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iii

This Complete Solutions Manual contains detailed solutions to all exercises in the text Multivariable
Calculus, Seventh Edition (Chapters 10–17 of Calculus, Seventh Edition, and Calculus: Early
Transcendentals, Seventh Edition) by James Stewart. A Student Solutions Manual is also available,
which contains solutions to the odd-numbered exercises in each chapter section, review section,
True-False Quiz, and Problems Plus section as well as all solutions to the Concept Check questions.
(It does not, however, include solutions to any of the projects.)

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, users of the Early Transcendentals
text should use the references denoted by “ET.” 

While we have extended every effort to ensure the accuracy of the solutions presented, we would
appreciate correspondence regarding any errors that may exist. Other suggestions or comments are
also welcome, and can be sent to dan clegg at dclegg@palomar.edu or in care of the publisher:
Brooks/Cole, Cengage Learning, 20 Davis Drive, Belmont CA 94002-3098.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG

Palomar College

BARBARA FRANK

Cape Fear Community College

■ PREFACE

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page iii

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY iiiiii© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page iv

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



v
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CD concave downward

CU concave upward

D the domain of

FDT First Derivative Test

HA horizontal asymptote(s)

I interval of convergence

IP in ection point(s)

R radius of convergence

VA vertical asymptote(s)
CAS
= indicates the use of a computer algebra system.
H
= indicates the use of l’Hospital’s Rule.

= indicates the use of Formula in the Table of Integrals in the back endpapers.
s
= indicates the use of the substitution { = sin = cos }.
c
= indicates the use of the substitution { = cos = sin }.

I/D Increasing/Decreasing Test

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY vv© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page vi

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



vii

■ CONTENTS

■ 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES   1

10.1 Curves Defined by Parametric Equations   1

Laboratory Project ■ Running Circles Around Circles   15

10.2 Calculus with Parametric Curves   18

Laboratory Project ■ Bézier Curves   32

10.3 Polar Coordinates   33

Laboratory Project ■ Families of Polar Curves   48

10.4 Areas and Lengths in Polar Coordinates   51

10.5 Conic Sections   63

10.6 Conic Sections in Polar Coordinates   74

Review   80

Problems Plus  93

■ 11 INFINITE SEQUENCES AND SERIES   97

11.1 Sequences   97

Laboratory Project ■ Logistic Sequences   110

11.2 Series   114

11.3 The Integral Test and Estimates of Sums   129

11.4 The Comparison Tests   138

11.5 Alternating Series   143

11.6 Absolute Convergence and the Ratio and Root Tests   149

11.7 Strategy for Testing Series   156

11.8 Power Series   160

11.9 Representations of Functions as Power Series   169

11.10 Taylor and Maclaurin Series   179

Laboratory Project ■ An Elusive Limit   194

11.11 Applications of Taylor Polynomials   195

Applied Project ■ Radiation from the Stars   209

Review   210

Problems Plus   223

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page vii

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY viivii© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



viii ■ CONTENTS

■ 12 VECTORS AND THE GEOMETRY OF SPACE   235

12.1 Three-Dimensional Coordinate Systems   235

12.2 Vectors   242

12.3 The Dot Product   251

12.4 The Cross Product   260

Discovery Project ■ The Geometry of a Tetrahedron   271

12.5 Equations of Lines and Planes   273

Laboratory Project ■ Putting 3D in Perspective   285

12.6 Cylinders and Quadric Surfaces   287

Review   297

Problems Plus   307

■ 13 VECTOR FUNCTIONS   313

13.1 Vector Functions and Space Curves   313

13.2 Derivatives and Integrals of Vector Functions   324

13.3 Arc Length and Curvature   333

13.4 Motion in Space: Velocity and Acceleration   348

Applied Project ■ Kepler’s Laws   359

Review   360

Problems Plus   367

■ 14 PARTIAL DERIVATIVES   373

14.1 Functions of Several Variables   373

14.2 Limits and Continuity   391

14.3 Partial Derivatives   398

14.4 Tangent Planes and Linear Approximations   416

14.5 The Chain Rule   425

14.6 Directional Derivatives and the Gradient Vector   437

14.7 Maximum and Minimum Values   449

Applied Project ■ Designing a Dumpster   469

Discovery Project ■ Quadratic Approximations and Critical Points   471

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page viii

NOT FOR SALENOT FOR S
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



CONTENTS ■ ix

14.8 Lagrange Multipliers   474

Applied Project ■ Rocket Science   485

Applied Project ■ Hydro-Turbine Optimization   488

Review   490

Problems Plus   505

■ 15 MULTIPLE INTEGRALS   511

15.1 Double Integrals over Rectangles   511

15.2 Iterated Integrals   516

15.3 Double Integrals over General Regions   521

15.4 Double Integrals in Polar Coordinates   534

15.5 Applications of Double Integrals   542

15.6 Surface Area 553

15.7 Triple Integrals   557

Discovery Project ■ Volumes of Hyperspheres   574

15.8 Triple Integrals in Cylindrical Coordinates   575

Discovery Project ■ The Intersection of Three Cylinders   582

15.9 Triple Integrals in Spherical Coordinates 584

Applied Project ■ Roller Derby   594

15.10 Change of Variables in Multiple Integrals   595

Review   601

Problems Plus   615

■ 16 VECTOR CALCULUS   623

16.1 Vector Fields   623

16.2 Line Integrals   628

16.3 The Fundamental Theorem for Line Integrals   637

16.4 Green’s Theorem   643

16.5 Curl and Divergence   650

16.6 Parametric Surfaces and Their Areas   659

16.7 Surface Integrals   673

16.8 Stokes’ Theorem   684

16.9 The Divergence Theorem   689

Review   694

Problems Plus   705

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page ix

NOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



x ■ CONTENTS

■ 17 SECOND-ORDER DIFFERENTIAL EQUATIONS   711

17.1 Second-Order Linear Equations   711

17.2 Nonhomogeneous Linear Equations   715

17.3 Applications of Second-Order Differential Equations   720

17.4 Series Solutions   725

Review   729

■ APPENDIX   735

H Complex Numbers   735

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49471_CSMFM_7eMV_pi-x.qk_12297_CSMFM_6eMV_pi-xii.qk  2/24/11  5:17 PM  Page x

NOT FOR SALENOT FOR
_ _ _p q g

OOOOOOOO

INSTRUCTOR USE ONLY © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.g. A A Ag..g..g. A



10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. = 2 + , = 2 , 2 2

2 1 0 1 2

2 0 0 2 6

6 2 0 0 2

2. = 2, = 3 4 , 3 3

±3 ±2 ±1 0

9 4 1 0

±15 0 3 0

3. = cos2 , = 1 sin , 0 2

0 6 3 2

1 3 4 1 4 0

1 1 2 1 3
2

0 13 0

4. = + , = , 2 2

2 1 0 1 2

2 2

5 39

1

1 72

1 1 + 1

1 37

2 + 2

2 14

2 + 2

2 14

1 + 1

1 37

1 1

1 72

2 2

5 39
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2 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

5. = 3 4 , = 2 3

(a)
1 0 1 2

7 3 1 5

5 2 1 4

(b) = 3 4 4 = + 3 = 1
4
+ 3

4
, so

= 2 3 = 2 3 1
4
+ 3

4
= 2 + 3

4
9
4

= 3
4

1
4

6. = 1 2 , = 1
2

1, 2 4

(a)
2 0 2 4

5 1 3 7

2 1 0 1

(b) = 1 2 2 = + 1 = 1
2 + 1

2 , so

= 1
2

1 = 1
2

1
2
+ 1

2
1 = 1

4
+ 1

4
1 = 1

4
3
4
,

with 7 5

7. = 1 2, = 2, 2 2

(a)
2 1 0 1 2

3 0 1 0 3

4 3 2 1 0

(b) = 2 = + 2, so = 1 2 = 1 ( + 2)2

= ( + 2)2 + 1, or = 2 4 3, with 4 0

8. = 1, = 3 + 1, 2 2

(a)
2 1 0 1 2

3 2 1 0 1

7 0 1 2 9

(b) = 1 = + 1, so = 3 + 1 = ( + 1)3 + 1,

or = 3 + 3 2 + 3 + 2, with 3 1
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 3

9. = , = 1

(a)
0 1 2 3 4

0 1 1 414 1 732 2

1 0 1 2 3

(b) = = 2 = 1 = 1 2. Since 0, 0.

So the curve is the right half of the parabola = 1 2.

10. = 2, = 3

(a)
2 1 0 1 2

4 1 0 1 4

8 1 0 1 8

(b) = 3 = 3 = 2 = 3
2

= 2 3. R, R, 0.

11. (a) = sin 1
2

, = cos 1
2

, .

2 + 2 = sin2 1
2
+ cos2 1

2
= 1. For 0, we have

1 0 and 0 1. For 0 , we have 0 1

and 1 0. The graph is a semicircle.

(b)

12. (a) = 1
2
cos , = 2 sin , 0 .

(2 )2 + 1
2

2
= cos2 + sin2 = 1 4 2 + 1

4
2 = 1

2

(1 2)2
+

2

22
= 1, which is an equation of an ellipse with

-intercepts ± 1
2 and -intercepts ±2. For 0 2, we have

1
2 0 and 0 2. For 2 , we have 0 1

2

and 2 0. So the graph is the top half of the ellipse.

(b)

13. (a) = sin = csc , 0
2

. = csc =
1

sin
=
1 .

For 0 2 , we have 0 1 and 1. Thus, the curve is the

portion of the hyperbola = 1 with 1.

(b)
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4 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

14. (a) = 1, = 2 .

= ( )2 = ( + 1)2 and since 1, we have the right side of the

parabola = ( + 1)2.

(b)

15. (a) = 2 2 = ln = 1
2
ln .

= + 1 = 1
2
ln + 1.

(b)

16. (a) = + 1 2 = + 1 = 2 1.

= 1 = ( 2 1) 1 = 2 2. The curve is the part of the

hyperbola 2 2 = 2 with 2 and 0.

(b)

17. (a) = sinh , = cosh 2 2 = cosh2 sinh2 = 1. Since

= cosh 1, we have the upper branch of the hyperbola 2 2 = 1.

(b)

18. (a) = tan2 , = sec , 2 2.

1 + tan2 = sec2 1 + = 2 = 2 1. For

2 0, we have 0 and 1. For 0 2, we have

0 and 1 . Thus, the curve is the portion of the parabola = 2 1

in the first quadrant. As increases from 2 to 0, the point ( )

approaches (0 1) along the parabola. As increases from 0 to 2, the

point ( ) retreats from (0 1) along the parabola.

(b)

19. = 3 + 2 cos , = 1 + 2 sin , 2 3 2. By Example 4 with = 2, = 3, and = 1, the motion of the particle

takes place on a circle centered at (3 1) with a radius of 2. As goes from
2

to 3
2

, the particle starts at the point (3 3) and

moves counterclockwise along the circle ( 3)2 + ( 1)2 = 4 to (3 1) [one-half of a circle].

20. = 2 sin , = 4 + cos sin =
2

, cos = 4. sin2 + cos2 = 1
2

2

+ ( 4)2 = 1. The motion

of the particle takes place on an ellipse centered at (0 4). As goes from 0 to 3
2

, the particle starts at the point (0 5) and

moves clockwise to ( 2 4) [three-quarters of an ellipse].
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 5

21. = 5 sin , = 2cos sin =
5

, cos =
2

. sin2 + cos2 = 1
5

2

+
2

2

= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As goes from to 5 , the particle starts at the point (0 2) and moves
clockwise around the ellipse 3 times.

22. = cos2 = 1 sin2 = 1 2. The motion of the particle takes place on the parabola = 1 2. As goes from 2 to
, the particle starts at the point (0 1), moves to (1 0), and goes back to (0 1). As goes from to 0, the particle moves

to ( 1 0) and goes back to (0 1). The particle repeats this motion as goes from 0 to 2 .

23. We must have 1 4 and 2 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].

24. (a) From the first graph, we have 1 2. From the second graph, we have 1 1 The only choice that satisfies

either of those conditions is III.

(b) From the first graph, the values of cycle through the values from 2 to 2 four times. From the second graph, the values

of cycle through the values from 2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of cycle through the values from 2 to 2 three times. From the second graph, we have

0 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of cycle through the values from 2 to 2 two times. From the second graph, the values of

do the same thing. Choice II satisfies these conditions.

25. When = 1, ( ) = (0 1). As increases to 0, decreases to 1 and

increases to 0. As increases from 0 to 1, increases to 0 and increases to 1.

As increases beyond 1, both and increase. For 1, is positive and

decreasing and is negative and increasing. We could achieve greater accuracy

by estimating - and -values for selected values of from the given graphs and

plotting the corresponding points.

26. For 1, is positive and decreasing, while is negative and increasing (these

points are in Quadrant IV). When = 1, ( ) = (0 0) and, as increases from

1 to 0, becomes negative and increases from 0 to 1. At = 0, ( ) = (0 1)

and, as increases from 0 to 1, decreases from 1 to 0 and is positive. At

= 1 ( ) = (0 0) again, so the loop is completed. For 1, and both

become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating - and

-values for selected values of from the given graphs and plotting the corresponding points.

27. When = 0 we see that = 0 and = 0, so the curve starts at the origin. As

increases from 0 to 1
2
, the graphs show that increases from 0 to 1 while

increases from 0 to 1, decreases to 0 and to 1, then increases back to 0, so we

arrive at the point (0 1). Similarly, as increases from 1
2

to 1, decreases from 1

to 0 while repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating - and

-values for selected values of from the given graphs and plotting the corresponding points.
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6 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

28. (a) = 4 + 1 = ( 4 + 1) 0 [think of the graphs of = 4 + 1 and = ] and = 2 0, so these equations

are matched with graph V.

(b) = 0. = 2 2 = ( 2) is negative for 0 2, so these equations are matched with graph I.

(c) = sin 2 has period 2 2 = . Note that

( + 2 ) = sin[ + 2 + sin 2( + 2 )] = sin( + 2 + sin 2 ) = sin( + sin 2 ) = ( ), so has period 2 .

These equations match graph II since cycles through the values 1 to 1 twice as cycles through those values once.

(d) = cos 5 has period 2 5 and = sin 2 has period , so will take on the values 1 to 1, and then 1 to 1, before

takes on the values 1 to 1. Note that when = 0, ( ) = (1 0). These equations are matched with graph VI

(e) = + sin 4 , = 2 + cos 3 . As becomes large, and 2 become the dominant terms in the expressions for and

, so the graph will look like the graph of = 2, but with oscillations. These equations are matched with graph IV.

