%=-8
=445(—2)=—6

3f(z) Jim[3f(2)]

(©) lim V@)= \/iLmZ f(z) [Limit Law 11] (d) lim o) = Ty 97 [Limit Law 5]
=Vi=2 3 lim f(z)
=222 [Limit Law 3]
11m2 g(x)
3(4)
== = —6
lim [g(z) h(z)]
e) Because the limit of the denominator is 0, we can’t im = - imit Law
(€) B he limit of the denominator is 0 : (f) lim 2@ _ oo [Limit Law 5]
o 22 f(2) Tim f(z)
Lo . .. glx
L L . Th | lim =—= . .
use Limit Law 5. The given Imlt,ILH12 h(x),does iﬂg(z)'i@zh(z) I
= - imit Law
not exist because the denominator approaches 0 i‘i% f(z)
while the numerator approaches a nonzero number. 2.0
=2 "0

4

(@ lim [£(2) + g(x)] = lim f(x) + lim g(2) =240 =2

(b) lim1 g(x) does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
(©) lim [f(x)g(z)] = lim f(z) - lim g(z) =0-1.3 =0

(d) Since limlg(x) = 0 and g is in the denominator, but lim1 f(z) = —1 # 0, the given limit does not exist.

(6) lim 2° f () = [nm x3] [;LmQ f(x)] =2%.2=16

r—2

(f);m¢3+f(x):\/3+;Ln}f(x):\/3+1:2

. lim (52® —32? + 2 —6) = lim, (52°) — lim (322) + lim  — lim 6 [Limit Laws 2 and 1]
=51lim 2° — 3 lim 22 + lim = — lim 6 [3]
r—3 r—3 r—3 r—3
=5(3%-33*+3-6 [9, 8, and 7]
=105
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS
4. 1in31($4 —3x)(2® + 52 +3) = 1ir91(m4 — 3z) 1in31(x2 + 5z + 3) [Limit Law 4]
= < lim1 o liml Bx) ( hmlx + hm 5z + hm 3) [2,1]
= ( lim1 zt =3 limlx) ( hm 245 hmlatJr lim 3) [3]
=(143)(1—5+3) [9,8,and 7]
=4(-1) = —
lim_(t* — 2)
-2 t——2 .
. lim L L
e T Tim_ (202 — 31+ 2) [Limit Law 5]
lim #* — Jim 2
= —— — 1,2,and 3
2 Tim 2 — 3 lim { + lim 2 [L2,and 3]
t——2 t——2 t——2
16 — 2
e 9,7,and 8
2@ —3(-2) 1 2 [9,7, and 8]
47
168
6. lim_ Vut +3u+6 = \/ lim_(u?+ 3u +6) [11]
= hm2 ut+3 11m2u + hm 6 [1, 2, and 3]
=/(- )46 9,8, and 7]
=VI6—-6+6=116=4
7. lim (1+ Yr)(2—-62°+2%) = lim (1 + Yz)- lim (2 — 62 + ) [Limit Law 4]
(;gl—l—hm \/_) (iiL%Q—G;iL%;zj—l-iiL%xg) [1, 2, and 3]
=(1+V8) - (2—-6-8+8% [7,10, 9]
= (3)(130) = 390
-2 1\’ ? .
8- li“(m) - (m TR 5) [Limit Law 6]
hrn(t2 -2) 2
= 5
hm(t3 3t+5) 5]
2
thn% — thn% 2
- hm 3 -3 hrn t+ hm 5 [1,2,and 3]
4 —
= 9,7,and 8
(8 3( 2 ) [ ]
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Ll CHAPTER1 FUNCTIONS AND LIMITS

2 2
Jim \/ 2;’ t+1_ \/ Jim 2%+ 1 [Limit Law 11]

r—2 x — 2 z—2 3x — 2
lim (222 + 1)
- |E=2z O [5]
lin§(3x -2)
2 1in12 z? + lirr121
“A\| Blma_lim 2 [1,2, and 3]
r—2 r—2
(222 +1 \/5 3
= 32 -2 V12 [9,8,and 7]

(a) The left-hand side of the equation is not defined for = = 2, but the right-hand side is.

(b) Since the equation holds for all =z # 2, it follows that both sides of the equation approach the same limit as x — 2, just as

in Example 3. Remember that in finding lim f(z), we never consider z = a.

r—a

2_ — —
i 226245 0@ ey o514
r—5 xr—5 r—5 r—>5 r—5
lim 2’ — 4z = lim (@ —4) = lim —= -4 2
e—472 —3x—4 a-d(x—4)(z+1) s—ax+1l 44+1 5
2_
lin%LzH}doesnotexistsince:p75HO,butxz75x+6H6as:rH5.
r— xr —
% — 4z L 2 9
lim ————— does not exist since z° —3x —4 — 0 but2® — 42 — 5asxz — —1.
e—-11%2 -3z —4
lim t?-9 i EH3E=3) . t-3  —3-3 _—6_6
=322+ Tt+3 t>-3(2t+1)(t+3) ¢+>-32t+1 2(-3)+1 -5 5
lim 202 +3z+1 o Qe D@+ 2041 2141 -1 1
e——1 22 —20x—3  a—-1 (x—3)(x+1) 2—-12-3  —-1-3 -4 4
o 2 _ PANE _ 2 _
lim( 5+ h) 25=lim(25 10h + h*) 25:lim 10h + h :limh’( 104—h):1],11[1[1(_1()_~_h):_10
h—0 h h—0 h h—0 h h—0 h—0
. (24h)?—=8 . (8+12h+6h*>+h*)—8  12h+6h> +K®
lim = lim = lim ———8
h—0 h h—0 h h—0 h

= lim (124 6h + h*) =12+ 0+ 0 = 12
h—0

By the formula for the sum of cubes, we have
T+ 2 . T+ 2 1 1 1

lim —T= — | I = = .
e g3 48 wot2 (1 +2) (22 — 20 +4) eo22?—2z+4 A+4+4 12

We use the difference of squares in the numerator and the difference of cubes in the denominator.

4 2 2 _ 2 2
tim = i E-DE+1) _ lim t-DE+1)E+1) lim C+DE"+1) _2(2) 4
t—-1¢3 —1 -1 (-1 +t+1) =1 t—1)2+t+1) t—1 24t+4+1 3 3
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS L1 53

o p VIFR=3 _ . VOFR-3 VOFR+3 (VIFhY) -3 RN CES DR
© h—0 h h—0 h BEEE h—»Oh(\/9+ +3) h—»Oh(\/9+ +3)

h . 1 1

1
hm—:hm = — —
hﬂoh(«/9+h+3) h—0+/9+h+3 3+3 6

oy VRT3 VIuF1-3 VIuil+3 . (V1) -

W w—2 s u—2  Aut1+43 w2 (u—2)(vAu+1+3)
. du+1-9 A(u—2)
= lim = lim
w=2 (u—2)(VAu+1+3) w2 (u—2)(VAu+1+3)
= lim 4 -4 2
w2 /du+1+3 943 3
1+1 r+4
oAy Az r+4 .1 1 1
B hm e T T T ) TS T A 16
2 2 2
o4 lim Ft2rH1l & lim (z+1)
a—-1 zt—1 a——1 (22 +1)(22 = 1) a—-1(22+1)(z+1)(z—1)
= lim rrl 0
Ta—-1 (224 1)(z—1)  2(-2)
’e \/ﬁ VIZE _ VIFE-VI—E VIEE+ VI lim(\/1+t)2—(\/1—t)2
'tﬂo t—0 t VIFt+V/I—t =0 t(VI+i+V/I-1t)
(14t —(1—1) . 2t . 2
= lim = lim = lim ———————
=0t (VI+t+v/T—t) =0t (VI+t+v1—-1t) t=0/IT+1+/1T—1
T T
Vi+vi o 2

. 1 1 . 1 1 Lt+1-1 . 1 1
6. lm(-———)=lm(-———=)=lm——=lm—=——=1
t—0 \t 2+t t—=0 \ t t(t+1) t—0 t(t+1) t=0t+1 0+1

27. lim A-Vr lim (4—Vr)4+Vz) lim 16—z
016162 — 22 16 (162 — 22)(4 + /&) 16 2(16 — 2)(4 + v/x)
1 1 1 1

= AT VE) T 6(atvie)  16() 128

1 1
. B+hmt-31Y . 3%h 3 _ . 3—(@B+h) _ . —h
28. Jimmy I B R A L A C AT L S NCE AL
. 1 1 1 1
=lim |———— | = —= =— =—-=
h—o | 3(3+h) lim [3(3 + 7)) 3(3+0) 9
20 fim (— L L) D LVAFE g (VIO VIRD) !
T \ty/ITHE t) =0 ty/TH+t =0 I+ I(14+VI+t) =0t/ I+E(1+VI+1)
-1 -1 1

O VITI(1+VItE) VIt0(l+yito) 2
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30, lim YZ2HE9-5 L (V2> +9-5)(V22+9+5) _ o (22 +9) — 25
T e A T @)V r045) e @t 4) (Va2 194 5)
; @’ — 16 : (@ +4)(x — 4)
= lim = lim
z——4 (m+4)(\/x2+9+5) z—4 (1;4_4)(1/12_,_9_,_5)
= lim v—4 . —4-4 8 4
Ta——4\/22 1945 I6+9+5 5+5 5

. (x4 h)? -2 . (2® +32%h + 3zh® + h3) — 2? . 32%h +3xh® + h?
31 hm _— = hm = hm _—
h—0 h h—0 h h—0 h
2 2
i BT BT RT) (302 4 3w 4+ ) = 322
h—0 h h—0
1 1 z? — (x4 h)?
. (x+h)2 22 (x+h)222  2®— (2 +2zh+h%) | —h(2z+h)
82 fimy h = fimy B I T ¥ iy S TRl L Ty
—(2z+h) —2x 2
= |Jim = = ——
h—0 z2(x +h)? 2?22 x3
33. (a) 15 (b)
T f()
—0.001 0.6661663
7 —0.0001 | 0.6666167 )
-1 1 —0.00001 0.6666617 The limit appears to be 3
L J —0.000001 | 0.6666662
—-0.5 0.000001 | 0.6666672
lim x 2 0.00001 0.6666717
e—=0/14+3zx—-1 3 0.0001 0.6667167
0.001 0.6671663
(c) lim i . I+3e+1) _ 1m—$( 1—~_?):C—i_1)—lir)r1—x( 1+3m+1)
250\ \T+3x—1 I+3z+1) 220 (1+3z)—1  2-0 3z
= é lim (V1432 +1) [Limit Law 3]
1 - .
=3 { //hrr%)(l +3z) + 111% 1} [1and 11]

I
Wl =
7~ N

[l T+ 3 lim & + 1) [1,3,and 7]

:é(mﬂ) [7and 8]
1
:§(1+1):—
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS L1 55

3. (a) 05 () e
xr X

—0.001 0.2886992

—0.0001 | 0.2886775

—0.00001 | 0.2886754

1 —0.000001 | 0.2886752

0 ! 0.000001 | 0.2886751

0.00001 | 0.2886749

lim V3 FT VB o9 0.0001 | 0.2886727

o0 x 0.001 0.2886511

The limit appears to be approximately 0.2887.

©) lim <V3+x_\/§. V3+x+\/§) —1 M—lim;
@—0 x V3+tz+3 =0z (V3+z++v3) +-03Fz+V3
lir%l
= — Limit Laws 5 and 1
lir%\/3+$+lin%)\/§ [ ]
1
= [7 and 11]
lim (3 +2) + V3
S [1,7,and 8]
V3+0++/3 o
1
2V3
35. Let f(x) = —2?, g(z) = 22 cos 207 and h(x) = z*. Then !
—1<cos20mr <1 = —2°<z’cos20mz <z = f(z)<g(x) < h(z). h g

So since lirr%) flx) = lin%) h(x) = 0, by the Squeeze Theorem we have -1 1

lim g(x) = 0.

r—0

36. Let f(z) = —va3 + 22, g(z) = Vad + 22 sin(x/z), and h(z) = Va3 + x2. Then

—1<sin(r/z) <1 = —V23+22 <23+ a2sin(n/z) <V2d+22 =

—

f(z) < g(x) < h(x). Sosince lim flz) = lim h(z) = 0, by the Squeeze Theorem

we have lin% g(z) =0.
o= -1

37. We have lim (4z — 9) = 4(4) — 9 = 7 and lirri(x2—4as+7) =42 4(4)+7="T.Sincedr —9< f(z) <a®—4dx+7

forz >0, hnﬁ f(z) = 7 by the Squeeze Theorem.

38. We have lim (2z) = 2(1) = 2 and 1iml(x4 — 2?2 4+2)=1" —12 +2 = 2. Since 2z < g(x) < 2* — 2?42 forall z,
T— r—

him1 g(z) = 2 by the Squeeze Theorem.

39. =1 <cos(2/x) <1 = —a* <x*cos(2/z) < 2*. Since lir% (7354) = 0and lir% z* = 0, we have

lim [* cos(2/z)] = 0 by the Squeeze Theorem.
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56 [ CHAPTER1 FUNCTIONS AND LIMITS
40. —1 <sin(27/x) <1 = 0<sin’@2n/2) <1 = 1< 1+sin’@2n/2) <2 =

Va <V [1+sin?(2r/z)] < 2Vz. Since lim | vz =0and lim 2 Vz = 0, we have
x—0 x—0

lim [V (14 sin2(27/2))| = 0 by the Squeeze Theorem.
[ y q

x—0

r—3 ifz—3>0 r—3 ifxz>3
4. |z —3| = i = .
—(z—=3) ifz—-3<0 33—z ifz<3
Thus, lim+ 2z + |z —3|) = lim+(2x+x—3) = lim (32 —-3)=3(3) —3=6and
o—3 w3 23

lim (2z+ |z —3|) = lim (22 +3 —z) = lim (z 4 3) = 3+ 3 = 6. Since the left and right limits are equal,
r—3" r—3" r—3"

lin}i (22 + |z — 3|) = 6.