(f) =
sin 2

4 + 2
, =

cos 2

4 + 2
. As , and both approach 0. These equations are matched with graph III.

29. Use = and = 2 sin with a -interval of [ ].

30. Use 1 = , 1 =
3 4 and 2 =

3 4 , 2 = with a -interval of

[ 3 3]. There are 9 points of intersection; (0 0) is fairly obvious. The point

in quadrant I is approximately (2 2 2 2), and by symmetry, the point in

quadrant III is approximately ( 2 2 2 2). The other six points are

approximately ( 1 9 ±0 5), ( 1 7 ±1 7), and ( 0 5 ±1 9).

31. (a) = 1 + ( 2 1) , = 1 + ( 2 1) , 0 1. Clearly the curve passes through 1( 1 1) when = 0 and

through 2( 2 2) when = 1. For 0 1, is strictly between 1 and 2 and is strictly between 1 and 2. For

every value of , and satisfy the relation 1 =
2 1

2 1
( 1), which is the equation of the line through

1( 1 1) and 2( 2 2).

Finally, any point ( ) on that line satisfies 1

2 1
=

1

2 1
; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1( 1 1) and 2( 2 2) yields a value of

in [0 1]. So the given parametric equations exactly specify the line segment from 1( 1 1) to 2( 2 2).

(b) = 2+ [3 ( 2)] = 2 + 5 and = 7 + ( 1 7) = 7 8 for 0 1.
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 7

32. For the side of the triangle from to , use ( 1 1) = (1 1) and ( 2 2) = (4 2).

Hence, the equations are

= 1 + ( 2 1) = 1 + (4 1) = 1 + 3 ,
= 1 + ( 2 1) = 1 + (2 1) = 1 + .

Graphing = 1 + 3 and = 1 + with 0 1 gives us the side of the

triangle from to . Similarly, for the side we use = 4 3 and = 2 + 3 , and for the side we use = 1

and = 1 + 4 .

33. The circle 2 + ( 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by = 2cos ,

= 1 + 2 sin , 0 2 . This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to = 2cos , = 1 2 sin , 0 2 .

(b) To get three times around in the counterclockwise direction, we use the original equations = 2 cos , = 1+ 2 sin with

the domain expanded to 0 6 .

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos = 0. Hence, =
2

. So we use

= 2cos , = 1 + 2 sin , 2
3
2

.

Alternatively, if we want to start at 0, we could change the equations of the curve. For example, we could use

= 2 sin , = 1 + 2 cos , 0 .

34. (a) Let 2 2 = sin2 and 2 2 = cos2 to obtain = sin and

= cos with 0 2 as possible parametric equations for the ellipse
2 2 + 2 2 = 1.

(b) The equations are = 3 sin and = cos for {1 2 4 8}.
(c) As increases, the ellipse stretches vertically.

35. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

= 2 + 2 cos = 2 + 2 sin 0 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 0 1. By Example 4, parametric equations are

(left) = 1+ 0 1 cos = 3 + 0 1 sin 0 2

and (right) = 3+ 0 1 cos = 3 + 0 1 sin 0 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

= 2 + 1 cos = 2 + 1 sin 2

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last -interval to[0 2 ] in

order to match the others. We can do this by changing to 0 5 . This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “ ” in the -assignment, giving us

= 2 + 1 cos(0 5 ) = 2 1 sin(0 5 ) 0 2
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8 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

36. If you are using a calculator or computer that can overlay graphs (using multiple -intervals), the following is appropriate.

Left side: = 1 and goes from 1 5 to 4, so use

= 1 = 1 5 4

Right side: = 10 and goes from 1 5 to 4, so use

= 10 = 1 5 4

Bottom: goes from 1 to 10 and = 1 5, so use

= = 1 5 1 10

Handle: It starts at (10 4) and ends at (13 7), so use

= 10 + = 4 + 0 3

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30 above the horizontal, so use

= 3 + 1 cos = 1 + 1 sin 5
6

13
6

Right wheel: Similar to the left wheel with center (8 1), so use

= 8 + 1 cos = 1 + 1 sin 5
6

13
6

If you are using a calculator or computer that cannot overlay graphs (using one -interval), the following is appropriate.

We’ll start by picking the -interval [0 2 5] since it easily matches the -values for the two sides. We now need to find

parametric equations for all graphs with 0 2 5.

Left side: = 1 and goes from 1 5 to 4, so use

= 1 = 1 5 + 0 2 5

Right side: = 10 and goes from 1 5 to 4, so use

= 10 = 1 5 + 0 2 5

Bottom: goes from 1 to 10 and = 1 5, so use

= 1 + 3 6 = 1 5 0 2 5

To get the x-assignment, think of creating a linear function such that when = 0, = 1 and when = 2 5,

= 10. We can use the point-slope form of a line with ( 1 1) = (0 1) and ( 2 2) = (2 5 10).

1 =
10 1

2 5 0
( 0) = 1 + 3 6 .

Handle: It starts at (10 4) and ends at (13 7), so use

= 10 + 1 2 = 4 + 1 2 0 2 5

( 1 1) = (0 10) and ( 2 2) = (2 5 13) gives us 10 =
13 10

2 5 0
( 0) = 10 + 1 2 .

( 1 1) = (0 4) and ( 2 2) = (2 5 7) gives us 4 =
7 4

2 5 0
( 0) = 4 + 1 2 .
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 9

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30 above the horizontal, so use

= 3 + 1 cos 8
15

+ 5
6

= 1 + 1 sin 8
15

+ 5
6

0 2 5

( 1 1) = 0 5
6

and ( 2 2) =
5
2

13
6

gives us 5
6
=

13
6

5
6

5
2

0
( 0) = 5

6
+ 8

15
.

Right wheel: Similar to the left wheel with center (8 1), so use

= 8 + 1 cos 8
15 + 5

6
= 1 + 1 sin 8

15 + 5
6

0 2 5

37. (a) = 3 = 1 3, so = 2 = 2 3.

We get the entire curve = 2 3 traversed in a left to

right direction.

(b) = 6 = 1 6, so = 4 = 4 6 = 2 3.

Since = 6 0, we only get the right half of the

curve = 2 3.

(c) = 3 = ( )3 [so = 1 3],

= 2 = ( )2 = ( 1 3)2 = 2 3.

If 0, then and are both larger than 1. If 0, then and

are between 0 and 1. Since 0 and 0, the curve never quite

reaches the origin.

38. (a) = , so = 2 = 2. We get the entire curve = 1 2 traversed in a

left-to-right direction.

(b) = cos , = sec2 =
1

cos2
=
1
2

. Since sec 1, we only get the

parts of the curve = 1 2 with 1. We get the first quadrant portion of

the curve when 0, that is, cos 0, and we get the second quadrant

portion of the curve when 0, that is, cos 0.

(c) = , = 2 = ( ) 2 = 2. Since and 2 are both positive, we

only get the first quadrant portion of the curve = 1 2.
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10 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

39. The case 2 is illustrated. has coordinates ( ) as in Example 7,

and has coordinates ( + cos( )) = ( (1 cos ))

[since cos( ) = cos cos + sin sin = cos ], so has

coordinates ( sin( ) (1 cos )) = ( ( sin ) (1 cos ))

[since sin( ) = sin cos cos sin = sin ]. Again we have the

parametric equations = ( sin ), = (1 cos ).

40. The first two diagrams depict the case 3
2

, . As in Example 7, has coordinates ( ). Now (in the second

diagram) has coordinates ( + cos( )) = ( cos ), so a typical point of the trochoid has coordinates

( + sin( ) cos ). That is, has coordinates ( ), where = sin and = cos . When

= , these equations agree with those of the cycloid.

41. It is apparent that = | | and = | | = | |. From the diagram,

= | | = cos and = | | = sin . Thus, the parametric equations are

= cos and = sin . To eliminate we rearrange: sin =

sin2 = ( )2 and cos = cos2 = ( )2. Adding the two

equations: sin2 + cos2 = 1 = 2 2 + 2 2. Thus, we have an ellipse.

42. has coordinates ( cos sin ). Since is perpendicular to , is a right triangle and has coordinates

( sec 0). It follows that has coordinates ( sec sin ). Thus, the parametric equations are = sec , = sin .

43. = (2 cot 2 ), so the -coordinate of is = 2 cot . Let = (0 2 ).

Then is a right angle and = , so | | = 2 sin and

= ((2 sin ) cos (2 sin ) sin ). Thus, the -coordinate of

is = 2 sin2 .

44. (a) Let be the angle of inclination of segment . Then | | = 2

cos
.

Let = (2 0). Then by use of right triangle we see that | | = 2 cos .

Now

| |= | | = | | | |

= 2
1

cos
cos = 2

1 cos2

cos
= 2

sin2

cos
= 2 sin tan

So has coordinates = 2 sin tan · cos = 2 sin2 and = 2 sin tan · sin = 2 sin2 tan .

(b)
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 11

45. (a) There are 2 points of intersection:

( 3 0) and approximately ( 2 1 1 4).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin = 3 + cos (1)

2 cos = 1 + sin (2)

From (2), sin = 2 cos 1. Substituting into (1), we get 3(2 cos 1) = 3 + cos 5 cos = 0 ( )

cos = 0 =
2

or 3
2

. We check that = 3
2

satisfies (1) and (2) but =
2

does not. So the only collision point

occurs when = 3
2 , and this gives the point ( 3 0). [We could check our work by graphing 1 and 2 together as

functions of and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of for which both

pairs of graphs intersect is = 3
2

.]

(c) The circle is centered at (3 1) instead of ( 3 1). There are still 2 intersection points: (3 0) and (2 1 1 4), but there are

no collision points, since ( ) in part (b) becomes 5 cos = 6 cos = 6
5

1.

46. (a) If = 30 and 0 = 500 m s, then the equations become = (500 cos 30 ) = 250 3 and

= (500 sin 30 ) 1
2
(9 8) 2 = 250 4 9 2. = 0 when = 0 (when the gun is fired) and again when

= 250
4 9

51 s. Then = 250 3 250
4 9

22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for is quadratic in . To find the maximum -value, we will complete the square:

= 4 9 2 250
4 9

= 4 9 2 250
4 9

+ 125
4 9

2
+ 1252

4 9
= 4 9 125

4 9

2
+ 1252

4 9
1252

4 9

with equality when = 125
4 9

s, so the maximum height attained is 1252

4 9
3189 m.

(b) As (0 90 ) increases up to 45 , the projectile attains a

greater height and a greater range. As increases past 45 , the

projectile attains a greater height, but its range decreases.

(c) = ( 0 cos ) =
0 cos

.

= ( 0 sin ) 1
2

2 = ( 0 sin )
0 cos 2 0 cos

2

= (tan )
2 2

0 cos
2

2,

which is the equation of a parabola (quadratic in ).
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12 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

47. = 2 = 3 . We use a graphing device to produce the graphs for various values of with . Note that all

the members of the family are symmetric about the -axis. For 0, the graph does not cross itself, but for = 0 it has a

cusp at (0 0) and for 0 the graph crosses itself at = , so the loop grows larger as increases.

48. = 2 4 3 = 2 + 3 4. We use a graphing device to produce the graphs for various values of with .

Note that all the members of the family are symmetric about the -axis. When 0, the graph resembles that of a polynomial

of even degree, but when = 0 there is a corner at the origin, and when 0, the graph crosses itself at the origin, and has

two cusps below the -axis. The size of the “swallowtail” increases as increases.

49. = + cos = + sin 0. From the first figure, we see that

curves roughly follow the line = , and they start having loops when

is between 1 4 and 1 6. The loops increase in size as increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of for which there exist parameter values and such that and

( + cos + sin ) = ( + cos + sin ).

In the diagram at the left, denotes the point ( ), the point ( ),

and the point ( + cos + sin ) = ( + cos + sin ).

Since = = , the triangle is isosceles. Therefore its base

angles, = and = are equal. Since =
4

and

= 2 3
4

= 5
4

, the relation = implies that

+ = 3
2 (1).
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 13

Since = distance(( ) ( )) = 2( )2 = 2 ( ), we see that

cos =
1
2 =

( ) 2 , so = 2 cos , that is,

= 2 cos 4
(2). Now cos

4
= sin

2 4
= sin 3

4 ,

so we can rewrite (2) as = 2 sin 3
4 (20). Subtracting (20) from (1) and

dividing by 2, we obtain = 3
4

2
2

sin 3
4

, or 3
4

=
2
sin 3

4
(3).

Since 0 and , it follows from (20) that sin 3
4 0. Thus from (3) we see that 3

4 . [We have

implicitly assumed that 0 by the way we drew our diagram, but we lost no generality by doing so since replacing

by + 2 merely increases and by 2 . The curve’s basic shape repeats every time we change by 2 .] Solving for in

(3), we get =
2 3

4

sin 3
4

. Write = 3
4

. Then =
2

sin
, where 0. Now sin for 0, so 2.

As 0+, that is, as 3
4

, 2 .

50. Consider the curves = sin + sin , = cos + cos , where is a positive integer. For = 1, we get a circle of

radius 2 centered at the origin. For 1, we get a curve lying on or inside that circle that traces out 1 loops as

ranges from 0 to 2 .

Note: 2 + 2 = (sin + sin )2 + (cos + cos )2

= sin2 + 2 sin sin + sin2 + cos2 + 2cos cos + cos2

= (sin2 + cos2 ) + (sin2 + cos2 ) + 2(cos cos + sin sin )

= 1 + 1 + 2 cos( ) = 2 + 2 cos((1 ) ) 4 = 22,

with equality for = 1. This shows that each curve lies on or inside the curve for = 1, which is a circle of radius 2 centered

at the origin.

= 1 = 2 = 3 = 5

51. Note that all the Lissajous figures are symmetric about the -axis. The parameters and simply stretch the graph in the

- and -directions respectively. For = = = 1 the graph is simply a circle with radius 1. For = 2 the graph crosses
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14 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

itself at the origin and there are loops above and below the -axis. In general, the figures have 1 points of intersection,

all of which are on the -axis, and a total of closed loops.

= = 1 = 2 = 3

52. = cos , = sin sin . If = 1, then = 0, and the curve is simply the line segment from ( 1 0) to (1 0). The

graphs are shown for = 2 3 4 and 5.