T+6 ifz+6>0 z+6 if > -6
42. |z +6| = . = ;

—(z+6) ifz+6<0 —(x+6) ifz<—6
We’ll look at the one-sided limits.

20412 .. 2(x+6) 20 +12 2(z +6)

= =2 and li = 1l o S )
oot [T+ 6] a6t 16 o= JT 6] aob- —(z +6)
. . . . 2@ + 12 .
The left and right limits are different, so hn}6 Py does not exist.
43. |2x3 — x2| = |x2(2x -1)| = |x2| S22 — 1] = 2% |22 — 1
2r—1 if 20 —1>0 20 —1 if >05
12z — 1] = . = .
—(2z—-1) if2x—-1<0 —(2z—-1) ifz<05
So |22° — 2% = 2*[—(2z — 1)] for z < 0.5.
2z —1 2¢ —1 -1 —1 -1
Thus, i —— = i e — = S —
O P 22 .o P2z —1)] .05 22 (052 025
. 2— 2—(— 2
44. Since |z| = —x for x < 0, we have lim i = lim 2-(z2) — lim 2%~ fim 1=1.
z——-2 2+ z——-2 24+ z——-22+ 2 z——2
. . 1 1 . 1 1 . 2 . L
45. Since |z| = —z forz < 0,wehave lim (— — — ) = lim (= — — ) = lim =, which does not exist since the
z—0— \T || z—0- \T — 20— T

denominator approaches 0 and the numerator does not.

46. Since |z| = = for z > 0, we have lim (l — i) = hm+ (l — l) = lim 0=0.
z—0

z—0t \ 2 || r oz 2—0+

47. (a) Y (b) (i) Since sgnz = 1forz > 0, lim+ sgnx = lim+ 1=1.
z—0 z—0
1
(ii) Since sgnx = —1forx < 0, lim sgn z = lim —1=—1.
z—0— z—0—

0 X
(iii) Since lim sgnz # lim sgnx, lim sgn x does not exist.
z—0— r—0+ z—0

(iv) Since [sgnz| = 1 for z # 0, lir% |sgnz| = limol =1.
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS L1 57

2?2 +1 if r <1

48. (a) f(z) _{(xz)z if 2>1

lim f(z)= lim (2*4+1)=1*+1=2, lim f(z)= lim (z—2)?=(-1)*=1

r—1" r—1— z—1t r—14

(b) Since the right-hand and left-hand limits of fatxz =1 () Y
are not equal, lim1 f(x) does not exist. 5 \/
0‘ ; X

- . a?ta—6 . (z+3)(z-2)
9@ () lim g(@)= lim —7—o== lim = —o—
~ lim (z+3)(z —2)

z—2+ T —2

= lim (x+3)=5

r—2

[sincex —2 > 0ifx — 2]

(ii) The solution is similar to the solution in part (i), but now |z — 2| =2 — zsincex —2 < 0 ifx — 27.

Thus, lim g(z) = lim —(z+ 3) = —5.
r—27" r—2"

(b) Since the right-hand and left-hand limits of g at z = 2 () Y /

are not equal, lim g(x) does not exist. \ 2.5

50. (@) (i) -lir{l— g(z)= lim z=1

r—1—

(i) lim+ g(z) = lim+(2 —2?)=2-1%=1.Since lim g(z) = 1and 1im+ g(z) = 1, we have lim1 g(z) =1.
r—1 rz—1 rz—1—" r—1 T—
Note that the fact g(1) = 3 does not affect the value of the limit.

(iii) When z = 1, g(z) = 3,s0 g(1) = 3.

(iv) lim g(z)= lim 2—2?)=2-2>=2—-4= -2
T—27 r—27"

(V) lim g(z) = lim (z —3)=2-3=-1
r—2+ z—2+

(vi) 1im2 g(x) does not exist since lim g(x) # lim+ g(z).
r— r—27 r—2

(b) x if o<1
() 3 ifz=1
) =
g 2—22 ifl<z<?2

r—3 if z>2
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@ (@) Jx] =—-2for—2<z<-1,50 lim [z]= lim (-2)=-2
z——2F z——21

(i) [z] = —3for =3 <z < —2,50 lim [z] = lim (-3)=-3.

r——2" r——27

The right and left limits are different, so ling2 [«] does not exist.

(iii) [«] = =3 for -3 <z < —2,50 lin% 4[[96]] = lirn2 4(73) = -3

® )[z]=n—-1forn—1<z<n,s0 lim 2] = lim (n—1)=n—1.

r—n— T—n—

(i) [zl =nforn <z <n+1,s0 lim+[mﬂ: lim n=n.

r—n r—n

(c) lim [z] exists < aisnotan integer.
Tr—a

(a) See the graph of y = cos . y

Since —1 < cosz < 0on[—m, —7/2),wehave y = f(z) = [cosz] = —1

on[—m,—m/2). —?}L
Since 0 < cosz < 1on[—7n/2,0) U (0,7/2], we have f(z) =0
on [—7/2,0) U (0,7/2]. ?

Since —1 < cosx < 0 on (7/2, ], we have f(z) = —1on (7 /2, 7].

Note that £(0) = 1. —
() (i) lim f(z)=0and lim f(z)=0,s0 lim f(z) =0.
z—0— z—0t z—0

(i) A — (x/2)", f(z) = 0,50l f(x)=0.

z—(mw/2

(iii) As z — (7/2)", f(z) — —1,s0 ajﬂl(j‘./rrl}l2)+ f(z) =-1.

(iv) Since the answers in parts (ii) and (iii) are not equal, him/2 f () does not exist.
(c) lim f(xz) exists for all a in the open interval (—m, 7) excepta = —7/2 and a = 7/2.
The graph of f(x) = [«] 4+ [—x] is the same as the graph of g(z) = —1 with holes at each integer, since f(a) = 0 for any

integer a. Thus, lim f(x) = —1 and hm+ f(z)=-1,50 lim2 f(x) = —1. However,
r—2" r—2 T—

f2) = [2]+[-2] = 2+ (~2) = 0,50 lim /() # f(2).

2
lim (Lm /11— U—2 > = Lov/1 — 1 = 0. As the velocity approaches the speed of light, the length approaches 0.
C

v—CcT

A left-hand limit is necessary since L is not defined for v > c.

Since p(z) is a polynomial, p(z) = ao + a1z + asa® + - - - + a,x™. Thus, by the Limit Laws,
lim p(z) = lim (ao+a11+a2x2+“-+anx”) =ao+ a1 lim z + a2 lim 22 + -+ - + a,, lim 2"
r—a r—a r—a r—a r—a

=ap +aia+ aza® + - + aza™ = pla)

Thus, for any polynomial p, lim p(x) = p(a).
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS [0
Letr(z) = ]% where p(z) and ¢(x) are any polynomials, and suppose that ¢(a) # 0. Then
ql\x
lim p(x)
lim r(z) = lim ) _ =% __ [LimitLaw5] = pla) [Exercise 55] = r(a).
2=a z—ag(z) - lim g (z) q(a)

lim [f(z) — 8] = lim |28 =8 (1) :limm-ilnll(x—l):10-020.

z—1 z—1 x—1 z—1 x—1

Thus, lim f(x) = lim {[f(z) — 8] + 8} = lim[f(2) — 8] + lim 8 =0 +8 =&,

Note: The value of lim1 % does not affect the answer since it’s multiplied by 0. What’s important is that
Jim £2) =8 exists.
z—1 x—1
: o [ f@) e S e
@ fim 1) = i [ £ 2% = g 32 im a2 <50 <0

(b) limmzlim [Lf)x] zlimLf)Jimx:&O:O
z—0 X

x z—0 e=0 T2 20
Observe that 0 < f(z) < 2 for all x, and lim 0= 0 = lim z2. So, by the Squeeze Theorem, lim f(z) =0.
Let f(z) = [z] and g(x) = —[z]. Then }g{g f(z)and ilig’ g(x) do not exist [Example 10]
but lim [ () + g()] = lim ([o] ~ [x]) = lim 0 = .
Let f(z) = H(z) and g(z) = 1 — H(x), where H is the Heaviside function defined in Exercise 1.3.57.

Thus, either f or g is 0 for any value of 2. Then lim0 f(z)and liII(l) g(x) do not exist, but lin}) [f(z)g(z)] = lin%o =0.

lim\/6— —27lim(\/6—1:—2.\/6—x+2_\/3—z+1)
z—2 /3 —x—1 z—=2\y/3—ax—1 V/6—2x+2 V/3—x+1

(V6—2) -2 3—a+1
(V3=z) —12 Vo-z+2

— lim 6—x—4.\/3—x—|—1
T2 \3 -z —1 V6 —x+2

Since the denominator approaches 0 as x — —2, the limit will exist only if the numerator also approaches

0as z — —2. In order for this to happen, we need lim B3z +ax+a+3) =0 <

3(-2)’+a(-2)+a+3=0 & 12—-2a+a+3=0 < a= 15 Witha = 15, the limit becomes

2 _
lim 3z +15x+18 . 3(z+2)(x+3) lim 3x+3) 3(-2+3) 3

_—_— = _— = = = — = —1.
o T2tz — 2 et - 1)(2+2)  eote z-1 —2-1 -3
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64. Solution 1: First, we find the coordinates of P and @ as functions of . Then we can find the equation of the line determined

by these two points, and thus find the z-intercept (the point R), and take the limit as » — 0. The coordinates of P are (0, 7).
The point Q is the point of intersection of the two circles z* + y* = 2 and (z — 1) 4 y* = 1. Eliminating y from these
equations, we getr” —2®> =1— (z—1)> < r’=1+2z—1 < = ir’ Substituting back into the equation of the

shrinking circle to find the y-coordinate, we get (3r2)* + 42 =2 o 2 =72 (1-1r?) & y=r\/1- 12

(the positive y-value). So the coordinates of @ are (%rQ, ry/1— irQ ) The equation of the line joining P and @ is thus

ry/1—3r2—7r

R (z —0). We set y = 0 in order to find the x-intercept, and get
T
2

y—r=

2

r —ir? (,/1—%1‘2—0—1) -
:2(1/171r2+1)

NI

Xr = - =

7’(/1—%7"2—1) 1—2r2—1

Now we take the limitas» — 07 lim z = lim 2(,/17 ir2+1): lim 2(vV1+1)=4.

r—0+ r—0 r—0

So the limiting position of R is the point (4, 0).

Solution 2: We add a few lines to the diagram, as shown. Note that Y p

/PQS = 90° (subtended by diameter PS). So ZSQR = 90° = Z0QT ¢

(subtended by diameter OT). It follows that ZOQS = ZTQR. Also o

ZPSQ =90° — ZLSPQ = ZORP. Since AQOS is isosceles, so is T R x
AQTR, implying that QT = T'R. As the circle C> shrinks, the point Q

plainly approaches the origin, so the point R must approach a point twice -

as far from the origin as 7', that is, the point (4, 0), as above.

1.7 The Precise Definition of a Limit

LIf|f(x) —1] < 0.2,then —0.2 < f(z) —1< 0.2 = 0.8 < f(x) < 1.2. From the graph, we see that the last inequality is

true if 0.7 < z < 1.1, so we can choose 6 = min {1 — 0.7,1.1 — 1} = min {0.3,0.1} = 0.1 (or any smaller positive

number).

f|f(z) — 2] < 0.5,then —0.5 < f(z) —2< 0.5 = 1.5< f(z) < 2.5. From the graph, we see that the last inequality is

true if 2.6 < = < 3.8, s0 we can take § = min {3 — 2.6, 3.8 — 3} = min {0.4,0.8} = 0.4 (or any smaller positive number).
Note that = # 3.

. The leftmost question mark is the solution of \/z = 1.6 and the rightmost, \/z = 2.4. So the values are 1.6% = 2.56 and

2.4% = 5.76. On the left side, we need |z — 4| < |2.56 — 4| = 1.44. On the right side, we need |z — 4| < |5.76 — 4| = 1.76.
To satisfy both conditions, we need the more restrictive condition to hold—namely, |z — 4| < 1.44. Thus, we can choose

& = 1.44, or any smaller positive number.
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SECTION 1.7 THE PRECISE DEFINITIONOFALIMIT I 61

4. The leftmost question mark is the positive solution of 2% = % thatis, x = % and the rightmost question mark is the positive

solution of 2* = 3, that is, z = \/g On the left side, we need |z — 1] <

% — 1’ ~ 0.292 (rounding down to be safe). On

the right side, we need |z — 1] < ‘\/g — 1‘ ~ 0.224. The more restrictive of these two conditions must apply, so we choose

0 = 0.224 (or any smaller positive number).