It is easy to see that all the curves lie in the rectangle [ 1 1] by [ 2 2]. When is an integer, ( + 2 ) = ( ) and

( + 2 ) = ( ), so the curve is closed. When is a positive integer greater than 1, the curve intersects the x-axis + 1 times

and has loops (one of which degenerates to a tangency at the origin when is an odd integer of the form 4 + 1).

As increases, the curve’s loops become thinner, but stay in the region bounded by the semicircles = ± 1 + 1 2

and the line segments from ( 1 1) to ( 1 1) and from (1 1) to (1 1). This is true because

| | = |sin sin | |sin |+ |sin | 1 2 + 1. This curve appears to fill the entire region when is very large, as

shown in the figure for = 1000.
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LABORATORY PROJECT RUNNING CIRCLES AROUND CIRCLES ¤ 15

When is a fraction, we get a variety of shapes with multiple loops, but always within the same region. For some fractional

values, such as = 2 359, the curve again appears to fill the region.

LABORATORY PROJECT Running Circles Around Circles

1. The center of the smaller circle has coordinates (( )cos ( )sin ).

Arc on circle has length since it is equal in length to arc

(the smaller circle rolls without slipping against the larger.)

Thus, = and = , so has coordinates

= ( )cos + cos( ) = ( )cos + cos

and = ( )sin sin( ) = ( )sin sin .

2. With = 1 and a positive integer greater than 2, we obtain a hypocycloid of

cusps. Shown in the figure is the graph for = 4. Let = 4 and = 1. Using the

sum identities to expand cos 3 and sin 3 , we obtain

= 3 cos + cos 3 = 3 cos + 4 cos3 3 cos = 4 cos3

and = 3 sin sin 3 = 3 sin 3 sin 4 sin3 = 4 sin3 .

3. The graphs at the right are obtained with = 1 and

= 1
2
, 1
3
, 1
4
, and 1

10
with 2 2 . We

conclude that as the denominator increases, the graph

gets smaller, but maintains the basic shape shown.
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16 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Letting = 2 and = 3, 5, and 7 with 2 2 gives us the following:

So if is held constant and varies, we get a graph with cusps (assuming is in lowest form). When = + 1, we

obtain a hypocycloid of cusps. As increases, we must expand the range of in order to get a closed curve. The following

graphs have = 3
2
, 5
4
, and 11

10
.

4. If = 1, the equations for the hypocycloid are

= ( 1) cos + cos (( 1) ) = ( 1) sin sin (( 1) )

which is a hypocycloid of cusps (from Problem 2). In general, if 1, we get a figure with cusps on the “outside ring” and

if 1, the cusps are on the “inside ring”. In any case, as the values of get larger, we get a figure that looks more and more

like a washer. If we were to graph the hypocycloid for all values of , every point on the washer would eventually be arbitrarily

close to a point on the curve.

= 2, 10 10 = 2, 0 446

5. The center of the smaller circle has coordinates (( + ) cos ( + ) sin ).

Arc has length (as in Problem 1), so that = , = ,

and = =
+ since = .

Thus, the coordinates of are

= ( + ) cos + cos
+

= ( + ) cos cos
+

and = ( + ) sin sin
+

= ( + ) sin sin
+ .
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LABORATORY PROJECT RUNNING CIRCLES AROUND CIRCLES ¤ 17

6. Let = 1 and the equations become

= ( + 1) cos cos(( + 1) ) = ( + 1) sin sin(( + 1) )

If = 1, we have a cardioid. If is a positive

integer greater than 1, we get the graph of an

“ -leafed clover”, with cusps that are units

from the origin. (Some of the pairs of figures are

not to scale.)

= 3, 2 2 = 10, 2 2

If = with = 1, we obtain a figure that

does not increase in size and requires

to be a closed curve traced

exactly once.

= 1
4
, 4 4 = 1

7
, 7 7

Next, we keep constant and let vary. As

increases, so does the size of the figure. There is

an -pointed star in the middle.

= 2
5
, 5 5 = 7

5
, 5 5

Now if = + 1 we obtain figures similar to the

previous ones, but the size of the figure does not

increase.

= 4
3 , 3 3 = 7

6 , 6 6

If is irrational, we get washers that increase in

size as increases.

= 2, 0 200 = 2, 0 446
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18 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.2 Calculus with Parametric Curves

1. = sin , = 2 + = 2 + 1, = cos + sin , and = =
2 + 1

cos + sin
.

2. =
1 , = = 1 2( ) + 1

2
1 2 = 1

2
1 2 ( 2 + 1) =

2 + 1

2 1 2
, =

1
2

, and

= =
2 + 1

2 1 2

2

1
=
(2 1) 3 2

2
.

3. = 1 + 4 2, = 2 3; = 1. = 3 2, = 4 2 , and = =
3 2

4 2
. When = 1,

( ) = (4 1) and = 3
2 , so an equation of the tangent to the curve at the point corresponding to = 1 is

1 = 3
2 ( 4), or = 3

2 + 7.

4. = 1, = 1+ 2; = 1. = 2 , = 1 + 2 =
2 + 1
2

, and = = 2
2

2 + 1
=

2 3

2 + 1
.

When = 1, ( ) = (0 2) and = 2
2
= 1, so an equation of the tangent to the curve at the point corresponding to

= 1 is 2 = 1( 0), or = + 2.

5. = cos , = sin ; = . = cos + sin , = ( sin ) + cos , and = =
cos + sin

sin + cos
.

When = , ( ) = ( 0) and = ( 1) = , so an equation of the tangent to the curve at the point

corresponding to = is 0 = [ ( )], or = + 2.

6. = sin3 , = cos3 , = 6. = 3cos2 ( sin ), = 3 sin2 cos , and

= =
3cos2 sin

3 sin2 cos
= cot . When = 6, ( ) = 1

8
3
8
3 and = cot( 6) = 3,

so an equation of the tangent line to the curve at the point corresponding to = 6 is 3
8
3 = 3 1

8
,

or = 3 + 1
2 3.

7. (a) = 1 + ln , = 2 + 2; (1 3). = 2 =
1 and = =

2

1
= 2 2. At (1 3),

= 1 + ln = 1 ln = 0 = 1 and = 2, so an equation of the tangent is 3 = 2( 1),

or = 2 + 1.

(b) = 1 + ln ln = 1 = 1, so = 2 + 2 = ( 1)2 + 2 = 2 2 + 2, and 0 = 2 2 · 2.
At (1 3), 0 = 2(1) 2 · 2 = 2, so an equation of the tangent is 3 = 2( 1), or = 2 + 1.

8. (a) = 1 + , =
2

; (2 ). =
2 · 2 , =

1

2
, and = =

2
2

1 2
= 4 3 2 2

. At (2 ),

= 1 + = 2 = 1 = 1 and = 4 , so an equation of the tangent is = 4 ( 2),

or = 4 7 .
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 19

(b) = 1 + = 1 = ( 1)2, so =
2

= ( 1)4 , and 0 = ( 1)4 · 4( 1)3.

At (2 ), 0 = · 4 = 4 , so an equation of the tangent is = 4 ( 2), or = 4 7 .

9. = 6 sin , = 2 + ; (0 0).

= =
2 + 1

6 cos
. The point (0 0) corresponds to = 0, so the

slope of the tangent at that point is 1
6
. An equation of the tangent is therefore

0 = 1
6
( 0), or = 1

6
.

10. = cos + cos 2 , = sin + sin 2 ; ( 1 1).

= =
cos + 2 cos 2

sin 2 sin 2
. To find the value of corresponding to

the point ( 1 1), solve = 1 cos + cos 2 = 1

cos + 2 cos2 1 = 1 cos (1 + 2 cos ) = 0 cos = 0 or

cos = 1
2
. The interval [0 2 ] gives the complete curve, so we need only find

the values of in this interval. Thus, =
2

or = 2
3

or = 4
3

. Checking =
2

, 3
2

, 2
3

, and 4
3

in the equation for ,

we find that =
2

corresponds to ( 1 1). The slope of the tangent at ( 1 1) with =
2

is 0 2

1 0
= 2. An equation

of the tangent is therefore 1 = 2( + 1), or = 2 + 3.

11. = 2 + 1, = 2 + = =
2 + 1

2
= 1 +

1

2

2

2
= =

1 (2 2)

2
=

1

4 3
.

The curve is CU when
2

2
0, that is, when 0.

12. = 3 + 1, = 2 = =
2 1

3 2
=
2

3

1

3 2

2

2
= =

2

3 2
+

2

3 3

3 2
=

2 2

3 3

3 2
=
2(1 )

9 5
. The curve is CU when

2

2
0, that is, when 0 1.

13. = , = = =
+

=
(1 )

= 2 (1 )

2

2
= =

2 ( 1) + (1 )( 2 2 )
=

2 ( 1 2 + 2 )
= 3 (2 3). The curve is CU when

2

2
0, that is, when 3

2
.

14. = 2 + 1, = 1 = =
2

2

2
= =

2 · 2
(2 )2

2
=
2 ( 1)

(2 )3
=

( 1)

4 3
.

The curve is CU when
2

2
0, that is, when 0 or 1.
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20 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

15. = 2 sin , = 3cos , 0 2 .

= =
3 sin

2 cos
=

3

2
tan , so

2

2
= =

3
2
sec2

2 cos
=

3

4
sec3 .

The curve is CU when sec3 0 sec 0 cos 0
2

3
2

.

16. = cos 2 , = cos , 0 .

= =
sin

2 sin 2
=

sin

2 · 2 sin cos
=

1

4 cos
=
1

4
sec , so

2

2
= =

1
4
sec tan

4 sin cos
=

1

16
sec3

The curve is CU when sec3 0 sec 0 cos 0
2

.

17. = 3 3 , = 2 3. = 2 , so = 0 = 0

( ) = (0 3). = 3 2 3 = 3( + 1)( 1), so = 0

= 1 or 1 ( ) = (2 2) or ( 2 2). The curve has a horizontal

tangent at (0 3) and vertical tangents at (2 2) and ( 2 2).

18. = 3 3 , = 3 3 2. = 3 2 6 = 3 ( 2), so = 0

= 0 or 2 ( ) = (0 0) or (2 4). = 3 2 3 = 3( + 1)( 1),

so = 0 = 1 or 1 ( ) = (2 4) or ( 2 2). The curve

has horizontal tangents at (0 0) and (2 4), and vertical tangents at (2 4)

and ( 2 2).

19. = cos , = cos 3 . The whole curve is traced out for 0 .

= 3 sin 3 , so = 0 sin 3 = 0 3 = 0, , 2 , or 3

= 0, 3 , 23 , or ( ) = (1 1), 1
2 1 , 1

2 1 , or ( 1 1).

= sin , so = 0 sin = 0 = 0 or

( ) = (1 1) or ( 1 1). Both and equal 0 when = 0 and .
 

To find the slope when = 0, we find lim
0

= lim
0

3 sin 3

sin
H
= lim

0

9 cos 3

cos
= 9, which is the same slope when = .

Thus, the curve has horizontal tangents at 1
2 1 and 1

2 1 , and there are no vertical tangents.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 21

20. = sin , = cos . The whole curve is traced out for 0 2 .

= sin cos , so = sin = 0 = 0 or

( ) = (1 ) or (1 1 ). = cos sin , so = 0 cos = 0

=
2

or 3
2

( ) = ( 1) or (1 1). The curve has horizontal tangents

at (1 ) and (1 1 ), and vertical tangents at ( 1) and (1 1).

21. From the graph, it appears that the rightmost point on the curve = 6, =

is about (0 6 2). To find the exact coordinates, we find the value of for which the

graph has a vertical tangent, that is, 0 = = 1 6 5 = 1 5 6.

Hence, the rightmost point is

1 5 6 1 6 5 6 1 5 6 = 5 · 6 6 5 6 1 5
(0 58 2 01).

22. From the graph, it appears that the lowest point and the leftmost point on the curve

= 4 2 , = + 4 are (1 5 0 5) and ( 1 2 1 2), respectively. To find the

exact coordinates, we solve = 0 (horizontal tangents) and = 0

(vertical tangents).

= 0 1 + 4 3 = 0 =
1
3 4

, so the lowest point is

1
3 256

+
2
3 4

1
3 4

+
1

3 256
=

9
3 256

3
3 256

(1 42 0 47).

= 0 4 3 2 = 0 =
1
3 2

, so the leftmost point is

1
3 16

2
3 2

1
3 2

+
1

3 16
=

3
3 16

3
3 16

( 1 19 1 19).

23. We graph the curve = 4 2 3 2 2, = 3 in the viewing rectangle [ 2 1 1] by [ 0 5 0 5]. This rectangle

corresponds approximately to [ 1 0 8].

We estimate that the curve has horizontal tangents at about ( 1 0 4) and ( 0 17 0 39) and vertical tangents at

about (0 0) and ( 0 19 0 37). We calculate = =
3 2 1

4 3 6 2 4
. The horizontal tangents occur when

= 3 2 1 = 0 = ± 1

3
, so both horizontal tangents are shown in our graph. The vertical tangents occur when
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22 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

= 2 (2 2 3 2) = 0 2 (2 + 1)( 2) = 0 = 0, 1
2 or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the -interval [ 1 2 2 2] we see that there is another vertical tangent at ( 8 6).

24. We graph the curve = 4 + 4 3 8 2, = 2 2 in the viewing rectangle [ 3 7 0 2] by [ 0 2 1 4]. It appears that there

is a horizontal tangent at about ( 0 4 0 1), and vertical tangents at about ( 3 1) and (0 0).

We calculate = =
4 1

4 3 + 12 2 16
, so there is a horizontal tangent where = 4 1 = 0 = 1

4
.

This point (the lowest point) is shown in the first graph. There are vertical tangents where = 4 3 +12 2 16 = 0

4 ( 2 + 3 4) = 0 4 ( + 4)( 1) = 0. We have missed one vertical tangent corresponding to = 4, and if we

plot the graph for [ 5 3], we see that the curve has another vertical tangent line at approximately ( 128 36).

25. = cos , = sin cos . = sin , = sin2 + cos2 = cos 2 .

( ) = (0 0) cos = 0 is an odd multiple of
2 . When = 2 ,

= 1 and = 1, so = 1. When = 3
2

, = 1 and

= 1. So = 1. Thus, = and = are both tangent to the

curve at (0 0).

26. From the graph, we discover that the graph of the curve = cos + 2 cos 2 ,

= sin + 2 sin 2 crosses itself at the point ( 2 0). To find at ( 2 0),

solve = 0 sin + 2 sin 2 = 0 sin + 4 sin cos = 0

sin (1 + 4 cos ) = 0 sin = 0 or cos = 1
4 . We find that

= ± arccos 1
4

corresponds to ( 2 0).