5. 2( From the graph, we find that y = tanx = 0.8 when x ~ 0.675, SO
v T 61 ~0.675 = & ~T—0.675~0.1106. Also,y = tanz = 1.2
1.2
oé when z ~ 0.876,50 § + 62 ~ 0.876 = 2 = 0.876 — 7 ~ 0.0906.
Thus, we choose § = 0.0906 (or any smaller positive number) since this is
0 T_ 5T Ty 2 the smaller of §; and d.
6. 1 From the graph, we find that y = 2z/(2® + 4) = 0.3 whenz = 2, 50
y= 2= 1-61=2 = 061 =31. Also,y=2z/(z>+4) =0.5whenz = 2, 50
x“+4
0.5
8"3‘ J 1462 =2 = J2 = 1. Thus, we choose § = % (or any smaller positive
0/ 2 number) since this is the smaller of 61 and J.
1-6, 1 1+ 6,
7. 7 From the graph with ¢ = 0.2, we find that y = 2 — 32 + 4 = 5.8 when
=x'=3x+4
e 2~ 1.9774,502 — 01 ~ 1.9774 = &, ~ 0.0226. Also,
6.2
6 y=a>—3z+4=62whenz ~ 2.022,50 2 + 62 = 2.0219 =
5.8
02 = 0.0219. Thus, we choose 6 = 0.0219 (or any smaller positive
Y 2vs, 2.2 number) since this is the smaller of 51 and .

Fore = 0.1, we get 61 =~ 0.0112 and §2 = 0.0110, so we choose

0 = 0.011 (or any smaller positive number).

8. Fory = (4z +1)/(3z —4) ande = 0.5, we need 1.91 < z < 2.125. Sosince |2 — 1.91| = 0.09 and |2 — 2.125| = 0.125,
we can take 0 < § < 0.09. For e = 0.1, we need 1.980 < 2.021. So since |2 — 1.980| = 0.02 and |2 — 2.021| = 0.021,

we can take 6 = 0.02 (or any smaller positive number).

55 47
y=35 y=4.6
y=4 y =44
1.8 : : : 22 197 : 203
35 43
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62 [ CHAPTER1 FUNCTIONS AND LIMITS
From the graph, we find that y = tan® = 1000 when z ~ 1.539 and

9 (a) 1100
1000 f )
x ~ 1.602 for = near . Thus, we get § ~ 1.602 — 5 ~ 0.031 for
M = 1000.
m 37
40 4
(b) 11,000 From the graph, we find that y = tan® « = 10,000 when 2 ~ 1.561 and
( )
10.000 x ~ 1.581 for « near Z. Thus, we get § ~ 1.581 — 5 ~ 0.010 for
M = 10,000.
L.
XO 4
10. 200 From the graph, we find that 22 /v/z — 5 = 100 =  ~ 5.066.
x?
{ N l Thus, 5 + 0 ~ 5.0659 and § ~ 0.065.
100 { J
30 5+6 >

1. (@ A=mr’and A=1000cm®> = ar*=1000 = r*=20 = =, /100 (>0) =~17.8412cm.

(b) |JA —1000| <5 = —5<mr?—-1000<5 = 1000—5<7r*><10004+5 =
V2R < < 1008 = 17,7966 < 7 < 17.8858. (/2000 — | /995 ~ (0.04466 and |/ 2092 — , /1000 ~ (.04455. So

if the machinist gets the radius within 0.0445 cm of 17.8412, the area will be within 5 cm? of 1000.

(c) x isthe radius, f(x) is the area, « is the target radius given in part (a), L is the target area (1000), ¢ is the tolerance in the

202 (°C)
= 2 = ( ™\
12. (@) T =0.1w* + 2.155w + 20 and 7' = 200 = T —201 /
[by the quadratic formula or T =200 /
\ / : /335

(watts)

area (5), and 4 is the tolerance in the radius given in part (b).

0.1w? +2.155w + 20 = 200 =

from the graph] w = 33.0 watts (w > 0)

(b) Fromthe graph, 199 < 7' <201 = 32.89 < w < 33.11. 323
(c) x is the input power, f(x) is the temperature, a is the target input power given in part (a), L is the target temperature (200),

e is the tolerance in the temperature (1), and § is the tolerance in the power input in watts indicated in part (b) (0.11 watts).

1 1
13 (a) 4 —8| —4|z -2 <01 o |z—2| <07,s05=07=o,025.
.01 .01
|z —2] < %,soé:%zo.ooza

() [4z — 8| =4|z —2| < 0.0l <
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SECTION 1.7 THE PRECISE DEFINITION OF ALIMIT U

14. |(bx —7) — 3| = |bz — 10| = |5(z — 2)] = 5|z — 2|. Wemust have |f(z) — L| <e&,s05]z —2|<e <
|z — 2| < /5. Thus, choose 6 = /5. Fore = 0.1, § = 0.02; fore = 0.05, § = 0.01; for e = 0.01, 6 = 0.002.

15. Givene > 0, we need § > 0 such that if 0 < |z — 3| < 4, then Y R
I}
1 1 1 2+
’(1+§x)72’<€.But’(1+§x)f2f<5 & fgx71f<s & ;
|3|lz =3[ <e < |z —3|<3e Soifwechoose § = 3¢, then 2o
0<|r—3/<d = |(1+%x)—2|<s.Thus,liné(l—l-%x):Zby ,
= 0 3-6 3 3+68 «x
the definition of a limit.
16. Given e > 0, we need § > 0 such that if 0 < |z — 4] < 4, then Y
y=2x—15
|2z —5) —3| <e. But|(2z —5) - 3|<e & [2z—-8|<e & 3+a\
2|z —4| <e < |z —4| <e/2. Soifwechoose § = £/2, then /1
0<lo—4/<d = |(22—5)—3| <e Thus, lim(2r —5) = 3 by the e
definition of a limit. :
0 VAP
17. Givene > 0, we need § > 0 such that if 0 < |z — (—3)| < 4, then y
y=1-4x 13+e
--------------- H13
|(1—4z) — 13| <e.But|(1—4z) - 13| <e < e
|-dx—12|<e & |-4||z+3]<e & |r—(-3)|<e/4 Soif
we choose § = e/4,then 0 < [z — (=3)|<d = [(1—4z)—-13|<e.
Thus, lim (1 — 4z) = 13 by the definition of a limit.
3 0 X
—3-6 —-3+4+96
18. Given e > 0, we need § > 0 such that if 0 < |z — (—2)| < 4, then y/

|3z 4+5) — (—-1)|<e. But|3z+5)— (1) <e <

Bz +6|<e < PBllz+2/<e & |r+2|<e/3.Soif wechoose
d=¢/3,then0 < |z +2|<d = |(Bzx+5)—(—1)| <e. Thus,
xlin}2(3x + 5) = —1 by the definition of a limit.

—l+e x

S IN

—l—¢
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19.

20.

21.

22.

23.

24.

25.

26.

21.

Ll CHAPTER1 FUNCTIONS AND LIMITS

Givene > 0, we need 6 > 0 such that if 0 < |z — 1] < 4, then 2—;4x—2'<5. But 2§4x—2‘<5 &
4o —4 4 3 . 3

3| <¢ @& |3/l =1 <e & |z—1] < 2e Soifwechoose § = 3¢, then0 < [z —1| <§ =
‘2 243: — 2‘ < e. Thus, lim1 2+de = 2 by the definition of a limit.

Givene > 0, we need § > 0 such that if 0 < |z — 10| < &, then |3 — 2z — (=5)| <e. But[3 — 2z — (-5)| <e¢ <
|8—3z|<e & |-%|lz—10/<e & |z—10| < e Soifwechoose§ = 3¢, then0 < |z — 10 <§ =

|3 — 2z — (—5)| < e. Thus, Jim (3 — 22) = —5 by the definition of a limit.

. . >+ —6
Given e > 0, we need 6 > 0 such that if 0 < |z — 2| < 4, then 7—5 <e &
-2
%—5’<5 & |lr+3-5/<e [r#2] & |r—2|<e Sochoosed =e.
—2

Then0 < |z —2(/<d = |jzx—2/<e = |z+3-5|<e = %—5‘<5 [x#2 =
2 _ 2 _
r iz 6 5’ < &. By the definition of a limit, lim *—%—0 _ 5.

x—2 =2 xr—2

. . 9 — 427
Given e > 0, we need § > O such thatif 0 < |« + 1.5| < 4, then 312 -6l <e &

‘ (34 22)(3 — 2x2)

3422 —6‘<a & 3-2rx—-6]<e [z#£-15] & |2z0-3|<e & |2jz+15<e &

|z +1.5] < e/2.Sochoose § =¢/2. Then0 < [z + 1.5| <d = |z+15]<e/2 = |-2||z+15/<e =

(3+22)(3 —2z) 9 — 4a?
—2x — — 2z — L et —1. - .
|2z —-3|<e = [3-2z—-6|<e = 3120 6| <e [z#-15] = 3720 6| <e
o 2
By the definition of a limit, lim 9—dam
z——-1.5 3+ 2x

Givene > 0, we need § > 0 such thatif 0 < |x — a| < ¢, then |2 — a| < . So 6 = e will work.

Givene > 0, we need § > 0 such that if 0 < |z — a| < d, then |c¢ — ¢| < e. But |¢ — ¢| = 0, so this will be true no matter

what § we pick.

Givene > 0, weneed § > Osuchthatif0 < |z — 0| < §,then [2° —0| < & 2°<e & |z| < E Taked =/

Then0 < |z—0/<§ = |2*—0] <e. Thus, lim 22 = 0 by the definition of a limit.

Givene > 0, weneed § > Osuchthatif 0 < |z — 0| < 6, then [2° — 0| <e & [z’ <e & |z < ¢ Takes = ¢z

Then0 < |z —0/<é§ = |2°—0] <4’ =ec. Thus, lim, 23 = 0 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < [z — 0| < &, then ||z — 0| < e. But ||| = |z|. So this is true if we pick § = &.

Thus, lin}) |z| = 0 by the definition of a limit.
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32.

33.

34.
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Given e > 0, we need § > O such that if 0 < = — (—6) < 4, then |[/6+ 2 — 0| <e.But|V/6+z -0/ <e <«
Votr<e & 6+ax<e® & x—(—6)<e Soifwechoosed =e% then0 <z —(—6)<§ =

|/6+ 2 — 0| <e. Thus, lim+ /6 + x = 0 by the definition of a right-hand limit.
xr——6

Givene > 0, we need § > Osuch thatif 0 < |z — 2| < 4, then (2> — 4z +5) — 1| <e & |2 -4z +4|<ec &
|(x—2)?| <e.Sotake§ =z Then0 < [z —2| <6 & |z-2/ < & |[(z—2)% <e Thus,

lim (z* — 4z + 5) = 1 by the definition of a limit.

r—2

Given e > 0, we need § > O such that if 0 < |z — 2| <, then |(2® + 22 —7) — 1| <e.But|(2* + 22 - 7) — 1| <e <«
|2 + 22— 8| <e <« |z+4||z—2| <e. Thusour goal is to make |z — 2| small enough so that its product with |z + 4|
is less than . Suppose we first requirethat [z — 2| < 1. Then -1 <2 —-2<1 = 1<2z<3 = 5s<z+4<7 =
|z +4] < 7,and thisgivesus 7|z — 2| <e = |x —2| <¢e/7. Choose 6 = min{1,e/7}. Thenif0 < |z — 2| < 4, we
have |z — 2| < e/7and |z + 4] < 7,50 [(#® + 22 —7) — 1| = [(z + 4)(z — 2)| = |z + 4] [z — 2| < 7(¢/7) = ¢, a5

desired. Thus, 1ir112(a:2 + 2x — 7) = 1 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < [z — (—2)| < &, then |(2® — 1) — 3| < < or upon simplifying we need

|#* — 4| < e whenever 0 < |z + 2| < é. Notice that if [z + 2| < L,then -1 <2 +2<1 = —-5<z—-2<-3 =
|z —2] <5.Sotake 6 = min{e/5,1}. Then0 < [z +2| < = |z—2|<band|z+2| <e/5, 50

|(2* = 1) = 3| = [(z + 2)(x — 2)| = |z + 2| |z — 2| < (¢/5)(5) = e. Thus, by the definition of a limit, lim (2® — 1) = 3.

T——

Given e > 0, we need § > 0 such that if 0 < |& — 2| < 4, then |2® — 8| < e. Now |2 — 8| = |(z — 2)(2® + 2z + 4)|.
If |x —2| < 1,thatis, 1 < = < 3, then2® + 2z +4 < 3% +2(3) +4 = 19and so
|2® — 8| = |z — 2| (z® + 22 +4) <19]z —2|. Soifwetake § = min {1, 5}, then 0 < [z — 2| <5 =

|2® — 8| = |z — 2| (2® + 2z + 4) < 5 - 19 = &. Thus, by the definition of a limit, lim, 3 =8,

Givene > 0,weletd =min {2,£}. f0 < |z —3| <4, then |z —3[ <2 = —-2<z-3<2 =

4<x+3<8 = |r+3/<8 Alsolz—3<5,5s0[2>—9|=|z+3[lz—3]<8-5=c Thus, limgx2:9.

From the figure, our choices for § are §; = 3 — /9 — ¢ and Y
9+

02 = /9 4 € — 3. The largest possible choice for § is the minimum 0 ;

— &

value of {01, d2}; thatis, § = min{d1, 2} = d2 = /9 +¢ — 3.
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(@) The points of intersection in the graph are (z1,2.6) and (2, 3.4) P 7 <
3
with z; &~ 0.891 and z2 &~ 1.093. Thus, we can take 6 to be the //
smallerof 1 — zy and 2 — 1. S0 6 = z2 — 1 ~ 0.093.
. e 1 5
V4 )

(b) Solving z® + = 4 1 = 3 + ¢ gives us two nonreal complex roots and one real root, which is

2/3
216 + 108 12+/336 + 324, 81e2 —12
o(e) = (216 + 108 + 12v/336 4 324c + 81e7) Thus, & = o(c) — 1.

6(216 + 108 + 12/336 + 324 + 812 ) /°

(c) If e = 0.4, then z(e) ~ 1.093272 342 and § = z(¢) — 1 ~ 0.093, which agrees with our answer in part (a).

1. Guessing a value for §  Lete > 0 be given. We have to find a number 6 > 0 such that

1 1 ’
— — =| < e Whenever
x 2

= |x‘2—_|2‘ < e. We find a positive constant C' such that L <C =
X

0 < |z—2| <4 But 1_1_j2-2
x |2]

z 2| | 2z

2

—2 . . . .
|:1:‘2I| | < C'|z — 2| and we can make C' |z — 2| < e by taking |z — 2| < % = 4. We restrict z to lie in the interval
1 1 1 1 1 1 1 1. .
[r—2/<1 = 1l<a<3s01l>=->- = —<—<=- = — <=.S0C = = issuitable. Thus, we should
x” 3 6 "2z 2 |2z 2 2

choose § = min {1, 2¢}.

2. Showing that 6 works ~ Givene > Oweletd = min{1,2¢}. If0 < |z — 2| <, then|z — 2| <1 = 1<zx<3 =

5*5‘: 22]

 2¢ = . This shows that lim (1/z) = 1

N =

1 < 1 (asin part 1). Also |z — 2| < 2¢, S0
[2z] ~ 2

1. Guessing a value for §  Given e > 0, we must find 6 > 0 such that |\/z — \/a| < e whenever 0 < |z — a| < . But

|[vVz —+/a| = % < & (from the hint). Now if we can find a positive constant C' such that \/z + \/a > C then
x a

|z — al |z — al
<

NCE RV C

centeredata. If [z —a| < Ja,then —Ja<z—-a<3a = la<z<3a = z+a>,/sa+aandso

< g, and we take |z — a| < Ce. We can find this number by restricting « to lie in some interval

C = y/3a+ +/ais asuitable choice for the constant. So | — a| < (\/5 + \/E) e. This suggests that we let
0= min{%a, (\/g—i— \/E)e}.

2. Showing that 6 works ~ Given e > 0, we let 6 = min {%a, (\/;4— \/5)5}. If0 < |z —al| <4, then

|t —a| < ia = Va+a> \/;—s—\/a(asinpartl). Also |z — a| < (\/;4—\/5)5,50

o—a__ (VP2 +Va)e
VEEVE (Va2 + va)

[VZ —+a| = = . Therefore, lim \/z = /a by the definition of a limit.
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Suppose that }in% H(t) = L. Givene = %, thereexists § > Osuchthat0 < [t| <§ = |H(t)—L| <3 <

L-1<H{)<L+3. Foro<t<dq H(t)=1s01<L+3 = L>z. For—6<t<0, H(t)=0,

soL—3<0 = L< 3. Thiscontradicts L > 3. Therefore, lim [1(t) does not exist.

Suppose that lin% f(z) = L. Givene = %, thereexists § > Osuchthat 0 < [z <6 = |f(z) — L| < &. Take any rational

number r with 0 < |r| < &. Then f(r) = 0,50 |0 — L| < %, 50 L < |L| < 3. Now take any irrational number s with

0 < |[s| <d.Then f(s) =1,50 |1 — L| < 3. Hence,1 — L < 3,50 L > 1. This contradicts L < 1, so lim f(x) does not
exist.

First suppose that ilil(ll f(z) = L. Then, given e > O thereexists § > 0sothat0 < [x —a| <d = |f(z)—L|<e.

Thena—d<z<a = 0<|r—a|<dso|f(x)—L|<e Thus, lim f(z)=L Alsoa<z<a+d =

r—a~

0<|z—al <dso|f(x)— L| <e. Hence, lim+ f(z) = L.

Now suppose lim f(z) = L = hm+ f(z). Lete > 0 be given. Since lim f(x) = L, there exists §: > 0 so that

Tr—a

a—01<zx<a = |f(x)—L|<e Since lim f(x)=L,thereexistsds >0sothata <z <a-+d2 =

|f(z) — L| < e. Let § be the smaller of 61 and d2. Then0 < [z —a| <d = a—-di<x<aora<z<a+d250

|f(x) — L| <. Hence, lim f(x) = L. Sowe have proved that lim f(z) =L <« lim f(z)=L= hm+ f(z).

1 4 1 1 1

S | - - — (= —_

@ra)n > 10,000 & (z+3)* < 10,000 & Jr+3< 775000 & |z —(-3)| < 0

Given M > 0,weneed § > Osuchthat0 < |z +3| <46 = 1/(z+3)* > M. Nowﬁ>M &

(:15+3)4<i < |x+3\<i.80take6: ! .Then0 < |z +3| <6 = L = L > M, so
M VM VM VM (z +3)*

L

. 5 5 5 s[5
LetN<0beg|ven.Then,f0rm<—1,wehavem<N & N<(x+1) & N<x+1'

__32 L B 32 L . 5 —
Letd = ,/N.Then l-d<z< -1 = ’/N<I+1<O = (x+1)3<N’Somll?lr(x+1)3_ o

(a) Let M be given. Since lim f(x) = oo, there exists §1 > Osuchthat0 < |z —a| <61 = f(z) > M + 1 — c. Since

T—a

lim g(z) = ¢, there exists 2 > Osuchthat0 < |z —a| < d2 = |g(z) —c|] <1 = g(x)>c— 1. Letdbethe

smaller of 61 and d2. Then0 < |z —a| <6 = f(z)+g(x) > (M +1—¢c)+ (¢c—1) = M. Thus,

tim /() + g(a)] = .
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(b) Let M > 0 be given. Since lim g(x) = ¢ > 0, there exists 61 > Osuchthat0 < |z —a| < 61 =
lg(z) —c| <c¢/2 = g(x) > c/2.Since lim f(x) = oo, there exists 2 > O suchthat 0 < |z —a| < 02 =

f(z) >2M/c. Letd = min{01,d2}. Then0O < |z —a| <6 = f(z)g(x)> M g = M, so lim f(x)g(z) = occ.

C r—a

(c) Let N < 0 be given. Since lim g(z) = ¢ < 0, there exists §; > Osuchthat0 < |z —a| < 61 =

T—a

lg(x) —c| < —¢/2 = g(x) < ¢/2.Since lim f(x) = oo, there exists 2 > 0suchthat0 < |z —a| < 2 =

f(z) >2N/c. (Notethatc < 0and N <0 = 2N/c>0.) Letd = min{d1,d2}. Then0 < |z —a| <d =

f(x) >2N/ec = f(z)g(z) < g Lo N, so0 lim f(z) g(z) = —o0.

2 Tr—a

1.8 Continuity

1. From Definition 1, hn}; f(z) = f(4).

2. The graph of f has no hole, jump, or vertical asymptote.

3. (a) f is discontinuous at —4 since f(—4) is not defined and at —2, 2, and 4 since the limit does not exist (the left and right

limits are not the same).

(b) f is continuous from the leftat —2 since lim f(z) = f(—2). f is continuous from the right at 2 and 4 since

r——2"

lim+ f(z) = f(2) and lirn+ f(x) = f(4). Itis continuous from neither side at —4 since f(—4) is undefined.
x—2 r—4

4. g is continuous on [—4, —2), (—2,2), [2,4), (4,6), and (6, 8).

5. The graph of y = f(x) must have a discontinuity at 6. The graph of y = f(x) must have discontinuities
x = 2 and must show that hm+ fz) = f(2). atz = —1and « = 4. It must show that
r—2

lim f(z) = f(-1)and lim f(z) = f(4).
r——1 r—4+

- :

y

\q ,}1 0 4 X
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9.

10.

11

12.
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The graph of y = f(z) must have a removable 8. The graph of y = f(x) must have a discontinuity
discontinuity (a hole) at z = 3 and a jump discontinuity atz = —2with lim f(z)# f(—2)and
r——2"
atx = 5.
lim+ f(x) # f(—2). It must also show that
y r——2
/_/\ lim f(x) = f(2)and lim f(x)# f(2).
x—27 r—2
; y
0 3 5 X /
-2 0 2 x
/ o/
(@) The toll is $7 between 7:00 AM and 10:00 AmM and between 4:00 pm and 7:00 pPMm. T
(b) The function 7" has jump discontinuities at ¢ = 7, 10, 16, and 19. Their ; o
significance to someone who uses the road is that, because of the sudden jumps in
the toll, they may want to avoid the higher rates between ¢ = 7 and ¢ = 10 and 0 710 1619 24 !
between t = 16 and ¢t = 19 if feasible.
(a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps

from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,

without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one

height to another without going through all of the intermediate values—at a cliff, for example.
(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value,

without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.
If f and g are continuous and g(2) = 6, then /lin§[3f(x) + f(z)g(x)] =36 =

3lim f(z) + lim f(2) - lim g(@) =36 = 3f(2)+f(2)-6=36 = 9f(2)=36 = f(2)=4.

r—2

lim f(z) = lir% (3z* =5z + Va2 +4) = 31‘in§z4 -5 ljn&z-l— 13/1‘in12(x2+4)
=3(2)* —5(2)+ V22 +4=48—-10+2=40 = f(2)

By the definition of continuity, f is continuous at a = 2.
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13 lim f(x) = lim (z+22%)" = ( lim x4 2 lim x3>4 = [-1+2(-1)*]" = (-3)* =81 = f(-1).

T—— r——1 r——1 r——1
By the definition of continuity, f is continuous ata = —1.
. 2 . . 2

14. lim h(t) = li = = = = — = h(1).
P} ®) T 7}ini(l—i—t?’) }irril—i—}irrit?* 14(1)3 2 )

By the definition of continuity, & is continuous at a = 1.

15. For a > 2, we have

lim (22 + 3)
. o 2x4+3 oo .
;lir}l flz)= ilir’ll 5 = T (z %) [Limit Law 5]

2 lim z + lim 3

= Tmz—1lm2 [1,2, and 3]

o [7 and 8]
a—2

= f(a)

Thus, f is continuous atz = a for every a in (2, co); that is, f is continuous on (2, co).

16. For a < 3, we have

lim g(z) = lim 2+/3 — =z

=2lim+3—x [Limit Law 3]

=2 m [11]
=2v3—a [7 and 8]
=g(a)

So g is continuous at « = a for every a in (—oo, 3). Also, lim g(z) = 0 = g(3), S0 g is continuous from the left at 3.

r—37

Thus, g is continuous on (—oo, 3].

1. flw) = x—l&-2

is discontinuous at a = —2 because f(—2) is undefined. Y

N
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19.

20.

21.

22.

23.

fa)y=1 712 if x#£ -2

1 if v =-2

Here f(—2) =1,but lim f(z)= —occand lim+ f(z) = oo,

r——2" r——2

S0 lime(:c) does not exist and f is discontinuous at —2.

T——

- 1—-2% ifz<l
f(@) = 1)z if z>1

The left-hand limitof fata = 11s
lim f(z) = lim (1 — %) = 0. The right-hand limit of f ata = 1 is
r—1— r—1—

hm+ flz) = lim+(1/az) = 1. Since these limits are not equal, lim1 f(z)
z—1 z—1 —

does not exist and f is discontinuous at 1.

iﬂzfiﬂ

if 1
fay={@1 7
1 if x=1
-z z(x —1) T 1
li — 1 — lim —2F— 1)y -
z%f(m) IlLﬂl 2 —1 mlinl (1‘+1)($—1) Ilinll’-‘rl 2’

but f(1) =1, so f is discontinous at 1.

cos T if <0
fl@)=40 if =0
1—22 ifz>0

lir% f(z) =1,but £(0) =0 +# 1, so f is discontinuous at 0.

20% — 50 —3 .

_—  if 3
f@)=4  =-3 "7

6 if =3
. o2 —br—-3 . (2z+1)(z—-3) -
R - I

but f(3) = 6, so f is discontinuous at 3.

2’ —2—2 (z-2)(z+1)
r—2 T —2

f(z) =

continuous at 2.

SECTION 1.8 CONTINUITY O

~ e
t

/ 0 é X

=z + 1 for x # 2. Since lin12f(:):) =2+ 1 =3, define f(2) = 3. Then f is
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24.

25.

26.

21.

28.

29.

30.

31.

32.

33.
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22 =8 (r—2)(z*+2x+4) 2> +2x+4 N 4+4+4
Tl GedEid) w12 forx;éQ.Smceil_)rgf(x)_ﬂ_3,deﬁnef(2)_3.

fl2) =
Then f is continuous at 2.

22—z —1

Fla) = 241

is a rational function, so it is continuous on its domain, (—oo, co), by Theorem 5(b).

2 2
G(z) = z+1 = z+1 is a rational function, so it is continuous on its domain,
202 —x—1 (zr+1)(x—1)

(—o0,—3) U (—3,1) U (1, 00), by Theorem 5(b).

3 J—
P-2=0 = 2*=2 = z=12,0Q@k)= ;f_; has domain (—oco, ¥/2) U (V/2,00). Now z* — 2 is

continuous everywhere by Theorem 5(a) and /x — 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, Q is

continuous on its domain by part 5 of Theorem 4.

By Theorem 7, the trigonometric function sin 2 and the polynomial function = + 1 are continuous on R.

sin

By part 5 of Theorem 4, h(z) = 1
x

is continuous on its domain, {z | z # —1}.

By Theorem 5, the polynomial 1 — 22 is continuous on (—oo, co). By Theorem 7, cos is continuous on its domain, R. By

Theorem 9, cos(1 — x?) is continuous on its domain, which is R.

By Theorem 7, the trigonometric function tan = is continuous on its domain, {« | # # % + 7n}. By Theorems 5(a), 7, and 9,

the composite function v/4 — x2 is continuous on its domain [—2, 2]. By part 5 of Theorem 4, B(z) = _tanr is

V4 — x?

continuous on its domain, (—2, —w/2) U (—7/2,7/2) U (7/2, 2).