Now = =
cos + 4 cos 2

sin 4 sin 2
=

cos + 8 cos2 4

sin + 8 sin cos
. When = arccos 1

4
, cos = 1

4
, sin =

15

4
,

and =
1
4
+ 1

2
4

15
4

15
2

=
15
4

15
4

= 15. By symmetry, = arccos 1
4

= 15.

The tangent lines are 0 = ± 15 ( + 2), or = 15 + 2 15 and = 15 2 15.

27. = sin , = cos .

(a) = cos , = sin , so =
sin

cos
.

(b) If 0 , then | cos | , so cos 0. This shows that never vanishes,

so the trochoid can have no vertical tangent if .
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 23

28. = cos3 , = sin3 .

(a) = 3 cos2 sin , = 3 sin2 cos , so =
sin

cos
= tan .

(b) The tangent is horizontal = 0 tan = 0 = ( ) = (± 0).

The tangent is vertical cos = 0 is an odd multiple of
2

( ) = (0 ± )

(c) = ±1 tan = ±1 is an odd multiple of
4

( ) = ± 2
4

± 2
4

[All sign choices are valid.]

29. = 2 3, = 1 + 4 2 = =
4 2

6 2
. Now solve = 1

4 2

6 2
= 1

6 2 + 2 4 = 0 2(3 2)( + 1) = 0 = 2
3 or = 1. If = 2

3 , the point is 16
27

29
9

, and if = 1,

the point is ( 2 4).

30. = 3 2 + 1, = 2 3 + 1, = 6 , = 6 2, so =
6 2

6
= [even where = 0].

So at the point corresponding to parameter value , an equation of the tangent line is (2 3 + 1) = [ (3 2 + 1)].

If this line is to pass through (4 3), we must have 3 (2 3 + 1) = [4 (3 2 + 1)] 2 3 2 = 3 3 3

3 3 + 2 = 0 ( 1)2( + 2) = 0 = 1 or 2. Hence, the desired equations are 3 = 4, or

= 1, tangent to the curve at (4 3), and ( 15) = 2( 13), or = 2 + 11, tangent to the curve at (13 15).

31. By symmetry of the ellipse about the - and -axes,

= 4
0

= 4
0

2
sin ( sin ) = 4

2

0
sin2 = 4

2

0
1
2
(1 cos 2 )

= 2 1
2 sin 2

2

0
= 2 2

=

32. The curve = 2 2 = ( 2), = intersects the -axis when = 0,

that is, when = 0 and = 2. The corresponding values of are 0 and 2.

The shaded area is given by
= 2

=0

( ) =
=2

=0

[0 ( )] 0( ) =
2

0

( 2 2 )
1

2

=
2

0
1
2
3 2 1 2 = 1

5
5 2 2

3
3 2

2

0

= 1
5 · 25 2 2

3 · 23 2 = 21 2 4
5

4
3

= 2 8
15

= 8
15

2

33. The curve = 1 + , = 2 = (1 ) intersects the -axis when = 0,

that is, when = 0 and = 1. The corresponding values of are 2 and 1 + .

The shaded area is given by
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24 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

=1+

=2

( ) =
=1

=0

[ ( ) 0] 0( ) =
1

0
( 2)

=
1

0

1

0
2 =

1

0
2 1

0
+ 2

1

0
[Formula 97 or parts]

= 3
1

0
( 0) = 3 ( 1)

1

0
[Formula 96 or parts]

= 3[0 ( 1)] = 3

34. By symmetry, = 4
0

= 4
0

2
sin3 ( 3 cos2 sin ) = 12 2 2

0
sin4 cos2 . Now

sin4 cos2 = sin2 1
4
sin2 2 = 1

8
(1 cos 2 ) sin2 2

= 1
8

1
2
(1 cos 4 ) sin2 2 cos 2 = 1

16
1
64
sin 4 1

48
sin3 2 +

so 2

0
sin4 cos2 = 1

16
1
64 sin 4

1
48 sin

3 2
2

0
= 32 . Thus, = 12 2

32
= 3

8
2.

35. = sin , = cos .

=
2

0
=

2

0
( cos )( cos ) =

2

0
( 2 2 cos + 2 cos2 )

= 2 2 sin + 1
2

2 + 1
2
sin 2

2

0
= 2 2 + 2

36. (a) By symmetry, the area of R is twice the area inside R above the -axis. The top half of the loop is described by

= 2, = 3 3 , 3 0, so, using the Substitution Rule with = 3 3 and = 2 , we find that

area = 2
3

0
= 2

3

0
( 3 3 )2 = 2

3

0
(2 4 6 2) = 2 2

5
5 2 3 3

0

= 2 2
5 ( 31 2)5 2( 31 2)3 = 2 2

5
9 3 2 3 3 = 24

5 3

(b) Here we use the formula for disks and use the Substitution Rule as in part (a):

volume =
3

0
2 =

3

0
( 3 3 )22 = 2

3

0
( 6 6 4 + 9 2) = 2 1

8
8 6 + 9

4
4 3

0

= 2 1
8 ( 31 2)8 ( 31 2)6 + 9

4 ( 31 2)4 = 2 81
8 27 + 81

4
= 27

4

(c) By symmetry, the -coordinate of the centroid is 0. To find the -coordinate, we note that it is the same as the -coordinate

of the centroid of the top half of R, the area of which is 1
2
· 24
5

3 = 12
5

3. So, using Formula 8.3.8 with = 12
5

3,

we get

= 5

12 3

3

0
= 5

12 3

3

0
2( 3 3 )2 = 5

6 3

1
7
7 3

5
5 3

0

= 5

6 3

1
7
( 31 2)7 3

5
( 31 2)5 = 5

6 3

27
7

3 + 27
5

3 = 9
7

So the coordinates of the centroid of R are ( ) = 9
7
0 .

37. = + , = , 0 2. = 1 and = 1 + , so

( )2 + ( )2 = (1 )2 + (1 + )2 = 1 2 + 2 + 1 + 2 + 2 = 2 + 2 2 .

Thus, = ( )2 + ( )2 =
2

0
2 + 2 2 3 1416.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 25

38. = 2 , = 4, 1 4 = 2 1 and = 4 3, so

( )2 + ( )2 = (2 1)2 + (4 3)2 = 4 2 4 + 1 + 16 6.

Thus, = ( )2 + ( )2 =
4

1
16 6 + 4 2 4 + 1 255 3756.

39. = 2 sin , = 1 2 cos , 0 4 . = 1 2 cos and = 2 sin , so

( )2 + ( )2 = (1 2 cos )2 + (2 sin )2 = 1 4 cos + 4 cos2 + 4 sin2 = 5 4 cos .

Thus, = ( )2 + ( )2 =
4

0
5 4 cos 26 7298.

40. = + , = , 0 1. = 1 +
1

2
and = 1

1

2
, so

2

+
2

= 1 +
1

2

2

+ 1
1

2

2

= 1 +
1
+
1

4
+ 1

1
+
1

4
= 2 +

1

2
.

Thus, = ( )2 + ( )2 =
1

0

2 +
1

2
= lim

0+

1

2 +
1

2
2 0915.

41. = 1 + 3 2, = 4 + 2 3, 0 1. = 6 and = 6 2, so ( )2 + ( )2 = 36 2 + 36 4

Thus, =
1

0

36 2 + 36 4 =
1

0

6 1 + 2 = 6
2

1

1
2 [ = 1 + 2, = 2 ]

= 3 2
3

3 2
2

1
= 2(23 2 1) = 2 2 2 1

42. = + , = 5 2 , 0 3. = and = 2, so

( )2 + ( )2 = 2 2 + 2 + 4 = 2 + 2 + 2 = ( + )2.

Thus, =
3

0
( + ) =

3

0
= 3 3 (1 1) = 3 3.

43. = sin , = cos , 0 1. = cos + sin and = sin + cos , so

2

+
2

= 2 cos2 + 2 sin cos + sin2 + 2 sin2 2 sin cos + cos2

= 2(cos2 + sin2 ) + sin2 + cos2 = 2 + 1.

Thus, =
1

0
2 + 1

21
= 1

2
2 + 1 + 1

2
ln + 2 + 1

1

0
= 1

2
2 + 1

2
ln 1 + 2 .

44. = 3cos cos 3 , = 3 sin sin 3 , 0 . = 3 sin + 3 sin 3 and = 3 cos 3 cos 3 , so

2

+
2

= 9 sin2 18 sin sin 3 + 9 sin2(3 ) + 9 cos2 18 cos cos 3 + 9 cos2(3 )

= 9(cos2 + sin2 ) 18(cos cos 3 + sin sin 3 ) + 9[cos2(3 ) + sin2(3 )]

= 9(1) 18 cos( 3 ) + 9(1) = 18 18 cos( 2 ) = 18(1 cos 2 )

= 18[1 (1 2 sin2 )] = 36 sin2 .

Thus, =
0

36 sin2 = 6
0
|sin | = 6

0
sin = 6 cos

0
= 6 ( 1 1) = 12.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.



26 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

45. = cos , = sin , 0 .
2
+

2
= [ (cos sin )]2 + [ (sin + cos )]2

= ( )2(cos2 2 cos sin + sin2 )

+ ( )2(sin2 + 2 sin cos + cos2

= 2 (2 cos2 + 2 sin2 ) = 2 2

Thus, =
0

2 2 =
0

2 = 2
0
= 2 ( 1).

46. = cos + ln(tan 1
2
), = sin , 4 3 4.

= sin +
1
2
sec2( 2)

tan( 2)
= sin +

1

2 sin( 2) cos( 2)
= sin +

1

sin
and = cos , so

2

+
2

= sin2 2 +
1

sin2
+ cos2 = 1 2 + csc2 = cot2 . Thus,

=
3 4

4
|cot | = 2

2

4
cot

= 2 ln |sin | 2

4
= 2 ln 1 ln

1

2

= 2 0 + ln 2 = 2 1
2
ln 2 = ln 2.

47. The figure shows the curve = sin + sin 1 5 , = cos for 0 4 .

= cos + 1 5 cos 1 5 and = sin , so

( )2 + ( )2 = cos2 + 3cos cos 1 5 + 2 25 cos2 1 5 + sin2 .

Thus, =
4

0
1 + 3 cos cos 1 5 + 2 25 cos2 1 5 16 7102.

48. = 3 3, = 3 2. = 3 3 2 and = 6 , so

2
+

2
= (3 3 2)2 + (6 )2 = (3 + 3 2)2

and the length of the loop is given by

=
3

3
(3 + 3 2) = 2

3

0
(3 + 3 2) = 2[3 + 3] 3

0

= 2 3 3 + 3 3 = 12 3.

49. = , = + , 6 6.
2
+

2
= (1 )2 + (1 + )2 = (1 2 + 2 ) + (1 + 2 + 2 ) = 2 + 2 2 , so =

6

6
2 + 2 2 .

Set ( ) = 2 + 2 2 . Then by Simpson’s Rule with = 6 and = 6 ( 6)
6 = 2, we get

2
3 [ ( 6) + 4 ( 4) + 2 ( 2) + 4 (0) + 2 (2) + 4 (4) + (6)] 612 3053.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 27

50. = 2 cot = 2 csc2 and = 2 sin2 = 4 sin cos = 2 sin 2 .

So =
2

4
4 2 csc4 + 4 2 sin2 2 = 2

2

4
csc4 + sin2 2 . Using Simpson’s Rule with

= 4, = 2 4
4

=
16

, and ( ) = csc4 + sin2 2 , we get

2 · 4 = (2 ) 16·3 4
+ 4 5

16
+ 2 3

8
+ 4 7

16
+

2
2 2605 .

51. = sin2 , = cos2 , 0 3 .

( )2 + ( )2 = (2 sin cos )2 + ( 2 cos sin )2 = 8 sin2 cos2 = 2 sin2 2

Distance = 3

0
2 |sin 2 | = 6 2

2

0
sin 2 [by symmetry] = 3 2 cos 2

2

0
= 3 2 ( 1 1) = 6 2.

The full curve is traversed as goes from 0 to
2

, because the curve is the segment of + = 1 that lies in the first quadrant

(since , 0), and this segment is completely traversed as goes from 0 to
2

. Thus, =
2

0
sin 2 = 2, as above.

52. = cos2 , = cos , 0 4 . 2
+

2
= ( 2 cos sin )2 + ( sin )2 = sin2 (4 cos2 + 1)

Distance =
4

0
|sin | 4 cos2 + 1 = 4

0
sin 4 cos2 + 1

= 4
1

1
4 2 + 1 [ = cos , = sin ] = 4

1

1
4 2 + 1

= 8
1

0
4 2 + 1 = 8

tan 1 2

0
sec · 1

2
sec2 [2 = tan 2 = sec2 ]

= 4
tan 1 2

0
sec3

71
= 2 sec tan + 2 ln |sec + tan |

tan 1 2

0
= 4 5 + 2 ln 5 + 2

Thus, =
0
|sin | 4 cos2 + 1 = 5 + 1

2 ln 5 + 2 .

53. = sin , = cos , 0 2 .

2
+

2
= ( cos )2 + ( sin )2 = 2 cos2 + 2 sin2 = 2(1 sin2 ) + 2 sin2

= 2 ( 2 2) sin2 = 2 2 sin2 = 2 1
2

2
sin2 = 2(1 2 sin2 )

So = 4
2

0
2 1 2 sin2 [by symmetry] = 4 2

0
1 2 sin2 .

54. = cos3 , = sin3 .
2
+

2
= ( 3 cos2 sin )2 + (3 sin2 cos )2

= 9 2 cos4 sin2 + 9 2 sin4 cos2

= 9 2 sin2 cos2 (cos2 + sin2 ) = 9 2 sin2 cos2 .

The graph has four-fold symmetry and the curve in the first quadrant corresponds

to 0 2. Thus,

= 4
2

0
3 sin cos [since 0 and sin and cos are positive for 0 2]

= 12 1
2
sin2

2

0
= 12 1

2
0 = 6
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28 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

55. (a) = 11 cos 4 cos(11 2), = 11 sin 4 sin(11 2).

Notice that 0 2 does not give the complete curve because

(0) 6= (2 ). In fact, we must take [0 4 ] in order to obtain the

complete curve, since the first term in each of the parametric equations has

period 2 and the second has period 2
11 2 =

4
11 , and the least common

integer multiple of these two numbers is 4 .