1 1. 1
M(m):,/l—i—;:,/xl— |sdeﬁnedwhenII >0 = z+1>0andxz >0o0rz+1<0andz<0 = x>0

orz < —1, 0 M has domain (—oo, —1] U (0, 00). M is the composite of a root function and a rational function, so it is

continuous at every number in its domain by Theorems 7 and 9.

The sine and cosine functions are continuous everywhere by Theorem 7, so F'(x) = sin(cos(sinx)), which is the composite

of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9.

10 is undefined and hence discontinuous when

vy= 1+ sinx
l+sinz=0 < sinzx=-1 & x:f§+27rn,nan
integer. The figure shows discontinuities for n = —1, 0, and 1; that

. % T 3
- —— ~ —7.85, —— ~ —1. d — ~4.71.
10 | 710 IS, 5 7.85, 5 57, an 5 7
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37.

38.

39.

40.
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-1 @ry =222 1 (%)’ = 200

-5 -5

The functiony = f(z) = tan V/z is continuous throughout its domain because it is the composite of a trigonometric function
and a root function. The square root function has domain [0, o) and the tangent function has domain {z | = # 5 + 7n}.

So f is discontinuous when « < O andwhen /x =% +7n = = (g + Trn)z, where n is a nonnegative integer. Note

that as x increases, the distance between discontinuities increases.

Because we are dealing with root functions, 5 + 1/ is continuous on [0, 0o), v/z + 5 is continuous on [—5, co), so the

quotient f(x) = Stve is continuous on [0, co). Since f is continuous at 2 = 4, lin}l f(z) = f(4) =1L

Vot
Because x is continuous on R, sin x is continuous on R, and = + sin x is continuous on R, the composite function

f(z) = sin(z + sinx) is continuous on R, so lim f(z) = f(7) = sin(r + sinw) = sin7 = 0.

Because = and cos z are continuous on R, so is f(z) = x cos® z. Since f is continuous at z = Z,

. ™ ™ \/5 ? T 1 s
xﬂ%4f(x>=f(z):z<7> =712°%

2® — 3z 4+ 1 = 0 for three values of «, but 2 is not one of them. Thus, f(x) = (z* — 3z + 1)~ is continuous at 2 = 2 and
lim f(z) = f(2) = (8~ 6+1)° =375 = L.
@) 2?2 ifr<l
xTr) =
Ve o ifz>1

By Theorem 5, since f(z) equals the polynomial 2 on (—oo, 1), f is continuous on (—oo, 1). By Theorem 7, since f(x)

equals the root function /z on (1, 00), f is continuous on (1,00). Atz =1, lim f(z) = lim 2z = 1and
r—1— r—1—

lim f(z) = lim, vz = 1. Thus, lim f(x) exists and equals 1. Also, f(1) = V1= 1. Thus, f is continuous at = = 1.
r—1 rz—1 z—

We conclude that f is continuous on (—oo, 0o).

sinz  if e <w/4
f(z) = .
cosx if x>mw/4

By Theorem 7, the trigonometric functions are continuous. Since f(z) = sinx on (—oo, 7/4) and f(z) = cosz on

(/4,00), f is continuous on (—oo, 7/4) U (m/4,00). lim  f(z)= lim sinz =sin ¥ = 1//2 since the sine
z—(mw/4)~ z—(m/4)~
function is continuous at 7 /4. Similarly, ~ lim . f(z)=lim L cosT = 1/+/2 by continuity of the cosine function
z—(mw/4) z—(mw/4)
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41.

42.

43.

44,
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at /4. Thus, li(m/4) f(z) exists and equals 1/+/2, which agrees with the value f(r/4). Therefore, f is continuous at /4,

so f is continuous on (—oo, co).

1+ 22 if <0

flx)=¢2—=z if 0<z<2 0.2)
(z—2)* ifz>2 ©,1)
f is continuous on (—oo, 0), (0, 2), and (2, oo) since it is a polynomial on 0‘ (2,0) *

each of these intervals. Now lim f(x) = lim (1+2%) =1and lim f(z)= lim (2 —x)=2,%0f1is

x—0— z—0" z—0t z—0t

discontinuous at 0. Since f(0) = 1, f is continuous from the left at 0. Also, lim f(z) = lim (2 —z) =0,
Tx—2 2

T—

lim f(z) = lim (x —2)? = 0,and f(2) = 0, so f is continuous at 2. The only number at which  is discontinuous is 0.

r+1 if <1

fla)={1/z  ifl<z<3 g
Ver—3 ifz>3 (1,2)
/ (3.%)
f is continuous on (—oo, 1), (1, 3), and (3, co), where it is a polynomial, (1,1
a rational function, and a composite of a root function with a polynomial, 0 (3.0 !

respectively. Now lim f(z) = lim (z+1) = 2and hm flz) = hm (1/2z) =1, so f is discontinuous at 1.
—1+ —1t

rz—1— rz—1—

Since f(1) = 2, f is continuous from the leftat 1. Also, lim f(z) = lim (1/z) = 1/3, and
r—3" x—3"

lim f(z) = lim vz —3=0= f(3),so f is discontinuous at 3, but it is continuous from the right at 3.

r—3+ z—3+
z+2 ifz<0 Y

fly={ 2 ifo<z<i 0y &2
2—xz ifzxz>1 w)

f s continuous on (—co, 0), (0, 1), and (1, o) since on each of 0.0 x

these intervals it is a polynomial. Now lim f(z) = lim (x4 2) = 2and
r—0" z—0—"

hm+ f(z) = hm+ 22% = 0, so f is discontinuous at 0. Since £(0) = 0, f is continuous from the right at 0. Also
x—0 z—0

lim f(z) = lim 2z° = 2and hm f(x) = lim+(2 —x) = 1, so f is discontinuous at 1. Since f(1) = 2,

x—1— r—1— z—1t rz—1

f is continuous from the left at 1.

By Theorem 5, each piece of ' is continuous on its domain. We need to check for continuity at r = R.

. . GMr GM GM GM . GM . GM
i F(r) = i St = and i F0) = i, 57— G50 iy () = G Sive ) =

F'is continuous at R. Therefore, F'is a continuous function of r.
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3

) cx’+2 ifr<?2
xT) =
T° —cx if x>2

[ is continuous on (—o0,2) and (2,00). Now lim f(z) = lim (cz®+ 2z) = 4c+ 4 and
T—27

r—2

lim f(z) = lim (2° —cx) =8—2c. So fiscontinuous <« 4c+4=8-2c & 6c=4 < c= 2 Thus,for f

z—2+ r—2

to be continuous on (—oo, 00), ¢ = 2.
2
z°—4 .
if 2
79 T <

fla) = ar? —bxr+3 if 2<z<3
2x —a+b if >3
27 —

Atz =2 lim f(z)= lim 2t = i EFDEZD o) —242-4

z—2— z—2— T —2 z—2— r—2 z—2—

lim f(z) = lim+(aa:2 —br+3)=4a—2b+3

z—2t r—2

We must have 4a —2b+3 =4,0r4a —2b=1 (1).

Atz =3 lim f(z) = lim (a2® —bx +3) =9a —3b+3

r—37 r—3~
lim f(z)= lim 2z —a+b)=6—a+b
z—3+ r—3

We musthave 9a —3b+3 =6 —a+b,0r10a — 4b =3 (2).

Now solve the system of equations by adding —2 times equation (1) to equation (2).

—8a+4b= -2
10a —4b= 3
2a = 1
So a = 1. Substituting 3 for a in (1) gives us —2b = —1, so b =  as well. Thus, for f to be continuous on (—oo, o),

—p=1
a=b=3.

@ f@y= 2L - DD @)t DY

1 1 po = (@ +1)(z+1) [orz®+2®+x+1]

for z # 1. The discontinuity is removable and g(x) = = + 2 + 2 + 1 agrees with f for z # 1 and is continuous on R.

-2 -2 z(@®-2-2) z(z-2)(z+1)
(b)f(:n)— T —2 o xr— 2 - xr—2 =7

(x+1) [ora®+x] forx # 2. The discontinuity

is removable and g(x) = x* + x agrees with f for = # 2 and is continuous on R.
(¢) lim f(z) = lim [sinz] = lim 0=0and lim f(z)= lim [sinz] = lim (~1) = —1,s0 lim f(x) does not

T—T z—mt z—mt z—mt

exist. The discontinuity at x =  is a jump discontinuity.
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2
1‘\0/

o o2 ' 1 x o o5 T 1%
f does not satisfy the conclusion of the f does satisfy the conclusion of the
Intermediate Value Theorem. Intermediate Value Theorem.

f(z) = 2% 4+ 10sin z is continuous on the interval [31, 32], f(31) ~ 957, and f(32) ~ 1030. Since 957 < 1000 < 1030,
there is a number ¢ in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: There is also a number c in

(—32,—31) such that f(c) = 1000.

Suppose that f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2, 3],
the fact that f(2) = 8 > 6 and f(3) < 6 implies that there is a number ¢ in (2, 3) such that f(c) = 6. This contradicts the fact
that the only solutions of the equation f(z) = 6 are x = 1 and = = 4. Hence, our supposition that f(3) < 6 was incorrect. It

follows that f(3) > 6. But f(3) # 6 because the only solutions of f(z) = 6 are z = 1 and = = 4. Therefore, f(3) > 6.

f(x) = x* 4+ — 3 is continuous on the interval [1,2], f(1) = —1, and f(2) = 15. Since —1 < 0 < 15, there is a number ¢
in (1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation z* + = — 3 = 0 in the

interval (1, 2).

f(x) = ¥z + = — 1 is continuous on the interval [0, 1], £(0) = —1,and f(1) = 1. Since —1 < 0 < 1, there is a number ¢ in
(0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation vz + z — 1 = 0, or
V& =1 -z, intheinterval (0,1).

f(z) = cosx — x is continuous on the interval [0, 1], f(0) = 1,and f(1) = cos1 — 1 ~ —0.46. Since —0.46 < 0 < 1, there
is a number ¢ in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
cosz —x =0, 0r cosz = z, in the interval (0, 1).
The equation sin 2 = > — 2 is equivalent to the equation sinz — ? 4+« = 0. f(z) = sinz — 22 4 « is continuous on the
interval [1,2], f(1) =sinl ~ 0.84, and f(2) =sin2 — 2 ~ —1.09. Since sin1 > 0 > sin 2 — 2, there is a number ¢ in
(1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sinz — 2 4z = 0, or
sinz = x® — =, in the interval (1,2).
(@) f(x) = cosx — 2* is continuous on the interval [0, 1], £(0) = 1 > 0,and f(1) = cos 1 — 1 ~ —0.46 < 0. Since
1> 0 > —0.46, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root
of the equation cos z — 2® = 0, or cos z = 2®, in the interval (0, 1).
(b) f(0.86) ~ 0.016 > 0 and f(0.87) ~ —0.014 < 0, so there is a root between 0.86 and 0.87, that is, in the interval
(0.86,0.87).
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56. () f(z) = 2° — 2 + 2z + 3 is continuous on [—1,0], f(—1) = —1 < 0,and f(0) = 3 > 0. Since —1 < 0 < 3, there
is a number c in (—1,0) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
2° — 2% 4+ 22 + 3 = 0 in the interval (-1, 0).
(b) f(—0.88) ~ —0.062 < 0 and f(—0.87) =~ 0.0047 > 0, so there is a root between —0.88 and —0.87.
57. () Let f(x) = 2° —2® —4. Then f(1) =1° — 12 —4 = —4 < 0and f(2) = 2° — 2? — 4 = 24 > 0. So by the
Intermediate Value Theorem, there is a number c in (1, 2) such that f(c) = ¢® — ¢ — 4 = 0.
(b) We can see from the graphs that, correct to three decimal places, the root is x ~ 1.434.

25 1.5

1 J2 1.4| I 1.5

—10 —0.5

58. (a) Let f(z) = vz — b — m_j-?) Then f(5) = —1 < 0and f(6) = £ > 0,and f is continuous on [5, cc). So by the

Intermediate Value Theorem, there is a number c in (5, 6) such that f(c) = 0. This implies that 6_1—3 =+/c—5.

(b) Using the intersect feature of the graphing device, we find 0.2
that the root of the equation is = 5.016, correct to three ( y=\x—5
decimal places. y=—1-
x+3
5 : : : : 5.1
0

59. (=) If f is continuous at a, then by Theorem 8 with g(h) = a + h, we have
lim f(a+h) = f(Jim (a+h)) = f(a).
(«=) Lete > 0. Since ’llin% f(a+h) = f(a), there exists § > O suchthat0 < |h| <§ =
|f(a+h) = f(a)] <e Soif0 <[z —al <4 then|f(z) — f(a)| = [f(a+ (z —a)) — fla)] <e.
Thus, lim f(x) = f(a) and so f is continuous at a.

60. lim sin(a 4+ h) = lim (sinacosh + cosasinh) = lim (sinacosh) + lim (cosasin h)
h—0 h—0 h—0 h—0

= (lim sin a) (lim cos h) + (lim cos a) (lim sin h) = (sina)(1) + (cosa)(0) = sina

h—0 —0 —0 0
61. As in the previous exercise, we must show that %in% cos(a + h) = cos a to prove that the cosine function is continuous.
lim cos(a + h) = lim (cosacosh —sinasinh) = lim (cosacos h) — lim (sinasin h)
h—0 h—0 h—0 h—0

= (lim cos a) (lim cos h) - (lim sin a) (lim sin h) = (cosa)(1) — (sina)(0) = cosa

—0 —0 h—0 —0
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62. (a) Since f is continuous at a, lim f(z) = f(a). Thus, using the Constant Multiple Law of Limits, we have

lim (¢f )(z) = lim cf(z) = ¢ lim f(z) =cf(a) = (cf )(a). Therefore, cf is continuous at a.

r—a r—a

(b) Since f and g are continuous at a, lim f(z) = f(a) and lim g(x) = g(a). Since g(a) # 0, we can use the Quotient Law

r—a r—a

lim f(x)
of Limits: lim (g) (z) = lim f@) = & = f(a) = (5) (a). Thus, 5 is continuous at a.