(b) We use the CAS to find the derivatives and , and then use Theorem 6 to find the arc length. Recent versions

of Maple express the integral 4

0
( )2 + ( )2 as 88 2 2 , where ( ) is the elliptic integral

1

0

1 2 2

1 2
and is the imaginary number 1.

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command

evalf(Int(sqrt(diff(x,t)̂ 2+diff(y,t)̂ 2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 294 03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11 4

0
4 cos cos 11

2
4 sin sin 11

2
+ 5 .

56. (a) It appears that as , ( ) 1
2

1
2

, and as , ( ) 1
2

1
2

.

(b) By the Fundamental Theorem of Calculus, = cos
2
2 and

= sin
2
2 , so by Formula 4, the length of the curve from the origin

to the point with parameter value is

=
0

2
+

2
=

0
cos2

2
2 + sin2

2
2

=
0
1 = [or if 0]

We have used as the dummy variable so as not to confuse it with the upper limit of integration.

57. = sin , = cos , 0 2. = cos + sin and = sin + cos , so

( )2 + ( )2 = 2 cos2 + 2 sin cos + sin2 + 2 sin2 2 sin cos + cos2

= 2(cos2 + sin2 ) + sin2 + cos2 = 2 + 1

= 2 =
2

0
2 cos 2 + 1 4 7394.

58. = sin , = sin 2 , 0 2. = cos and = 2cos 2 , so ( )2 + ( )2 = cos2 + 4 cos2 2 .

= 2 =
2

0
2 sin 2 cos2 + 4 cos2 2 8 0285.

59. = 1 + , = ( 2 + 1) , 0 1.
2
+

2
= ( + )2 + [( 2 + 1) + (2 )]2 = [ ( + 1)]2 + [ ( 2 + 2 + 1)]2

= 2 ( + 1)2 + 2 ( + 1)4 = 2 ( + 1)2[1 + ( + 1)2], so

= 2 =
1

0
2 ( 2 + 1) 2 ( + 1)2( 2 + 2 + 2) =

1

0
2 ( 2 + 1) 2 ( + 1) 2 + 2 + 2 103 5999
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 29

60. = 2 3, = + 4, 0 1.

( )2 + ( )2 = (2 3 2)2 + (1 + 4 3)2 = 4 2 12 3 + 9 4 + 1 + 8 3 + 16 6, so

= 2 =
1

0
2 ( + 4) 16 6 + 9 4 4 3 + 4 2 + 1 12 7176.

61. = 3, = 2, 0 1. 2
+

2
= 3 2 2

+ (2 )2 = 9 4 + 4 2.

=
1

0

2
2
+

2
=

1

0

2 2 9 4 + 4 2 = 2
1

0

2 2(9 2 + 4)

= 2
13

4

4

9
1
18

= 9 2 + 4, 2 = ( 4) 9,
= 18 , so = 1

18

=
2

9 · 18
13

4

( 3 2 4 1 2)

= 81
2
5

5 2 8
3

3 2
13

4
= 81 · 2

15
3 5 2 20 3 2

13

4

= 2
1215

3 · 132 13 20 · 13 13 (3 · 32 20 · 8) = 2
1215

247 13 + 64

62. = 3 3, = 3 2, 0 1. 2
+

2
= (3 3 2)2 + (6 )2 = 9(1 + 2 2 + 4) = [3(1 + 2)]2.

=
1

0
2 · 3 2 · 3(1 + 2) = 18

1

0
( 2 + 4) = 18 1

3
3 + 1

5
5 1

0
= 48

5

63. = cos3 , = sin3 , 0 2 . 2
+

2
= ( 3 cos2 sin )2 + (3 sin2 cos )2 = 9 2 sin2 cos2 .

=
2

0
2 · sin3 · 3 sin cos = 6 2 2

0
sin4 cos = 6

5
2 sin5

2

0
= 6

5
2

64. 2
+

2
= ( 2 sin + 2 sin 2 )2 + (2 cos 2 cos 2 )2

= 4[(sin2 2 sin sin 2 + sin2 2 ) + (cos2 2 cos cos 2 + cos2 2 )]

= 4[1 + 1 2(cos 2 cos + sin 2 sin )] = 8[1 cos(2 )] = 8(1 cos )

We plot the graph with parameter interval [0 2 ], and see that we should only

integrate between 0 and . (If the interval [0 2 ] were taken, the surface of

revolution would be generated twice.) Also note that

= 2 sin sin 2 = 2 sin (1 cos ). So

=
0
2 · 2 sin (1 cos ) 2 2 1 cos

= 8 2
0
(1 cos )3 2 sin = 8 2

2

0
3 = 1 cos

= sin

= 8 2 2
5

5 2
2

0
= 16

5 2 (25 2) = 128
5

65. = 3 2, = 2 3, 0 5
2
+

2
= (6 )2 + (6 2)2 = 36 2(1 + 2)

=
5

0
2 ( )2 + ( )2 =

5

0
2 (3 2)6 1 + 2 = 18

5

0
2 1 + 2 2

= 18
26

1
( 1)

= 1 + 2

= 2
= 18

26

1
( 3 2 1 2) = 18 2

5
5 2 2

3
3 2

26

1

= 18 2
5
· 676 26 2

3
· 26 26 2

5
2
3

= 24
5

949 26 + 1
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30 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

66. = , = 4 2, 0 1. 2
+

2
= ( 1)2 + (2 2)2 = 2 + 2 + 1 = ( + 1)2.

=
1

0
2 ( ) ( 1)2 + (2 2)2 =

1

0
2 ( )( + 1)

= 2 1
2

2 + ( 1) 1
2
2 1

0
= ( 2 + 2 6)

67. If 0 is continuous and 0( ) 6= 0 for , then either 0( ) 0 for all in [ ] or 0( ) 0 for all in [ ]. Thus,

is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that has an inverse. Set = 1,

that is, define by ( ) = ( 1( )). Then = ( ) 1( ) = , so = ( ) = ( 1( )) = ( ).

68. By Formula 8.2.5 with = ( ), = 2 ( ) 1 + [ 0( )]2 . But by Formula 10.2.1,

1 + [ 0( )]2 = 1+
2

= 1 +
2

=
( )2 + ( )2

( )2
. Using the Substitution Rule with = ( ),

where = ( ) and = ( ), we have since =

= 2 ( ( ))
( )2 + ( )2

( )2
= 2

2

+
2

, which is Formula 10.2.6.

69. (a) = tan 1 = tan 1 =
1

1 + ( )2
. But = =

= =
¨ ¨

2
=

1

1 + ( )2
¨ ¨

2
=

¨ ¨
2 + 2

. Using the Chain Rule, and the

fact that =
0

2
+

2
=

2
+

2
= 2 + 2 1 2, we have that

= =
¨ ¨
2 + 2

1

( 2 + 2)1 2
=

¨ ¨

( 2 + 2)3 2
. So = =

¨ ¨

( 2 + 2)3 2
=

| ¨ ¨ |
( 2 + 2)3 2

.

(b) = and = ( ) = 1, ¨ = 0 and = , ¨ =
2

2
.

So =
1 · ( 2 2) 0 · ( )

[1 + ( )2]3 2
=

2 2

[1 + ( )2]3 2
.

70. (a) = 2 = 2
2

2
= 2. So =

2 2

[1 + ( )2]3 2
=

2

(1 + 4 2)3 2
, and at (1 1),

=
2

53 2
=

2

5 5
.

(b) 0 = = 3(1 + 4 2) 5 2(8 ) = 0 = 0 = 0. This is a maximum since 0 0 for 0 and

0 0 for 0. So the parabola = 2 has maximum curvature at the origin.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 31

71. = sin = 1 cos ¨ = sin , and = 1 cos = sin ¨ = cos . Therefore,

=
cos cos2 sin2

[(1 cos )2 + sin2 ]3 2
=

cos (cos2 + sin2 )

(1 2 cos + cos2 + sin2 )3 2
=

|cos 1|
(2 2 cos )3 2

. The top of the arch is

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when = (2 1) ,

so take = 1 and substitute = into the expression for : =
|cos 1|

(2 2 cos )3 2
=

| 1 1|
[2 2( 1)]3 2

=
1

4
.

72. (a) Every straight line has parametrizations of the form = + , = + , where , are arbitrary and , 6= 0.
For example, a straight line passing through distinct points ( ) and ( ) can be described as the parametrized curve

= + ( ) , = + ( ) . Starting with = + , = + , we compute = , = , ¨ = ¨ = 0,

and =
| · 0 · 0|
( 2 + 2)3 2

= 0.

(b) Parametric equations for a circle of radius are = cos and = sin . We can take the center to be the origin.

So = sin ¨ = cos and = cos ¨ = sin . Therefore,

=
2 sin2 + 2 cos2

( 2 sin2 + 2 cos2 )3 2
=

2

3
=
1 . And so for any (and thus any point), =

1 .

73. The coordinates of are ( cos sin ). Since was unwound from

arc , has length . Also = = 1
2

,

so has coordinates = cos + cos 1
2 = (cos + sin ),

= sin sin 1
2 = (sin cos ).

74. If the cow walks with the rope taut, it traces out the portion of the

involute in Exercise 73 corresponding to the range 0 , arriving at

the point ( ) when = . With the rope now fully extended, the

cow walks in a semicircle of radius , arriving at ( ). Finally,

the cow traces out another portion of the involute, namely the reflection

about the -axis of the initial involute path. (This corresponds to the

range 0.) Referring to the figure, we see that the total grazing

area is 2( 1 + 3). 3 is one-quarter of the area of a circle of radius , so 3 =
1
4 ( )2 = 1

4
3 2. We will compute

1 + 2 and then subtract 2 =
1
2

2 to obtain 1.

To find 1 + 2, first note that the rightmost point of the involute is 2 . [To see this, note that = 0 when

= 0 or
2

. = 0 corresponds to the cusp at ( 0) and =
2

corresponds to
2

.] The leftmost point of the involute is
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32 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

( ). Thus, 1 + 2 =
2

=

2

=0
=

0

=
.

Now = (sin cos ) cos = 2( sin cos 2 cos2 ) . Integrate:

(1 2) = cos2 1
2

2 1 sin cos 1
6

3 + 1
2
+ . This enables us to compute

1 + 2 =
2 cos2 1

2
( 2 1) sin cos 1

6
3 + 1

2

0
= 2 0

3

6
+
2

= 2

2
+

3

6

Therefore, 1 = ( 1 + 2) 2 =
1
6

3 2, so the grazing area is 2( 1 + 3) = 2
1
6

3 2 + 1
4

3 2 = 5
6

3 2.

LABORATORY PROJECT Bézier Curves

1. The parametric equations for a cubic Bézier curve are

= 0(1 )3 + 3 1 (1 )2 + 3 2
2(1 ) + 3

3

= 0(1 )3 + 3 1 (1 )2 + 3 2
2(1 ) + 3

3

where 0 1. We are given the points 0( 0 0) = (4 1), 1( 1 1) = (28 48), 2( 2 2) = (50 42), and

3( 3 3) = (40 5). The curve is then given by

( ) = 4(1 )3 + 3 · 28 (1 )2 + 3 · 50 2(1 ) + 40 3

( ) = 1(1 )3 + 3 · 48 (1 )2 + 3 · 42 2(1 ) + 5 3

where 0 1. The line segments are of the form = 0 + ( 1 0) ,

= 0 + ( 1 0) :

0 1 = 4 + 24 , = 1 + 47

1 2 = 28 + 22 , = 48 6

2 3 = 50 10 , = 42 37

2. It suffices to show that the slope of the tangent at 0 is the same as that of line segment 0 1, namely 1 0

1 0
.

We calculate the slope of the tangent to the Bézier curve:

=
3 0(1 )2 + 3 1 2 (1 ) + (1 )2 + 3 2

2 + (2 )(1 ) + 3 3
2

3 2
0(1 ) + 3 1[ 2 (1 ) + (1 )2] + 3 2[ 2 + (2 )(1 )] + 3 3

2

At point 0, = 0, so the slope of the tangent is 3 0 + 3 1

3 0 + 3 1
=

1 0

1 0
. So the tangent to the curve at 0 passes

through 1. Similarly, the slope of the tangent at point 3 [where = 1] is 3 2 + 3 3

3 2 + 3 3
=

3 2

3 2
, which is also the slope

of line 2 3.

3. It seems that if 1 were to the right of 2, a loop would appear.

We try setting 1 = (110 30), and the resulting curve does indeed have a loop.
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SECTION 10.3 POLAR COORDINATES ¤ 33

4. Based on the behavior of the Bézier curve in Problems 1–3, we suspect that the

four control points should be in an exaggerated C shape. We try 0(10 12),

1(4 15), 2(4 5), and 3(10 8), and these produce a decent C. If you are using

a CAS, it may be necessary to instruct it to make the - and -scales the same so as

not to distort the figure (this is called a “constrained projection” in Maple.)

5. We use the same 0 and 1 as in Problem 4, and use part of our C as the top of

an S. To prevent the center line from slanting up too much, we move 2 up to

(4 6) and 3 down and to the left, to (8 7). In order to have a smooth joint

between the top and bottom halves of the S (and a symmetric S), we determine

points 4, 5, and 6 by rotating points 2, 1, and 0 about the center of the

letter (point 3). The points are therefore 4(12 8), 5(12 1), and 6(6 2).

10.3 Polar Coordinates

1. (a) 2
3

By adding 2 to
3

, we obtain the point 2 7
3

. The direction

opposite
3

is 4
3

, so 2 4
3

is a point that satisfies the 0

requirement.

(b) 1 3
4

0: 1 3
4
+ 2 = 1 5

4

0: 1 3
4
+ = 1

4

(c) 1
2

0: ( 1)
2
+ = 1 3

2

0: 1
2
+ 2 = 1 5

2

2. (a) 1 7
4

0: 1 7
4

2 = 1
4

0: 1 7
4

= 1 3
4
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34 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b) 3 6 0: ( 3) 6 + = 3 7
6

0: 3
6
+ 2 = 3 13

6

(c) (1 1) = 1 radian 57 3

0: (1 1 + 2 )

0: ( 1 1 + )

3. (a) = 1cos = 1( 1) = 1 and

= 1 sin = 1(0) = 0 give us

the Cartesian coordinates ( 1 0).

(b) = 2cos 2
3

= 2 1
2
= 1 and

= 2 sin 2
3

= 2 3
2

= 3

give us 1 3 .

(c) = 2 cos 3
4
= 2 2

2
= 2 and

= 2 sin 3
4 = 2 2

2
= 2

gives us 2 2 .

4. (a) = 2cos 5
4
= 2 2

2
= 1 and

= 2 sin 5
4
= 2 2

2
= 1

gives us (1 1).
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SECTION 10.3 POLAR COORDINATES ¤ 35

(b) = 1cos 52 = 1(0) = 0 and

= 1 sin 5
2 = 1(1) = 1

gives us (0 1).

(c) = 2cos 7
6

= 2 3
2

= 3 and

= 2 sin 7
6

= 2 1
2
= 1

give us 3 1 .

5. (a) = 2 and = 2 = 22 + ( 2)2 = 2 2 and = tan 1 2
2

=
4

. Since (2 2) is in the fourth

quadrant, the polar coordinates are (i) 2 2 7
4

and (ii) 2 2 3
4

.

(b) = 1 and = 3 = ( 1)2 + 3
2
= 2 and = tan 1 3

1
= 2

3
. Since 1 3 is in the second

quadrant, the polar coordinates are (i) 2 2
3

and (ii) 2 5
3

.

6. (a) = 3 3 and = 3 = 3 3
2
+ 32 = 27 + 9 = 6 and = tan 1 3

3 3
= tan 1 1

3
=

6
. Since

3 3 3 is in the first quadrant, the polar coordinates are (i) 6
6

and (ii) 6 7
6

.

(b) = 1 and = 2 = 12 + ( 2)2 = 5 and = tan 1 2
1

= tan 1 2. Since (1 2) is in the fourth

quadrant, the polar coordinates are (i) 5 2 tan 1 2 and (ii) 5 tan 1 2 .

7. 1. The curve = 1 represents a circle with center

and radius 1. So 1 represents the region on or

outside the circle. Note that can take on any value.

8. 0 2, 3 2. This is the region inside the

circle = 2 in the third quadrant.

9. 0, 4 3 4.

= represents a line through .

10. 1 3, 6 5 6
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36 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

11. 2 3, 5
3

7
3 12. 1, 2

13. Converting the polar coordinates (2 3) and (4 2 3) to Cartesian coordinates gives us 2 cos
3
2 sin

3
= 1 3 and

4 cos 2
3
4 sin 2

3
= 2 2 3 . Now use the distance formula.

= ( 2 1)
2 + ( 2 1)

2 = ( 2 1)2 + 2 3 3
2
= 9 + 3 = 12 = 2 3

14. The points ( 1 1) and ( 2 2) in Cartesian coordinates are ( 1 cos 1 1 sin 1) and ( 2 cos 2 2 sin 2), respectively.

The square of the distance between them is

( 2 cos 2 1 cos 1)
2 + ( 2 sin 2 1 sin 1)

2

= 2
2 cos

2
2 2 1 2 cos 1 cos 2 +

2
1 cos

2
1 + 2

2 sin
2

2 2 1 2 sin 1 sin 2 +
2
1 sin

2
1

= 2
1 sin

2
1 + cos

2
1 + 2

2 sin
2

2 + cos
2

2 2 1 2(cos 1 cos 2 + sin 1 sin 2)

= 2
1 2 1 2 cos( 1 2) +

2
2 ,

so the distance between them is 2
1 2 1 2 cos( 1 2) + 2

2 .

15. 2 = 5 2 + 2 = 5, a circle of radius 5 centered at the origin.

16. = 4 sec
sec

= 4 cos = 4 = 4, a vertical line.

17. = 2 cos 2 = 2 cos 2 + 2 = 2 2 2 + 1 + 2 = 1 ( 1)2 + 2 = 1, a circle of

radius 1 centered at (1 0). The first two equations are actually equivalent since 2 = 2 cos ( 2 cos ) = 0

= 0 or = 2cos . But = 2cos gives the point = 0 (the pole) when = 0. Thus, the equation = 2 cos is

equivalent to the compound condition ( = 0 or = 2 cos ).

18. =
3

tan = tan
3

= 3 = 3 , a line through the origin.

19. 2 cos 2 = 1 2(cos2 sin2 ) = 1 ( cos )2 ( sin )2 = 1 2 2 = 1, a hyperbola centered at

the origin with foci on the -axis.

20. = tan sec =
sin

cos2
cos2 = sin ( cos )2 = sin 2 = , a parabola with vertex at the

origin opening upward. The first implication is reversible since cos = 0 would imply sin = cos2 = 0, contradicting the

fact that cos2 + sin2 = 1.
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SECTION 10.3 POLAR COORDINATES ¤ 37

21. = 2 sin = 2 =
2

sin
= 2 csc

22. = = 1 [ 6= 0] tan = 1 = tan 1 1 =
4

or =
5

4
[either includes the pole]

23. = 1 + 3 sin = 1 + 3 cos sin 3 cos = 1 (sin 3 cos ) = 1

=
1

sin 3 cos

24. 4 2 = 4( sin )2 = cos 4 2 sin2 cos = 0 (4 sin2 cos ) = 0 = 0 or

=
cos

4 sin2
= 0 or = 1

4 cot csc . = 0 is included in = 1
4 cot csc when = 2 , so the curve is

represented by the single equation = 1
4
cot csc .

25. 2 + 2 = 2 2 = 2 cos 2 2 cos = 0 ( 2 cos ) = 0 = 0 or = 2 cos .

= 0 is included in = 2 cos when =
2
+ , so the curve is represented by the single equation = 2 cos

26. = 4 ( cos )( sin ) = 4 2 1
2
· 2 sin cos = 4 2 sin 2 = 8 2 = 8 csc 2

27. (a) The description leads immediately to the polar equation =
6

, and the Cartesian equation = tan
6

= 1

3
is

slightly more difficult to derive.

(b) The easier description here is the Cartesian equation = 3.

28. (a) Because its center is not at the origin, it is more easily described by its Cartesian equation, ( 2)2 + ( 3)2 = 52.

(b) This circle is more easily given in polar coordinates: = 4. The Cartesian equation is also simple: 2 + 2 = 16.

29. = 2 sin

30. = 1 cos
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38 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

31. = 2(1 + cos )

32. = 1 + 2 cos

33. = , 0

34. = ln , 1

35. = 4 sin 3
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SECTION 10.3 POLAR COORDINATES ¤ 39

36. = cos 5

37. = 2 cos 4

38. = 3 cos 6

39. = 1 2 sin

40. = 2 + sin
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40 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

41. 2 = 9 sin 2

42. 2 = cos 4

43. = 2 + sin 3

44. 2 = 1 = ±1 for 0

45. = 1 + 2 cos 2
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SECTION 10.3 POLAR COORDINATES ¤ 41

46. = 3 + 4 cos

47. For = 0, , and 2 , has its minimum value of about 0 5. For = 2 and 3
2 , attains its maximum value of 2.

We see that the graph has a similar shape for 0 and 2 .

48.

49. = cos = (4 + 2 sec ) cos = 4 cos + 2. Now,

(4 + 2 sec )
2

or 3
2

+ [since we need only

consider 0 2 ], so lim = lim
2
(4 cos + 2) = 2. Also,

(4 + 2 sec )
2

+ or 3
2

, so

lim = lim
2+
(4 cos + 2) = 2. Therefore, lim

±
= 2 = 2 is a vertical asymptote.

50. = sin = 2 sin csc sin = 2 sin 1.

(2 csc )

csc + [since we need

only consider 0 2 ] and so

lim = lim
+
2 sin 1 = 1.

Also (2 csc ) csc and so lim = lim 2 sin 1 = 1.

Therefore lim
±

= 1 = 1 is a horizontal asymptote.
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42 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51. To show that = 1 is an asymptote we must prove lim
±

= 1.

= ( ) cos = (sin tan ) cos = sin2 . Now, sin tan

2
, so lim = lim

2
sin2 = 1. Also, sin tan

2

+, so lim = lim
2+
sin2 = 1. Therefore, lim

±
= 1 = 1 is

a vertical asymptote. Also notice that = sin2 0 for all , and = sin2 1 for all . And 6= 1, since the curve is not

defined at odd multiples of
2

. Therefore, the curve lies entirely within the vertical strip 0 1.

52. The equation is ( 2 + 2)3 = 4 2 2, but using polar coordinates we know that

2 + 2 = 2 and = cos and = sin . Substituting into the given

equation: 6 = 4 2 cos2 2 sin2 2 = 4 cos2 sin2

= ±2 cos sin = ± sin 2 . = ± sin 2 is sketched at right.

53. (a) We see that the curve = 1 + sin crosses itself at the origin, where = 0 (in fact the inner loop corresponds to

negative -values,) so we solve the equation of the limaçon for = 0 sin = 1 sin = 1 . Now if

| | 1, then this equation has no solution and hence there is no inner loop. But if 1, then on the interval (0 2 )

the equation has the two solutions = sin 1( 1 ) and = sin 1( 1 ), and if 1, the solutions are

= + sin 1(1 ) and = 2 sin 1(1 ). In each case, 0 for between the two solutions, indicating a loop.

(b) For 0 1, the dimple (if it exists) is characterized by the fact that has a local maximum at = 3
2 . So we

determine for what -values
2

2 is negative at = 3
2

, since by the Second Derivative Test this indicates a maximum:

= sin = sin + sin2 = cos + 2 sin cos = cos + sin 2
2

2 = sin + 2 cos 2 .

At = 3
2

, this is equal to ( 1) + 2 ( 1) = 1 2 , which is negative only for 1
2
. A similar argument shows that

for 1 0, only has a local minimum at =
2 (indicating a dimple) for 1

2 .

54. (a) = , 0 16 . increases as increases and there are eight full revolutions. The graph must be either II or V.

When = 2 , = 2 2 5 and when = 16 , = 16 7, so the last revolution intersects the polar axis at

approximately 3 times the distance that the first revolution intersects the polar axis, which is depicted in graph V.

(b) = 2, 0 16 . See part (a). This is graph II.

(c) = cos( 3). 0
3

2 0 6 , so this curve will repeat itself every 6 radians.

cos
3
= 0

3 = 2 + = 3
2 + 3 , so there will be two “pole” values, 32 and 9

2 .

This is graph VI.

(d) = 1 + 2 cos is a limaçon [see Exercise 53(a)] with = 2. This is graph III.
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SECTION 10.3 POLAR COORDINATES ¤ 43

(e) Since 1 sin 3 1, 1 2 + sin 3 3, so = 2 + sin 3 is never 0; that is, the curve never intersects the pole.

This is graph I.

(f) = 1 + 2 sin 3 . Solving = 0 will give us many “pole” values, so this is graph IV.

55. = 2 sin = cos = 2 sin cos = sin 2 , = sin = 2 sin2

= =
2 · 2 sin cos

cos 2 · 2 =
sin 2

cos 2
= tan 2

When =
6

, = tan 2 ·
6

= tan
3
= 3. [Another method: Use Equation 3.]

56. = 2 sin = cos = (2 sin ) cos , = sin = (2 sin ) sin

= =
(2 sin ) cos + sin ( cos )

(2 sin )( sin ) + cos ( cos )
=

2 cos 2 sin cos

2 sin + sin2 cos2
=

2 cos sin 2

2 sin cos 2

When =
3

, =
2(1 2) 3 2

2 3 2 ( 1 2)
=

1 3 2

3 + 1 2
· 2
2
=

2 3

1 2 3
.

57. = 1 = cos = (cos ) , = sin = (sin )

= =
sin ( 1 2) + (1 ) cos

cos ( 1 2) (1 ) sin
·

2

2 =
sin + cos

cos sin

When = , =
0 + ( 1)

( 1) (0)
=

1
= .

58. = cos( 3) = cos = cos( 3) cos , = sin = cos( 3) sin

= =
cos( 3) cos + sin 1

3
sin( 3)

cos( 3) ( sin ) + cos 1
3 sin( 3)

When = , =
1
2
( 1) + (0) 3 6

1
2 (0) + ( 1) 3 6

=
1 2

3 6
=

3

3
= 3.

59. = cos 2 = cos = cos 2 cos , = sin = cos 2 sin

= =
cos 2 cos + sin ( 2 sin 2 )

cos 2 ( sin ) + cos ( 2 sin 2 )

When =
4

, =
0 2 2 + 2 2 ( 2)

0 2 2 + 2 2 ( 2)
=

2

2
= 1.

60. = 1 + 2 cos = cos = (1 + 2 cos ) cos , = sin = (1 + 2 cos ) sin

= =
(1 + 2 cos ) cos + sin ( 2 sin )

(1 + 2 cos )( sin ) + cos ( 2 sin )

When =
3

, =
2 1

2
+ 3 2 3

2 3 2 + 1
2

3
· 2
2
=

2 3

2 3 3
=

1

3 3
=

3

9
.
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44 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

61. = 3 cos = cos = 3 cos cos , = sin = 3 cos sin

= 3 sin2 + 3 cos2 = 3 cos 2 = 0 2 =
2

or 3
2

=
4

or 3
4

.

So the tangent is horizontal at 3

2 4
and 3

2

3
4

same as 3

2 4
.

= 6 sin cos = 3 sin 2 = 0 2 = 0 or = 0 or
2

. So the tangent is vertical at (3 0) and 0
2

.

62. = 1 sin = cos = cos (1 sin ), = sin = sin (1 sin )

= sin ( cos ) + (1 sin ) cos = cos (1 2 sin ) = 0 cos = 0 or sin = 1
2

=
6

,
2

, 5
6

, or 3
2

horizontal tangent at 1
2 6

, 1
2

5
6

, and 2 3
2

.

= cos ( cos ) + (1 sin )( sin ) = cos2 sin + sin2 = 2 sin2 sin 1

= (2 sin + 1)(sin 1) = 0

sin = 1
2

or 1 = 7
6

, 11
6

, or
2

vertical tangent at 3
2

7
6

3
2

11
6

, and 0
2

.

Note that the tangent is vertical, not horizontal, when =
2

, since

lim
( 2)

= lim
( 2)

cos (1 2 sin )

(2 sin + 1)(sin 1)
= and lim

( 2)+
= .

63. = 1 + cos = cos = cos (1 + cos ), = sin = sin (1 + cos )

= (1 + cos ) cos sin2 = 2cos2 + cos 1 = (2 cos 1)(cos + 1) = 0 cos = 1
2 or 1

=
3

, , or 5
3

horizontal tangent at 3
2 3

, (0 ), and 3
2

5
3

.

= (1 + cos ) sin cos sin = sin (1 + 2 cos ) = 0 sin = 0 or cos = 1
2

= 0, , 2
3

, or 4
3

vertical tangent at (2 0), 1
2

2
3

, and 1
2

4
3

.