63. is continuous nowhere. For, given any number a and any § > 0, the interval (a — §, a + 9)

0 if x is rational
flx) = e

1 if z isirrational
contains both infinitely many rational and infinitely many irrational numbers. Since f(a) = 0 or 1, there are infinitely many

numbers z with 0 < |z — a| < § and [f(z) — f(a)| = 1. Thus, lim f(x) # f(a). [Infact, lim f(z) does not even exist.]

64. is continuous at 0. To see why, note that — |z| < g(x) < |z|, so by the Squeeze Theorem

0 if z isrational
g(x) = e
x if z isirrational

liH(l) g(x) = 0 = g(0). But g is continuous nowhere else. For if a # 0 and 6 > 0, the interval (a — J, a + ) contains both

infinitely many rational and infinitely many irrational numbers. Since g(a) = 0 or a, there are infinitely many numbers x with

0<|z—al <dand|g(xz)— g(a)| > |a| /2. Thus, lim g(x) # g(a).

65. If there is such a number, it satisfies the equation z®> +1 =z < z® — x4 1 = 0. Let the left-hand side of this equation be
called f(z). Now f(—2) = =5 < 0,and f(—1) =1 > 0. Note also that f(z) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number ¢ between —2 and —1 such that f(c¢) = 0, so that ¢ = A+ 1.

a b o 3 3 2 _ i
66. P + prcar— 0 = a(z’+z—2)+ba”+ 22° — 1) = 0. Let p(x) denote the left side of the last

equation. Since p is continuous on [—1, 1], p(—1) = —4a < 0, and p(1) = 2b > 0, there exists a ¢ in (—1, 1) such that
p(c) = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (—1,1) is
(—=14++/5)/2 =7, butp(r) = (35 — 9)a/2 # 0. Thus, c is not a root of either denominator, so p(c) =0 =

x = c is a root of the given equation.

67. f(z) = x*sin(1/z) is continuous on (—oo, 0) U (0, 0o) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since —1 < sin(1/z) < 1, we have —z* < 2 sin(1/z) < 2*. Because

lim (—=*) = 0 and lim, x* = 0, the Squeeze Theorem gives us 1in})(x4 sin(1/x)) = 0, which equals f(0). Thus, f is

x—0

continuous at 0 and, hence, on (—oo, ).
68. (a) lim+ F(z)=0and lim F(z)=0,s0 lir% F(z) = 0, which is F'(0), and hence F' is continuous at z = a if a = 0. For
x—0 z—0— r—

a >0, lim F(z) = lim ¢ = a = F(a). Fora <0, lim F(z) = lim (—x) = —a = F(a). Thus, F'is continuous at

r—a r—a r—a r—a

x = a; that is, continuous everywhere.
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(b) Assume that f is continuous on the interval 7. Then fora € I, lim | f(x)| = ‘lim f(a:)’ = |f(a)| by Theorem 8. (If a is
an endpoint of I, use the appropriate one-sided limit.) So | f| is continuous on I.

1 ifz>0
(c) No, the converse is false. For example, the function f(z) = { Ui B 0 is not continuous at x = 0, but | f(z)| =1is
— T x <

continuous on R.

Define u(t) to be the monk’s distance from the monastery, as a function of time ¢ (in hours), on the first day, and define d(t)
to be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to
the top of the mountain. From the given information we know that «(0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now
consider the function w — d, which is clearly continuous. We calculate that (v — d)(0) = —D and (v — d)(12) = D.

So by the Intermediate Value Theorem, there must be some time ¢, between 0 and 12 such that (v — d)(t0) =0 <

u(to) = d(to). So at time ¢, after 7:00 AM, the monk will be at the same place on both days.

REVIEW
CONCEPT CHECK

. (@) A function f is a rule that assigns to each element = in a set A exactly one element, called f(z), inaset B. The set A is

called the domain of the function. The range of f is the set of all possible values of f(x) as x varies throughout the

domain.
(b) If f is a function with domain A, then its graph is the set of ordered pairs {(z, f(z)) | z € A}.

(c) Use the Vertical Line Test on page 15.

. The four ways to represent a function are: verbally, numerically, visually, and algebraically. An example of each is given

below.
Verbally: An assignment of students to chairs in a classroom (a description in words)

Numerically: A tax table that assigns an amount of tax to an income (a table of values)
Visually: A graphical history of the Dow Jones average (a graph)

Algebraically: A relationship between distance, rate, and time: d = rt (an explicit formula)

. (8) Ifafunction f satisfies f(—xz) = f(«) for every number z in its domain, then f is called an even function. If the graph of

a function is symmetric with respect to the y-axis, then £ is even. Examples of an even function: f(z) = =2,

flx) = z* + 22, f(z) = |z|, f(z) = cosz.
(b) If a function f satisfies f(—x) = — f(z) for every number x in its domain, then f is called an odd function. If the graph
of a function is symmetric with respect to the origin, then f is odd. Examples of an odd function: f(x) = 2?,

f(x)=2*+2° f(z) = =, f(z) =sinz.

. Afunction f is called increasing on an interval I if f(z1) < f(z2) whenever z; < z2 in [.

. A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world

phenomenon.
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6. (a) Linear function: f(z) =2z 41, f(x) =ax+b 7.
(b) Power function: f(z) = 22, f(z) = 2
(c) Exponential function: f(z) = 27, f(z) = a”
(d) Quadratic function: f(z) = 2® 4+ + 1, f(2) = az® + bx + ¢

(e) Polynomial of degree 5: f(x) = x° 4 2

i ion: f(z) = —* _ P
(f) Rational function: f(x) = o flx) = ) where P(z) and
Q(z) are polynomials
8 () , ®
o~ A2 NA
© y (d) '
y=2 / y=1/x
1 T
/ - ll >
() ' (f) ’
y=x
| 11
y _ |x‘ 1 X 1 X

9. (a) The domain of f + g is the intersection of the domain of f and the domain of g; that is, A N B.
(b) The domain of fgisalso AN B.
(c) The domain of f/g must exclude values of x that make g equal to 0; thatis, {x € AN B | g(z) # 0}.

10. Given two functions f and g, the composite function f o g is defined by (f o ¢) (z) = f(g (x)). The domain of f o g is the
set of all z in the domain of g such that g(z) is in the domain of f.
11. (a) If the graph of f is shifted 2 units upward, its equation becomes y = f(x) + 2.
(b) If the graph of f is shifted 2 units downward, its equation becomes y = f(x) — 2.
(c) If the graph of f is shifted 2 units to the right, its equation becomes y = f(z — 2).
(d) If the graph of f is shifted 2 units to the left, its equation becomes y = f(x + 2).

(e) If the graph of f is reflected about the z-axis, its equation becomes y = — f(x).
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12.

13.

14.

15.

16.

17.

18.

(f) If the graph of f is reflected about the y-axis, its equation becomes y = f(—x).
(g) If the graph of f is stretched vertically by a factor of 2, its equation becomes y = 2f(z).
(h) If the graph of f is shrunk vertically by a factor of 2, its equation becomes y = 1 f(z).

(i) If the graph of f is stretched horizontally by a factor of 2, its equation becomes y = f(%a:)
)

(j) If the graph of f is shrunk horizontally by a factor of 2, its equation becomes y = f(2z).

(@) lim f(x) = L: See Definition 1.5.1 and Figures 1 and 2 in Section 1.5.
(b) lim+ f(x) = L: See the paragraph after Definition 1.5.2 and Figure 9(b) in Section 1.5.
(c) lim f(z) = L: See Definition 1.5.2 and Figure 9(a) in Section 1.5.

(d) lim f(z) = oo: See Definition 1.5.4 and Figure 12 in Section 1.5.

(e) lim f(x) = —oo: See Definition 1.5.5 and Figure 13 in Section 1.5.

r—a
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In general, the limit of a function fails to exist when the function does not approach a fixed number. For each of the following

functions, the limit fails to exist at x = 2.

y
y y
// 21 | ’
il 0 /\ﬁl- i/
0 2 X — 2 4 X 0 | II2| 2 X
_2_
x=2
The left- and right-hand There is an There are an infinite
limits are not equal. infinite discontinuity. number of oscillations.

See Definition 1.5.6 and Figures 12-14 in Section 1.5.
(@) —(g) See the statements of Limit Laws 1-6 and 11 in Section 1.6.

See Theorem 3 in Section 1.6.

(@) A function f is continuous at a number a if f(x) approaches f(a) as = approaches a; that is, lim f(x) = f(a).

(b) A function f is continuous on the interval (—oo, co) if f is continuous at every real number a. The graph of such a

function has no breaks and every vertical line crosses it.

See Theorem 1.8.10.

TRUE-FALSE QuUIZ

. False.  Let f(z) =2% s=—1,andt = 1. Then f(s +t) = (=1 + 1) = 0*> = 0, but

F(8)+f(t) = (=12 +12=2#0= f(s+1).

. False.  Let f(x) = 2®. Then f(—2) = 4 = f(2), but —2 # 2.
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3. False.  Let f(z) = 2% Then f(3z) = (3z)® = 92% and 3f(x) = 322 So f(3z) # 3f(x).

4. True. If 21 < 22 and f is a decreasing function, then the y-values get smaller as we move from left to right.
Thus, f(z1) > f(x2).

5. True. See the Vertical Line Test.
6. False.  For example, if 2 = —3, then /(—3)2 = v/9 = 3, not —3.
7. False.  Limit Law 2 applies only if the individual limits exist (these don’t).
8. False.  Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).
9. True. Limit Law 5 applies.
10. True. The limit doesn’t exist since f(x)/g(z) doesn’t approach any real number as = approaches 5.

(The denominator approaches 0 and the numerator doesn’t.)

11, False.  Consider lim 2& =) o fim SR —5)

rx—5 I — x—5 €r —

. The first limit exists and is equal to 5. By Example 3 in Section 1.5,
we know that the latter limit exists (and it is equal to 1).

12. False.  If f(z) = 1/z, g(x) = —1/z,and a = 0, then lin% f(z) does not exist, 1in%J g(z) does not exist, but

lim [f(z) 4+ g(z)] = liir%)() = 0 exists.

x—0
13. True. Suppose that lim [f(z) + g(z)] exists. Now lim f(z) exists and lim g(x) does not exist, but
lim g(x) = lim {[f(z) + g(z)] — f(2)} = lim [f(z) + g(z)] — lim f(z) [by Limit Law 2], which exists, and

we have a contradiction. Thus, lim [f(x) + g(x)] does not exist.

14. False.  Consider lin% [f(z)g(z)] = 1in}5 [(x —6) %—6] It exists (its value is 1) but f(6) = 0 and g(6) does not exist,
50 /(6)9(6) # 1.

15. True. A polynomial is continuous everywhere, so lin}j p(z) exists and is equal to p(b).

16. False.  Consider lin% [f(z) — g(z)] = lim (i — %) This limit is —oo (not 0), but each of the individual functions
r— x

approaches oo.

1/(x—1) ifx#1
17. False.  Consider f(z) = / ) )
2 if x=1
18. False.  The function f must be continuous in order to use the Intermediate Value Theorem. For example, let

1 if0<z<3 . .
fz) = Uit 5 There is no number ¢ € [0, 3] with f(¢) = 0.
-1 ifz=

19. True.  Use Theorem 1.8.8 with a = 2, b = 5, and g(z) = 42 — 11. Note that f(4) = 3 is not needed.
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20. True. Use the Intermediate Value Theorem witha = —1,b=1,and N =, since 3 < 7 < 4.
21. True, by the definition of a limit with e = 1.
2241 if 2z #£0
22. False.  For example, let f(x) = )
2 if =0
Then f(x) > 1forall z, but lim f(z) = lim («®+1) =1
23. True.  f(x) = 2'® — 1022 4 5 is continuous on the interval [0, 2], £(0) = 5, f(1) = —4, and £(2) = 989. Since
—4 < 0 < 5, there is a number ¢ in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a
root of the equation 2'° — 102® + 5 = 0 in the interval (0, 1). Similarly, there is a root in (1, 2).
24. True. See Exercise 68(b) in Section 1.8.
25. False See Exercise 68(c) in Section 1.8.
EXERCISES
1. (@) Whenz = 2, y ~ 2.7. Thus, f(2) ~ 2.7. ®) f(z)=3 = z=x2356
(c) The domain of fis —6 < a < 6, or [—6, 6]. (d) Therange of fis —4 <y < 4, 0or [—4,4].
(e) fisincreasing on [—4, 4], thatis,on —4 < z < 4.
(f) f is odd since its graph is symmetric about the origin.
2. (a) This curve is not the graph of a function of z since it fails the Vertical Line Test.
(b) This curve is the graph of a function of x since it passes the Vertical Line Test. The domain is [—3, 3] and the range
is [—2, 3].
3 f(z) =2 —2x+3,30 f(a+h) = (a+h)?—2(a+h)+3=a®+2ah + h® — 2a — 2h + 3, and
fla+h)—f(a) (a*+2ah+h*>—2a—2h+3)—(a®>—2a+3) h(2a+h—2)
h h h
4, There will be some yield with no fertilizer, increasing yields with increasing yield
fertilizer use, a leveling-off of yields at some point, and disaster with too
much fertilizer use.
0 | fertilizer
5. f(z) =2/(3z —1). Domain: 3z —1#0 = 3z#1 = x#3. D= (—00,3)U(3,0)
Range: all reals except 0 (y = 0 is the horizontal asymptote for f.) R = (—o0,0) U (0, c0)
6. g(x) = v/16 — 2%, Domain: 16 —2*>0 = 2*<16 = |2|< V16 = |2]<2. D=[-22]
Range: y>0andy <+16 = 0<y<4. R=]10,4]
7.y =1+sinzx. Domain: R.