Note that the tangent is horizontal, not vertical when = , since lim = 0.

64. = = cos = cos , = sin = sin

= sin + cos = (sin + cos ) = 0 sin = cos tan = 1

= 1
4
+ [ any integer] horizontal tangents at ( 1 4) 1

4
.

= cos sin = (cos sin ) = 0 sin = cos tan = 1

= 1
4
+ [ any integer] vertical tangents at ( +1 4), + 1

4
.

65. = sin + cos 2 = sin + cos 2 + 2 = +

2 + 1
2

2
+ 2 + 1

2

2
= 1

2

2
+ 1

2

2 1
2

2
+ 1

2

2
= 1

4
( 2 + 2), and this is a circle

with center 1
2

1
2

and radius 1
2

2 + 2.

66. These curves are circles which intersect at the origin and at 1

2 4
. At the origin, the first circle has a horizontal

tangent and the second a vertical one, so the tangents are perpendicular here. For the first circle [ = sin ],

= cos sin + sin cos = sin 2 = at =
4 and = cos2 sin2 = cos 2 = 0
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SECTION 10.3 POLAR COORDINATES ¤ 45

at = 4 , so the tangent here is vertical. Similarly, for the second circle [ = cos ], = cos 2 = 0 and

= sin 2 = at =
4

, so the tangent is horizontal, and again the tangents are perpendicular.

67. = 1 + 2 sin( 2). The parameter interval is [0 4 ]. 68. = 1 0 8 sin2 . The parameter interval is [0 2 ].

69. = sin 2 cos(4 ).

The parameter interval is [0 2 ].

70. = |tan ||cot |.

The parameter interval [0 ] produces the heart-shaped valentine curve shown in the first window.

The complete curve, including the reflected heart, is produced by the parameter interval [0 2 ], but perhaps you’ll agree

that the first curve is more appropriate.

71. = 1 + cos999 . The parameter interval is [0 2 ]. 72. = sin2(4 ) + cos(4 ). The parameter interval

is [0 2 ].
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46 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

73. It appears that the graph of = 1 + sin 6
is the same shape as

the graph of = 1 + sin , but rotated counterclockwise about the

origin by
6

. Similarly, the graph of = 1 + sin
3

is rotated by

3
. In general, the graph of = ( ) is the same shape as that of

= ( ), but rotated counterclockwise through about the origin.

That is, for any point ( 0 0) on the curve = ( ), the point

( 0 0 + ) is on the curve = ( ), since 0 = ( 0) = (( 0 + ) ).

74. From the graph, the highest points seem to have 0 77. To find the exact

value, we solve = 0. = sin = sin sin 2

= 2 sin cos 2 + cos sin 2

= 2 sin (2 cos2 1) + cos (2 sin cos )

= 2 sin (3 cos2 1)

In the first quadrant, this is 0 when cos = 1

3
sin = 2

3

= 2 sin2 cos = 2 · 2
3
· 1

3
= 4

9
3 0 77.

75. Consider curves with polar equation = 1 + cos , where is a real number. If = 0, we get a circle of radius 1 centered at

the pole. For 0 0 5, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 0 5 1,

the left side has a dimple shape. For = 1, the dimple becomes a cusp. For 1, there is an internal loop. For 0, the

rightmost point on the curve is (1 + 0). For 0, the curves are reflections through the vertical axis of the curves

with 0.

= 0 25 = 0 75 = 1 = 2

76. Consider the polar curves = 1 + cos , where is a positive integer. First, let

be an even positive integer. The first figure shows that the curve has a peanut

shape for = 2, but as increases, the ends are squeezed. As becomes large,

the curves look more and more like the unit circle, but with spikes to the points

(2 0) and (2 ).
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SECTION 10.3 POLAR COORDINATES ¤ 47

The second figure shows as a function of in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of = 1,

but with spikes to = 2 for = 0, , and 2 . (Note that when 0 cos 1,

cos1000 is very small.)

Next, let be an odd positive integer. The third figure shows that the curve is a

cardioid for = 1, but as increases, the heart shape becomes more pronounced.

As becomes large, the curves again look more like the unit circle, but with an

outward spike to (2 0) and an inward spike to (0 ).

The fourth figure shows as a function of in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of = 1,

but spikes to = 2 for = 0 and , and to = 0 for = .

77. tan = tan( ) =
tan tan

1 + tan tan
=

tan

1 + tan
=

tan

1 + tan

=
tan

+ tan
=

sin + cos tan cos sin

cos sin + tan sin + cos

=
cos + · sin

2

cos

cos + · sin
2

cos

=
cos2 + sin2

cos2 + sin2
=

78. (a) = = , so by Exercise 77, tan = = 1

= arctan 1 =
4 .

(b) The Cartesian equation of the tangent line at (1 0) is = 1, and that of

the tangent line at (0 2) is = 2 .

(c) Let be the tangent of the angle between the tangent and radial lines, that

is, = tan . Then, by Exercise 77, = =
1

= (by Theorem 9.4.2).
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48 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

LABORATORY PROJECT Families of Polar Curves

1. (a) = sin .

= 2 = 3 = 4 = 5

From the graphs, it seems that when is even, the number of loops in the curve (called a rose) is 2 , and when is odd,

the number of loops is simply . This is because in the case of odd, every point on the graph is traversed twice, due to

the fact that

( + ) = sin[ ( + )] = sin cos + cos sin =
sin if is even

sin if is odd

(b) The graph of = |sin | has 2 loops whether is odd or even, since ( + ) = ( ).

= 2 = 3 = 4 = 5

2. = 1 + sin . We vary while keeping constant at 2. As changes, the curves change in the same way as those in

Exercise 1: the number of loops increases. Note that if is even, the smaller loops are outside the larger ones; if is odd, they

are inside.

= 2

= 2 = 3 = 4 = 5
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LABORATORY PROJECT FAMILIES OF POLAR CURVES ¤ 49

Now we vary while keeping = 3. As increases toward 0, the entire graph gets smaller (the graphs below are not to scale)

and the smaller loops shrink in relation to the large ones. At = 1, the small loops disappear entirely, and for 1 1,

the graph is a simple, closed curve (at = 0 it is a circle). As continues to increase, the same changes are seen, but in reverse

order, since 1 + ( ) sin = 1 + sin ( + ), so the graph for = 0 is the same as that for = 0, with a rotation

through . As , the smaller loops get relatively closer in size to the large ones. Note that the distance between the

outermost points of corresponding inner and outer loops is always 2. Maple’s animate command (or Mathematica’s

Animate) is very useful for seeing the changes that occur as varies.

= 3

= 4 = 1 4 = 1 = 0 8

= 0 2 = 0 = 0 5 = 8

3. =
1 cos

1 + cos
. We start with = 0, since in this case the curve is simply the circle = 1.

As increases, the graph moves to the left, and its right side becomes flattened. As increases through about 0 4, the right

side seems to grow a dimple, which upon closer investigation (with narrower -ranges) seems to appear at 0 42 [the

actual value is 2 1]. As 1, this dimple becomes more pronounced, and the curve begins to stretch out horizontally,

until at = 1 the denominator vanishes at = , and the dimple becomes an actual cusp. For 1 we must choose our

parameter interval carefully, since as 1 + cos 0 ± cos 1( 1 ). As increases from 1, the curve

splits into two parts. The left part has a loop, which grows larger as increases, and the right part grows broader vertically,

and its left tip develops a dimple when 2 42 [actually, 2 + 1]. As increases, the dimple grows more and more

pronounced. If 0, we get the same graph as we do for the corresponding positive -value, but with a rotation through

about the pole, as happened when was replaced with in Exercise 2.

[continued]
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50 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

= 0 = 0 3 = 0 41 | | 0 5

= 0 42,| | 0 5 = 0 9 | | 0 5 = 1 | | 0 1

= 2

= 2 41, | | 0 2

= 2 42, | | 0 2

= 4

4. Most graphing devices cannot plot implicit polar equations, so we must first find an explicit expression (or expressions) for

in terms of , , and . We note that the given equation, 4 2 2 2 cos 2 + 4 4 = 0, is a quadratic in 2, so we use the

quadratic formula and find that

2 =
2 2 cos 2 ± 4 4 cos2 2 4( 4 4)

2
= 2 cos 2 ± 4 4 sin2 2

so = ± 2 cos 2 ± 4 4 sin2 2 . So for each graph, we must plot four curves to be sure of plotting all the points

which satisfy the given equation. Note that all four functions have period .

We start with the case = = 1, and the resulting curve resembles the symbol for infinity. If we let decrease, the curve

splits into two symmetric parts, and as decreases further, the parts become smaller, further apart, and rounder. If instead we

let increase from 1, the two lobes of the curve join together, and as increases further they continue to merge, until at

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.



SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 51

1 4, the graph no longer has dimples, and has an oval shape. As , the oval becomes larger and rounder, since the
2 and 4 terms lose their significance. Note that the shape of the graph seems to depend only on the ratio , while the size

of the graph varies as and jointly increase.

( ) = (1 1) ( ) = (0 99 1) ( ) = (0 9 1)

( ) = (0 6 1) ( ) = (1 01 1) ( ) = (4 04 4)

( ) = (1 3 1)

( ) = (1 5 1) ( ) = (2 1) ( ) = (4 1)

10.4 Areas and Lengths in Polar Coordinates

1. = 4, 2 .

=
2

1
2

2 =
2

1
2
( 4)2 =

2

1
2

2 = 1
2

2 2

2
= 1( 2 4) = 4 2

2. = cos , 0 6.

=
6

0

1
2

2 =
6

0

1
2
cos2 = 1

2

6

0

1
2
(1 + cos 2 ) = 1

4
+ 1

2
sin 2

6

0

= 1
4 6 +

1
2 · 12 3 = 24 +

1
16 3

3. 2 = 9 sin 2 , 0, 0 2.

=
2

0

1
2

2 =
2

0

1
2
(9 sin 2 ) = 9

2
1
2
cos 2

2

0
= 9

4
( 1 1) = 9

2
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52 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

4. = tan , 6 3.

=
3

6

1
2

2 =
3

6

1
2 tan

2 =
3

6

1
2 (sec

2 1) = 1
2
tan

3

6

= 1
2 3 3

1
3 3 6

= 1
2

2
3 3 6

= 1
3 3 12

5. = , 0 2 . =
2

0

1
2

2 =
2

0

1
2

2

=
2

0

1
2

= 1
4

2 2

0
= 2

6. = 1 + cos , 0 .

=
0

1
2
(1 + cos )2 = 1

2
0

(1 + 2 cos + cos2 ) = 1
2

0

1 + 2 cos + 1
2
(1 + cos 2 )

= 1
2

0

3
2
+ 2 cos + 1

2
cos 2 = 1

2
3
2
+ 2 sin + 1

4
sin 2

0
= 1

2
3
2
+ 0 + 0 1

2
(0) = 3

4

7. = 4 + 3 sin ,
2 2

.

=
2

2

1
2 ((4 + 3 sin )2 = 1

2

2

2

(16 + 24 sin + 9 sin2 )

= 1
2

2

2

(16 + 9 sin2 ) [by Theorem 4.5.6(b) [ET 5.5.7(b)]]

= 1
2 · 2

2

0

16 + 9 · 1
2 (1 cos 2 ) [by Theorem 4.5.6(a) [ET 5.5.7(a)]]

=
2

0

41
2

9
2 cos 2 = 41

2
9
4 sin 2

2

0
= 41

4 0 (0 0) = 41
4

8. = sin 2 , 0
2

.

=
2

0

1
2 sin

2 2 = 1
2

2

0

1
2 (1 cos 4 ) = 1

4
1
4 sin 4

2

0
= 1

4 2
=

8

9. The area is bounded by = 2 sin for = 0 to = .

=
0

1
2

2 = 1
2

0

(2 sin )2 = 1
2

0

4 sin2

= 2
0

1
2 (1 cos 2 ) = 1

2 sin 2
0
=

Also, note that this is a circle with radius 1, so its area is (1)2 = .

10. =
2

0

1
2

2 =
2

0

1
2
(1 sin )2

= 1
2

2

0

(1 2 sin + sin2 ) = 1
2

2

0

1 2 sin + 1
2
(1 cos 2 )

= 1
2

2

0

3
2 2 sin 1

2 cos 2 = 1
2

3
2 + 2cos 1

4 sin 2
2

0

= 1
2
[(3 + 2) (2)] = 3

2
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 53

11. =
2

0

1
2

2 =
2

0

1
2
(3 + 2 cos )2 = 1

2

2

0

(9 + 12 cos + 4 cos2 )

= 1
2

2

0

9 + 12 cos + 4 · 1
2
(1 + cos 2 )

= 1
2

2

0

(11 + 12 cos + 2 cos 2 ) = 1
2
11 + 12 sin + sin 2

2

0

= 1
2
(22 ) = 11

12. =
2

0

1
2

2 =
2

0

1
2
(4 + 3 sin )2 = 1

2

2

0

(16 + 24 sin + 9 sin2 )

= 1
2

2

0

16 + 24 sin + 9 · 1
2
(1 cos 2 )

= 1
2

2

0

41
2 + 24 sin

9
2 cos 2 = 1

2
41
2 24 cos 9

4 sin 2
2

0

= 1
2
[(41 24) ( 24)] = 41

2

13. =
2

0

1
2

2 =
2

0

1
2
(2 + sin 4 )2 = 1

2

2

0

(4 + 4 sin 4 + sin2 4 )

= 1
2

2

0

4 + 4 sin 4 + 1
2
(1 cos 8 )

= 1
2

2

0

9
2
+ 4 sin 4 1

2
cos 8 = 1

2
9
2

cos 4 1
16
sin 8

2

0

= 1
2 [(9 1) ( 1)] = 9

2

14. =
2

0

1
2

2 =
2

0

1
2 (3 2 cos 4 )2 = 1

2

2

0

(9 12 cos 4 + 4 cos2 4 )

= 1
2

2

0

9 12 cos 4 + 4 · 1
2
(1 + cos 8 )

= 1
2

2

0

(11 12 cos 4 + 2 cos 8 ) = 1
2
11 3 sin 4 + 1

4
sin 8

2

0

= 1
2 (22 ) = 11

15. =
2

0

1
2

2 =
2

0

1
2

1 + cos2 5
2

= 1
2

2

0

(1 + cos2 5 ) = 1
2

2

0

1 + 1
2
(1 + cos 10 )

= 1
2

3
2
+ 1

20
sin 10

2

0
= 1

2
(3 ) = 3

2
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54 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

16. =
2

0

1
2

2 =
2

0

1
2
(1 + 5 sin 6 )2

= 1
2

2

0

(1 + 10 sin 6 + 25 sin2 6 )

= 1
2

2

0

1 + 10 sin 6 + 25 · 1
2
(1 cos 12 )

= 1
2

2

0

27
2
+ 10 sin 6 25

2
cos 12 = 1

2
27
2

5
3
cos 6 25

24
sin 12

2

0

= 1
2
27 5

3
5
3

= 27
2

17. The curve passes through the pole when = 0 4 cos 3 = 0 cos 3 = 0 3 =
2
+

=
6
+

3
. The part of the shaded loop above the polar axis is traced out for

= 0 to = 6, so we’ll use 6 and 6 as our limits of integration.