Range: —1<sinz <1 = 0<1+4+sinz<2 = 0<y<2 R=][0,2]
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8. y=F(t) =34 cos2t. Domain: R. D = (—o0,00)

Range: —1<cos2t<1 = 2<3+4cos2t<4 = 2<y<4 R=][24]

9. (a) To obtain the graph of y = f(x) + 8, we shift the graph of y = f(x) up 8 units.

(b) To obtain the graph of y = f (= + 8), we shift the graph of y = f(x) left 8 units.

(c) To obtain the graph of y = 1 + 2f (), we stretch the graph of y = f(z) vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of y = f(z — 2) — 2, we shift the graph of y = f(x) right 2 units (for the “—2" inside the
parentheses), and then shift the resulting graph 2 units downward.

(e) To obtain the graph of y = — f(x), we reflect the graph of y = f(«) about the z-axis.

(f) To obtain the graph of y = 3 — f (=), we reflect the graph of y = f () about the z-axis, and then shift the resulting graph

3 units upward.
10. (a) To obtain the graph of y = f(x — 8), we shift the
graph of y = f(z) right 8 units.

y

0‘ =1 X
(c) To obtain the graph of y = 2 — f(z), we reflect the
graph of y = f(z) about the z-axis, and then shift the

resulting graph 2 units upward.

y

(b) To obtain the graph of y = — f(z), we reflect the graph

of y = f(x) about the z-axis.

|

0f 4 X

(d) To obtain the graph of y = 1 f(x) — 1, we shrink the
graph of y = f(x) by a factor of 2, and then shift the

resulting graph 1 unit downward.

i

\ 0
011\ i l ;
11. y = —sin 2z: Start with the graph of y = sin x, compress horizontally by a factor of 2, and reflect about the z-axis.
y y
|/\y =sinx =sin2x y =—sin2x
PN JANVAN /\ VARV ANVAN /N

12. y = (x — 2)*: Start with the graph of

y = 2% and shift 2 units to the right.

OMxV\/\/‘\ﬁT x

\/\/[\/%\/\ﬁc

y \
4

y=x y=(=2)
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14,

15.

16.

17.

18.

19.
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— 1.3 i y y y
y =1+ 5x°: Start with the =i yoly y=le ‘/
graph of y = z3, compress / 1
vertically by a factor of 2, and 5 > 5 > 1 5 >

shift 1 unit upward.

y=2—/x 2
. y=1x
Start with the graph of y = /z,

reflect about the z-axis, and shift

2 units upward.

fa) = ——: .

Start with the graph of f(z) = 1/z

and shift 2 units to the left. j

1+z ifz<0 y
1422 ifz>0

~<

fla) =

On (—o0,0), graph y = 1 4 z (the line with slope 1 and y-intercept 1) 1
with open endpoint (0, 1). _/
On [0, c0), graph iy = 1 + 22 (the rightmost half of the parabola y = 2 / ’ '
shifted 1 unit upward) with closed endpoint (0, 1).

(a) The terms of f are a mixture of odd and even powers of x, so f is neither even nor odd.

(b) The terms of f are all odd powers of z, so f is odd.

(©) f(—z) = cos((—z)?) = cos(z®) = f(=),s0 f is even.

(d) f(—z) =1+sin(—z) =1 —sinz. Now f(—=z) # f(z)and f(—x) # — f(x), so f is neither even nor odd.

For the line segment from (—2, 2) to (—1, 0), the slope is T2

= —2,and an equationisy — 0 = —2(x + 1) or,

equivalently, y = —2z — 2. The circle has equation > + y? = 1; the top half has equation y = /1 — 22 (we have solved for
—2x—2 if —2<x< -1

positive y). Thus, f(x) = {\/1_2 i lcw<i1
—x — z <

f(@)=Vz, D=10,00); g(z)=sinz, D=R.

@ (fog)(x) = f(g(x)) = f(sinz) = v/sinzx. For v/sin z to be defined, we must have sinz > 0 <

z € [0, 7], [27, 37], [-2m, —7], [47, 57|, [47, =37, ...,50 D = {z | z € [2n7, 7 + 2n7], where n is an integer}.
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(b) (go f)(z) = g(f(z)) = g(v&) = sinvVz. x must be greater than or equal to 0 for v/ to be defined, so D = [0, co).
© (fo (@) = f(f(@)) = f(Va) = VVa =z D=[0,00),

(d) (gog)(z) = g(g9(x)) = g(sinz) = sin(sinz). D =R.

20. Let h(z) =z + /7, g(z) = /z,and f(z) = 1/z. Then (f o go h)(z) = T\/E = F(z).

21. 80 Many models appear to be plausible. Your choice depends on whether you

think medical advances will keep increasing life expectancy, or if there is
bound to be a natural leveling-off of life expectancy. A linear model,
y = 0.2493x — 423.4818, gives us an estimate of 77.6 years for the

1890 \— 2010 year 2010.

22. (a) Let = denote the number of toaster ovens produced in one week and ¥4 (cost)
y the associated cost. Using the points (1000, 9000) and 12,0007
90001 y = 6x + 3000

(1500, 12,000), we get an equation of a line:

60001
12,000 — 9000
_ = — 3000 1
y = 9000 = ——rrs (1~ 1000) =
y =6 (x — 1000) + 9000 = y = 62 + 3000. 500 1000 1500 2000 ¥

(toaster ovens)
(b) The slope of 6 means that each additional toaster oven produced adds $6 to the weekly production cost.

(c) The y-intercept of 3000 represents the overhead cost—the cost incurred without producing anything.
23. (@) (i) lim f(z)=3 @i) lim f(z)=0
z—2+ z——37+
(iii) lin}3 f(z) does not exist since the left and right limits are not equal. (The left limit is —2.)
(iv) lin}L f(z) =2
(v) lir% f(z) =0 (vi) lim f(z)=—o0
r— T—2"
(b) The equations of the vertical asymptotes are x = 0 and x = 2.

(c) fisdiscontinuous at x = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.

2. lm f(e)==2 lm f@)=1 [0)=-L T
S f(w)=co. Jim, flm) = ~oo —
% :

25. lim cos(z + sinx) = cos [ lin})(m + sin x)} [by Theorem 1.8.8] =cos0 =1

T— xr—

2 2
26. Since rational functions are continuous, lim r 9 3 9 0 =0.

372 f22—3 32+2(3) -3 12
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CHAPTER1 REVIEW O
, 22 —9 . (z4+3)(x—3) . -3 -3-3 -6 3
a3 T M G @) 1 3-1 4 2
28. lim ﬁ——oosincex2+2x—3—>0+a5x—>1+andﬂ<0f0r1<x<3
Ce—it 2422 -3 22 +22 —3 '
—1)3 h* —3h* +3h—1) +1 3 _3p2
29 fim (DL * N S | SV
h—0 h h—0 h h—0 h h—0
Another solution: Factor the numerator as a sum of two cubes and then simplify.
 (h=1%4+1 . (h—=1)%+1>  [(h=1)+1][(h—1)*=1(h—1)+17]
lim ————— = lim = lim
h—0 h h—0 h h—0 h
=lm [(h—1)?-h+2]=1-0+2=3
h—0
P-4 t+2)t—2) t+2 242 4 1
O s s T M G+ d) (M Erod dtd+d 123
LT i 4, g+ Vr
3L }%m:oosmce(r—g) — 0" asr — 9and (T79)4>Oforr;£9.
2 lim 2 = fim 2% jm L= g
Ceoat |4 —v|  eoat —(4—wv)  eoat —1
4 2 2 2 _ 2
33 lim ut =1 _ lim (u® +1)(u*—1) _ lim w*+D)(u+1)(u—1) — lim (v + D) (u+1) _ 2(2) _4
u—1ud 4+ 5u? —6u  uw—1 u(u?+5u—6) u—1  ulu+6)(u—1) u—1  u(u+6) ) 7
. Vr+6—z . [Vr+6—z VJr+6+z . (Vz+6)?—2?
34, lim ——————— = lim . = lim
-3 a3 — 312 e=3 | 23 —3) Vo+6+xz| +-322(x—3)(Vr+6+x)
. z+ 6 — 22 . —(2® — 2 —6) . —(z—=3)(z+2)
= lim = lim = lim
=3 g2(x —3) (Vo +6+z) -322(x—3)(Vo+6+z) +-322(z—3)(Vo+6+2)
~ im —(z+2) _ 5 _ 5
a=3 22 (Vo +6 + ) 9(3+3) 54
L A—\5 4— /5 . ~1 -1 1
35. 1 =1 =1 = - _=
6 S 16  el6 (Vs +A) (v —4) sol6ys+4  i6+4 8
%. lim v’ +20—-8 o =2 v+4 B 2+4 _ 3
Twos2 vi—16  v-2 (v+2)(v—2)(v2 +4) w2 (v+2)(v2+4) (2+2)(22+4) 16
o 1—=T—22 1+V1—-22 1-(1—2% ) z? ) x
37. lim . = lim = lim = lim =0
z—0 T 141 =22 zﬁox(1+4/1,x2) zﬁox(1+,/1,x2) =01 4+ /1 — 22
1 1 1 r—2 1
3 b (x—1+x2—3x+2> zﬂ{x—1+(m—1)(x—2)} anll{(x—l)(x—Q)+(x—1)(m—2)
r—1 1 1
=lim |————————| = 1i S —
zliri{(m_n(m—z)] ilz—2  1-2
39. Since 2z — 1 < f(x) < 2 for0 < » < 3and lirr11(2m—1)=1:1in11m2,wehave limlf(m)=1bytheSqueezeTheorem.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



88

40.

41.

42.

43.

44,

45,

46.

Ll CHAPTER1 FUNCTIONS AND LIMITS

Let f(z) = —2®, g(x) = 2® cos(1/2?) and h(z) = 2®. Then since |cos(1/z”)| < 1 for = # 0, we have

f(z) < g(z) < h(z) forz # 0, and so 3113% flz) = 3113% h(z) =0 = 213% g(x) = 0 by the Squeeze Theorem.

Givene > 0, we need 6 > O such thatif 0 < |« — 2| < §, then |(14 — 5z) — 4| <e. But|(14 —5z) —4| <e <
|[-5x+10|<e < |-5llx—2/<e & |z—2|<e/5 Soifwechoosed =¢c/5,then0<|z—2/<d =

|(14 — 5z) — 4] < e. Thus, lim2 (14 — 5x) = 4 by the definition of a limit.

Givene > 0 we must find § > 0 so thatif 0 < |« — 0] < §, then | J/z — 0] < e. Now |z — 0| = |¥/z| <e =
lz| = | /x> < €®. Sotake § = . Then0 < |z — 0| = |z| < = |¥Z2—0|=|¥x| = {/Ja] < Ve ==

Therefore, by the definition of a limit, lirr(l) T =0.

Givene > 0, we need § > 0 so that if 0 < |z — 2| < 4, then |2® — 3z — (—2)| < e. First, note that if | — 2| < 1, then
—1<z-2<1,500<z—-1<2 = |z—1] <2 Nowletd =min{e/2,1}. Then0 < |z —2| < =
|o* =3z — (=2)| = |(z —2)(x — )| = |z — 2| |z — 1| < (¢/2)(2) =.

Thus, lim2(x2 — 3z) = —2 by the definition of a limit.

Given M > 0, weneed 0 > Osuchthatif0 < x —4 < ¢,then2/\/x —4 > M. Thisistrue < z—4<2/M &
x—4 < 4/M?. Soifwechoose § = 4/M? then0 <z —4 <6 = 2//x—4 > M. So by the definition of a limit,
lim (2/\/z—4) = oco.

z—4t

@) f(z) =v—zifz <0, f(z) =3 —zif0<z <3, f(z) = (z —3)%ifz > 3.

(i) lim f(x)= lim 3—2)=3 (i) im f(x)= lim /-2 =0
z—0t z—0t z—0— z—0—
(iii) Because of (i) and (ii), lin}) f(x) does not exist. (iv) lim f(z)= lim (3—x)=0
r— r—3— r—3—
(V) lim+ f(z)= lim (z—3)*>=0 (vi) Because of (iv) and (v), lim3 f(x)=0.
xr—3 x—3 xr—
(b) f isdiscontinuous at 0 since lin}) f(x) does not exist. O] Y

3
f is discontinuous at 3 since f(3) does not exist.

O] 3 X

@glx)=20—-22if0<2<2,g(x)=2—-2if2<2<3,g(x) =2 —4if3 <z <4,g(x)=rifz >4

Therefore, lim g(z) = lim (2z —z*) = 0and lim+ g(x) = lim (2 —z)=0. Thus, lir% g(x) =0=g(2),
T—27 r—2 r—

r—2" rz—2

S0 g is continuous at 2. lim g¢g(z) = lim (2 —=z)= —1and hm+ g(z) = lim (z —4) = —1.Thus,
r—3

r—3" r—3" r—3
lim g(x) = —1 = ¢(3),s0 g iscontinuous at 3. lim ¢g(z) = lim (z—4)=0and lim g(z) = lim 7 =m.
x—3 r—4— x—4— z—4+ z—4t
Thus, 1irr}1 g(x) does not exist, so g is discontinuous at 4. But lirn+ g(x) = 7 = g(4), so g is continuous from the
T— r—4
right at 4.
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48.

49.

50.

CHAPTER1 REVIEW [ 89

® 1 .
0 NZ

z* is continuous on R since it is a polynomial and cos  is also continuous on IR, so the product z2 cos z is continuous on RR.

The root function v/z is continuous on its domain, [0, 00), and so the sum, h(x) = V2 + 23 cos z, is continuous on its

domain, [0, c0).

x® — 9 is continuous on R since it is a polynomial and ,/z is continuous on [0, co) by Theorem 7 in Section 1.8, so the
composition v/z2 — 9 is continuous on {z | 2> — 9 > 0} = (—o0, —3] U [3, 00) by Theorem 9. Note that 2> — 2 # 0 on this

Vaz—9
2

set and so the quotient function g(z) = —;
22 —

is continuous on its domain, (—oo, —3] U [3, co) by Theorem 4.

f(z) = 2° — 2 + 32 — 5 is continuous on the interval [1,2], f(1) = —2, and f(2) = 25. Since —2 < 0 < 25, there is a
number cin (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

2% — 2® 4+ 3z — 5 = 0 in the interval (1, 2).

Let f(z) = 2sinz — 3+ 2. Now f is continuous on [0, 1] and f(0) = —3 < 0 and f(1) = 2sin1 — 1 ~ 0.68 > 0. So by
the Intermediate Value Theorem there is a number ¢ in (0, 1) such that f(c) = 0, that is, the equation 2sinz = 3 — 2z has a

root in (0,1).
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[J PRINCIPLES OF PROBLEM SOLVING

1. Remember that |a| = a if a > 0 and that |a| = —a if a < 0. Thus,
2¢ ifx>0 2y ify>0
z+ 2| = . and  y+lyl = :
0 ifz<oO 0 ify<oO

We will consider the equation x + |z| = y + |y| in four cases.

M z>0,y>0 2 2>0y<0 () z<0y>0 @) z<0,y<0
2z = 2y 22 =0 0=2y 0=0

rT=y =0 0=y

Case 1 gives us the line y = = with nonnegative = and y.

0 x
Case 2 gives us the portion of the y-axis with y negative.
Case 3 gives us the portion of the x-axis with x negative.
Case 4 gives us the entire third quadrant.
2. lz —y|+]z| — |yl <2 [call this inequality (x)]
Case (i): x>y >0. Then(x) & z—y+r—y<2 & z—y<1l1 < y>zx-—1
Case (ii)): y>xz>0. Then(x) & y—z+r—y<2 <& 0<2 (true).
Case (iii): z>0andy<0. Then(*) < z—y+tr+y<2 < 2z<2 & <1
Case(iv): z<Oandy>0. Then(x) < y—z—-z-y<2 & -2x<2 & z>-1
Case (v): y<z<O0. Then(x) & z—y—oz+y<2 <& 0<2 (true).
Case (vi): x<y<O0. Then(x) & y—z—2+y<2 & y—z2z<1 & y<zx+1
Note: Instead of considering cases (iv), (v), and (vi), we could have noted that Y
the region is unchanged if = and y are replaced by —z and —y, so the region is
symmetric about the origin. Therefore, we need only draw cases (i), (ii), and :
4 x

_:4 + ol T +
(iii), and rotate through 180° about the origin. / 1
_4 4

3. fo(z) = 2% and fri1(z) = fo(fa(x)) forn=0,1,2,....
fil@) = folfo(x)) = fo(2?) = (22)° = 2%, fa(x) = fo(fi(2)) = fo(z?) = (%) = 2,
— 2t

f3(x) = fo(f2(2) = fo(2®) = (®)® = 2°,.... Thus, a general formula is f,,(z) = =

4. @) fo(x)=1/(2—=)and frn41 = foo fnforn=0,1,2,....

1 1 2 —x 2—x
fl(l'):fo(Z_m):2_ I " 22-2-1 3-2z'
2—x
22— 1 3—2x 3—2x
fE(x)_fO(g_Qx)_2_ 2—x :2(3—2x)—(2—$):4—3ff,
3—2x
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Folz) = f 3—2x\ 1 . 4 -3z _ 4-3x
\4=3z) , 3-2¢ 2(4-32)-(3-22) 5-4z’ "
4 -3z

n+1—nx

Thus, we conjecture that the general formula is f,, -
' ) g fn(@) n+2—(n+ 1z

To prove this, we use the Principle of Mathematical Induction. We have already verified that f, is true for n = 1.

k+1—kx

Assume that the formula is true for n = k; that is, f(z) = ey Then
B B B k+1— ko 7 1
fina(0) = (oo 1)) = Fol (o) = o (g =iz ) = ST
k+2—(k+ 1)
k+2—(k+1)z k42— (k+ Dz

T 2k+2—(k+ Dzl —(k+1—kx) k43— (k+2)
This shows that the formula for f;, is true for n = k + 1. Therefore, by mathematical induction, the formula is true for all
positive integers n.
(b) From the graph, we can make several observations: x=2 x=% y=3 yx=2
e The values at each fixed = = a keep increasing as n increases.

e The vertical asymptote gets closer to = = 1 as n increases.

-
I

e The horizontal asymptote gets closertoy = 1 £ 1

as n increases. ;1 R —
e The z-intercept for f, 1 is the value of the i ”
f\

1

/ I

[SYEEIINTINTS

vertical asymptote for f,,.

e The y-intercept for f,, is the value of the
horizontal asymptote for f,,11.

0

5 Lett = §/r,s0x =1t% Thent — lasx — 1,50

hm‘%*l limt271 i t-D+1) t+1  1+1 2

PN T—1 B —1 e (- (2 +t+1) emeti+l 1241+1 3

Another method: Multiply both the numerator and the denominator by (y/z + 1) (\S/F + VT + 1).

\/ax+b—2.\/a1’+b+2_lim ar+b—4
T var+b+2 =0 x(\/ax+b+2)'

approaches 0 as x — 0, the limit will exist only if the numerator also approaches 0 as z — 0. So we require that

6. First rationalize the numerator: lir% Now since the denominator

a a
0)+b—4=0 = b=4. Sothee uatlonbecomeshmizl = =1 = a=4.
a(0) q 0Var+4+2 Vi+2

Therefore, a = b = 4.

7.For—3 <z < j,wehave2z —1<0and2z+1>0,502z — 1| = —(2z — 1) and [2z + 1| = 2z + 1.

22 — 1] — |22 + 1 ~ lim —(2r—-1)—-(2z+1) lim —4r lim (—4) = —4,
T z—0 X x—0 X x—0

Therefore, /lin%
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8. Let R be the midpoint of O P, so the coordinates of R are (3, 22) since the coordinates of P are (z,27). Let Q = (0, a).
%xQ —a z? -2

-0

2

. 1 . .
Since the slope mop = r_ x, mgr = —— (negative reciprocal). But mgr = a, so we conclude that
X x

1
2

~1=2"-2a = 20a=2"+1 = a=322"+3 Asz—0,a— 3,andthe limiting position of Q is (0, 3).

9. (a)For0<ac<1,[[x]]:O,SOM:O,and lim M:0.For—1<ac<0,[[:1:]]:—1,50M:_—l,and
X z—0+ T X xXr
[=]

. . -1 . . - .
lim =— = lim (—) = oo. Since the one-sided limits are not equal, lim
r—0— X z—0— x z—0

@ does not exist.
(b) Forz >0,1/z—1<[1/z] <1l/z = z(l/z-1)<z[l/z] <z(l/z) = 1—z<z[l/z] <1

Asz — 07,1 —x — 1, so by the Squeeze Theorem, lim+ z[1/z] = 1.

Forx<0,1/x—1<[1/z] <1/z = z(l/z—1)>z[1/z] >x(1/z) = 1-—z>z[1/z]>1.

Asz — 07,1 —az — 1, so by the Squeeze Theorem, lim «z[1/z] =1.
z—0"

Since the one-sided limits are equal, 111% z[1/z] = 1.

10. (a) [«]* + [y]* = 1. Since []* and [y]? are positive integers or 0, there are G
only 4 cases:
Case(i): [tf] =1,y =0 =1<z<2and0<y<1 ‘
Case (ii): [z] = -1, [y =0=-1<z<0and0<y <1 - 1 };
Case (iii):[z] =0,y =1 =0<z<landl<y<?2
Case (iv):[z] =0,y =-1=0<z<land-1<y <0 [
(b) [z]® — [y]? = 3. The only integral solution of n? — m? = 3is n = +2 y

and m = +1. So the graph is | |

(o) | [l =42 Bl =21} = J@y) | 0= 0 2ot
x, z] = 2, = =< (z, .
Y Y 4 1<y<2o0r -1<y<0

©z+y]’=1 = [z+y]=%41 = 1<z+y<?2

or—-1<z4+y<0

(dForn<z<n+1lJz]=nThen[z]+y]=1 = [yJ=1-n = y

1 —n <y < 2 —n. Choosing integer values for n produces the graph. |—>---—~.
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11. f is continuous on (—oo, a) and (a, co). To make f continuous on IR, we must have continuity at a. Thus,

lim+f(m)= lim f(z) = 1im+x2: lim (z+1) = a

r—a T—a T—a T—a—

2 2

—a—1=0 =

=a+1 = a

[by the quadratic formula] a = (1++/5)/2 ~ 1.618 or —0.618.

12. (a) Here are a few possibilities:

y
1+

(b) The “obstacle” is the line = = y (see diagram). Any intersection of the graph of f with the line y = x constitutes a fixed
point, and if the graph of the function does not cross the line somewhere in (0, 1), then it must either start at (0, 0)

(in which case 0 is a fixed point) or finish at (1, 1) (in which case 1 is a fixed point).

(c) Consider the function F'(z) = f(x) — x, where f is any continuous function with domain [0, 1] and range in [0, 1]. We
shall prove that f has a fixed point. Now if f(0) = 0 then we are done: f has a fixed point (the number 0), which is what
we are trying to prove. So assume f(0) # 0. For the same reason we can assume that f(1) # 1. Then F'(0) = f(0) >0
and F'(1) = f(1) — 1 < 0. So by the Intermediate Value Theorem, there exists some number ¢ in the interval (0, 1) such

that F'(c) = f(¢) — ¢ = 0. So f(c) = ¢, and therefore f has a fixed point.

13 Jim /() = lim (4 [/(2) + 9@)] + § [f(2) — g(@)]) =  lim [(2) + g(x)] + £ lim [f(2) — g(a)

xr—a Tr—a xr—a

_ 1 1 _ 3
_5.24_5.]_5]

and lim g(x) = lim ([/(2) + 9(e)] ~ f(@)) = lm[f(z) + g(e)] ~ lim f(z) =2~ § = 3.

r—a r—a r—a r—a

So lim [f(z)g(x)] = [lim /()] [1im g(a)] =3 -5 =

Y

Another solution: Since lim [f(x) + g(x)] and lim [f(z) — g(z)] exist, we must have

r—a r—a

tim [£(2) + g(@)]* = (Jim [£() +g(x)]) and lim [£(z) — (o))" = (Jim [£(x) ~ g(a)]) .50

r—a r—a

lim [f(z) g(2)] = lim £ ([f() + 9(z)]” — [f (z) — g(x)]°)  [because all of the f* and g* cancel]

T—a

=1 (1im [£(@) + g(@)] = lim [f(2) — g(2)*) = 3 (22 1) = &.
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14. (a) Solution 1: We introduce a coordinate system and drop a perpendicular

from P, as shown. We see from ZNCP that tan 20 = I y , and from
— X

/N BP that tan § = y/x . Using the double-angle formula for tangents,

we get Y —tan20 = 2 tan 20 = 2y/z) . After a bit of
11—z 1—tan?6 1—(y/z)?
Lo . . 1 2x 2
simplification, this becomes = & oy =x3z—2).
1—a 22 —y2

PRINCIPLES OF PROBLEM SOLVING J 95

P(x, y)

As the altitude AM decreases in length, the point P will approach the x-axis, that is, y — 0, so the limiting location of P

must be one of the roots of the equation z(3z — 2) = 0. Obviously it is not z = 0 (the point P can never be to the left of

the altitude AM, which it would have to be in order to approach 0) so it must be 3z — 2 = 0, that is, z = %

Solution 2: We add a few lines to the original diagram, as shown. Now note
that /ZBPQ = ZPBC (alternate angles; QP || BC by symmetry) and
similarly ZCQP = ZQCB. So ABPQ and ACQP are isosceles, and
the line segments BQ, QP and PC are all of equal length. As|AM| — 0,
P and @ approach points on the base, and the point P is seen to approach a

position two-thirds of the way between B and C', as above.

(b) The equation y? = z(32 — 2) calculated in part (a) is the equation of
the curve traced out by P. Now as |[AM| — o0, 260 — 3,0 — T,
x — 1,and since tan @ = y/x, y — 1. Thus, P only traces out the

part of the curve with 0 < y < 1.

Q P
B C
y

A
P (x,y)

6
B 9 C
0 M % 1 x

15. (a) Consider G(z) = T'(x + 180°) — T'(x). Fix any number a. If G(a) = 0, we are done: Temperature at « = Temperature

ata + 180°. If G(a) > 0, then G(a + 180°) = T'(a + 360°) — T(a + 180°) = T(a) — T'(a + 180°)

=—G(a) <0.

Also, G is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, G has a zero on the

interval [a, a + 180°]. If G(a) < 0, then a similar argument applies.

(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.
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