=
6

6

1
2
(4 cos 3 )2 = 2

6

0

1
2
(16 cos2 3 )

= 16
6

0

1
2
(1 + cos 6 ) = 8 + 1

6
sin 6

6

0
= 8

6
= 4

3

18. For = 0 to = 2, the shaded loop is traced out by = sin 2 and the

unshaded loop is traced out by = sin 2 .

=
2

0

1
2

2 =
2

0

1
2 sin 2

= 1
4
cos 2

2

0
= 1

4
1
4
= 1

2

19. = 0 sin 4 = 0 4 = =
4

.

=
4

0

1
2
(sin 4 )2 = 1

2

4

0

sin2 4 = 1
2

4

0

1
2
(1 cos 8 )

= 1
4

1
8
sin 8

4

0
= 1

4 4
= 1

16

20. = 0 2 sin 5 = 0 sin 5 = 0 5 = = 5 .

=
5

0

1
2
(2 sin 5 )2 = 1

2

5

0

4 sin2 5

= 2
5

0

1
2
(1 cos 10 ) = 1

10
sin 10

5

0
=

5
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 55

21. This is a limaçon, with inner loop traced

out between = 7
6

and 11
6

[found by

solving = 0].

= 2
3 2

7 6

1
2
(1 + 2 sin )2 =

3 2

7 6

1 + 4 sin + 4 sin2 =
3 2

7 6

1 + 4 sin + 4 · 1
2
(1 cos 2 )

= 4 cos + 2 sin 2
3 2

7 6
= 9

2
7
2
+ 2 3 3

2
= 3 3

2

22. To determine when the strophoid = 2cos sec passes through the pole, we solve

= 0 2 cos
1

cos
= 0 2 cos2 1 = 0 cos2 =

1

2

cos = ± 1

2
=

4
or = 3

4
for 0 with 6=

2
.

= 2
4

0
1
2
(2 cos sec )2 =

4

0
(4 cos2 4 + sec2 )

=
4

0
4 · 1

2 (1 + cos 2 ) 4 + sec2 =
4

0
( 2 + 2 cos 2 + sec2 )

= 2 + sin 2 + tan
4

0
=

2
+ 1 + 1 0 = 2

2

23. 2 cos = 1 cos = 1
2

=
3

or 5
3

.

= 2
3

0
1
2
[(2 cos )2 12] =

3

0
(4 cos2 1)

=
3

0
4 1

2
(1 + cos 2 ) 1 =

3

0
(1 + 2 cos 2 )

= + sin 2
3

0
=

3
+ 3

2

24. 1 sin = 1 sin = 0 = 0 or

=
2 1

2
(1 sin )2 1 = 1

2

2
(sin2 2 sin )

= 1
4

2
(1 cos 2 4 sin ) = 1

4
1
2 sin 2 + 4 cos

2

= 1
4
+ 2

25. To find the area inside the leminiscate 2 = 8 cos 2 and outside the circle = 2,

we first note that the two curves intersect when 2 = 8 cos 2 and = 2,

that is, when cos 2 = 1
2 . For , cos 2 = 1

2 2 = ± 3

or ±5 3 = ± 6 or ±5 6. The figure shows that the desired area is

4 times the area between the curves from 0 to 6. Thus,

= 4
6

0
1
2
(8 cos 2 ) 1

2
(2)2 = 8

6

0
(2 cos 2 1)

= 8 sin 2
6

0
= 8 3 2 6 = 4 3 4 3
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56 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

26. To find the shaded area , we’ll find the area 1 inside the curve = 2 + sin

and subtract 3
2

2 since = 3 sin is a circle with radius 3
2
.

1 =
2

0
1
2
(2 + sin )2 = 1

2

2

0
(4 + 4 sin + sin2 )

= 1
2

2

0
4 + 4 sin + 1

2 · (1 cos 2 )

= 1
2

2

0
9
2
+ 4 sin 1

2
cos 2

= 1
2

9
2

4 cos 1
4
sin 2

2

0
= 1

2
[(9 4) ( 4)] = 9

2

So = 1
9
4 = 9

2
9
4 = 9

4 .

27. 3 cos = 1 + cos cos = 1
2

=
3

or
3

.

= 2
3

0
1
2 [(3 cos )

2 (1 + cos )2]

=
3

0
(8 cos2 2 cos 1) =

3

0
[4(1 + cos 2 ) 2 cos 1]

=
3

0
(3 + 4 cos 2 2 cos ) = 3 + 2 sin 2 2 sin

3

0

= + 3 3 =

28. 3 sin = 2 sin 4 sin = 2 sin = 1
2

=
6

or 5
6

.

= 2
2

6
1
2
[(3 sin )2 (2 sin )2]

=
2

6
(9 sin2 4 + 4 sin sin2 ]

=
2

6
(8 sin2 + 4 sin 4)

= 4
2

6
2 · 1

2 (1 cos 2 ) + sin 1

= 4
2

6
(sin cos 2 ) = 4 cos 1

2
sin 2

2

6

= 4 (0 0) 3
2

3
4

= 4 3 3
4

= 3 3

29. 3 cos = sin 3 =
sin

cos
tan = 3 = 3 .

=
3

0
1
2
(sin )2 +

2

3
1
2

3 cos
2

=
3

0
1
2
· 1
2
(1 cos 2 ) +

2

3
1
2
· 3 · 1

2
(1 + cos 2 )

= 1
4

1
2
sin 2

3

0
+ 3

4
+ 1

2
sin 2

2

3

= 1
4 3

3
4

0 + 3
4 2 + 0 3 +

3
4

=
12

3
16
+

8
3 3
16

= 5
24

3
4
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30. = 4
2

0
1
2 (1 cos )2 = 2

2

0
(1 2 cos + cos2 )

= 2
2

0
1 2 cos + 1

2
(1 + cos 2 )

= 2
2

0
3
2 2 cos + 1

2 cos 2 =
2

0
(3 4 cos + cos 2 )

= 3 4 sin + 1
2 sin 2

2

0
= 3

2 4

31. sin 2 = cos 2
sin 2

cos 2
= 1 tan 2 = 1 2 =

4

= 8

= 8 · 2 8

0
1
2
sin 22 = 8

8

0
1
2
(1 cos 4 )

= 4 1
4
sin 4

8

0
= 4

8
1
4
· 1 =

2
1

32. 3 + 2 cos = 3 + 2 sin cos = sin = 4 or 5
4 .

= 2
5 4

4
1
2
(3 + 2 cos )2 =

5 4

4
(9 + 12 cos + 4 cos2 )

=
5 4

4
9 + 12 cos + 4 · 1

2 (1 + cos 2 )

=
5 4

4
(11 + 12 cos + 2 cos 2 ) = 11 + 12 sin + sin 2

5 4

4

= 55
4

6 2 + 1 11
4
+ 6 2 + 1 = 11 12 2

33. sin 2 = cos 2 tan 2 = 1 2 =
4

=
8

= 4
8

0
1
2 sin 2 [since 2 = sin 2 ]

=
8

0
2 sin 2 = cos 2

8

0

= 1
2

2 ( 1) = 1 1
2

2

34. Let = tan 1 ( ). Then

=
0

1
2 ( sin )2 +

2 1
2 ( cos )

2

= 1
4

2 1
2
sin 2

0
+ 1

4
2 + 1

2
sin 2

2

= 1
4
( 2 2) + 1

8
2 1

4
( 2 + 2)(sin cos )

= 1
4
( 2 2) tan 1( ) + 1

8
2 1

4
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58 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

35. The darker shaded region (from = 0 to = 2 3) represents 1
2 of the desired area plus 1

2 of the area of the inner loop.

From this area, we’ll subtract 1
2

of the area of the inner loop (the lighter shaded region from = 2 3 to = ), and then

double that difference to obtain the desired area.

= 2
2 3

0
1
2

1
2
+ cos

2

2 3
1
2

1
2
+ cos

2

=
2 3

0
1
4
+ cos + cos2

2 3
1
4
+ cos + cos2

=
2 3

0
1
4
+ cos + 1

2
(1 + cos 2 )

2 3
1
4
+ cos + 1

2
(1 + cos 2 )

=
4
+ sin +

2
+
sin 2

4

2 3

0 4
+ sin +

2
+
sin 2

4 2 3

=
6
+ 3

2
+

3
3
8 4

+
2
+

6
+ 3

2
+

3
3
8

=
4
+ 3

4
3 = 1

4
+ 3 3

36. = 0 1 + 2 cos 3 = 0 cos 3 = 1
2

3 = 2
3

, 4
3

[for

0 3 2 ] = 2
9

, 4
9

. The darker shaded region (from = 0 to

= 2 9) represents 1
2

of the desired area plus 1
2

of the area of the inner

loop. From this area, we’ll subtract 1
2

of the area of the inner loop (the lighter

shaded region from = 2 9 to = 3), and then double that difference to

obtain the desired area.

= 2
2 9

0
1
2
(1 + 2 cos 3 )2

3

2 9
1
2
(1 + 2 cos 3 )2

Now 2 = (1 + 2 cos 3 )2 = 1 + 4 cos 3 + 4 cos2 3 = 1 + 4 cos 3 + 4 · 1
2
(1 + cos 6 )

= 1 + 4 cos 3 + 2 + 2 cos 6 = 3 + 4 cos 3 + 2 cos 6

and 2 = 3 + 4
3
sin 3 + 1

3
sin 6 + , so

= 3 + 4
3
sin 3 + 1

3
sin 6

2 9

0
3 + 4

3
sin 3 + 1

3
sin 6

3

2 9

= 2
3
+ 4

3
· 3
2
+ 1

3
· 3

2
0 ( + 0 + 0) 2

3
+ 4

3
· 3
2
+ 1

3
· 3

2

= 4
3
+ 4

3
3 1

3
3 =

3
+ 3

37. The pole is a point of intersection.

1 + sin = 3 sin 1 = 2 sin sin = 1
2

=
6

or 5
6

.

The other two points of intersection are 3
2 6

and 3
2

5
6

.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.



SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 59

38. The pole is a point of intersection.

1 cos = 1 + sin cos = sin 1 = tan

= 3
4 or 7

4 .

The other two points of intersection are 1 + 2
2

3
4

and 1 2
2

7
4

.

39. 2 sin 2 = 1 sin 2 = 1
2

2 =
6

, 5
6

, 13
6

, or 17
6

.

By symmetry, the eight points of intersection are given by

(1 ), where =
12

, 5
12

, 13
12

, and 17
12

, and

( 1 ), where = 7
12

, 11
12

, 19
12

, and 23
12

.

[There are many ways to describe these points.]

40. Clearly the pole lies on both curves. sin 3 = cos 3 tan 3 = 1

3 =
4 + [ any integer] = 12 + 3

=
12

, 5
12

, or 3
4

, so the three remaining intersection points are

1

2 12
, 1

2

5
12

, and 1

2

3
4

.

41. The pole is a point of intersection. sin = sin 2 = 2 sin cos

sin (1 2 cos ) = 0 sin = 0 or cos = 1
2

= 0, ,
3

, or
3

the other intersection points are 3
2 3

and 3
2

2
3

[by symmetry].

42. Clearly the pole is a point of intersection. sin 2 = cos 2

tan 2 = 1 2 = 4 + 2 [since sin 2 and cos 2 must be

positive in the equations] = 8 + = 8 or 9
8 .

So the curves also intersect at 1
4 2 8

and 1
4 2

9
8

.
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60 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

43.

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the -values

of the intersection points to be 0 88786 0 89 and 2 25. (The first of these values may be more easily

estimated by plotting = 1 + sin and = 2 in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

= 2
0

1
2
(2 )2 + 2

2
1
2
(1 + sin )2 =

0

4 2 +
2

1 + 2 sin + 1
2
(1 cos 2 )

= 4
3

3

0
+ 2 cos + 1

2
1
4
sin 2

2
= 4

3
3 +

2
+

4
2 cos + 1

2
1
4
sin 2 3 4645

44. We need to find the shaded area in the figure. The horizontal line

representing the front of the stage has equation = 4

sin = 4 = 4 sin . This line intersects the curve

= 8 + 8 sin when 8 + 8 sin =
4

sin

8 sin + 8 sin2 = 4 2 sin2 + 2 sin 1 = 0

sin =
2± 4 + 8

4
=

2± 2 3

4
=

1 + 3

2
[the other value is less than 1] = sin 1 3 1

2
.

This angle is about 21 5 and is denoted by in the figure.

= 2
2 1
2
(8 + 8 sin )2 2

2 1
2
(4 csc )2 = 64

2
(1 + 2 sin + sin2 ) 16

2
csc2

= 64
2
1 + 2 sin + 1

2
1
2
cos 2 + 16

2
( csc2 ) = 64 3

2
2 cos 1

4
sin 2

2
+ 16 cot

2

= 16 6 8 cos sin 2 + cot = 16[(3 0 0 + 0) (6 8 cos sin 2 + cot )]

= 48 96 + 128 cos + 16 sin 2 16 cot

From the figure, 2 + 3 1
2
= 22 2 = 4 3 2 3 + 1

2 = 2 3 = 12, so = 2 3 = 4 12. Using the trigonometric relationships

for a right triangle and the identity sin 2 = 2 sin cos , we continue:

= 48 96 + 128 ·
4 12

2
+ 16 · 2 · 3 1

2
·

4 12

2
16 ·

4 12

3 1
· 3 + 1

3 + 1

= 48 96 + 64 4 12 + 8 4 12 3 1 8 4 12 3 + 1 = 48 + 48 4 12 96 sin 1 3 1

2

204 16 m2
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 61

45. = 2 + ( )2 =
0

(2 cos )2 + ( 2 sin )2

=
0

4(cos2 + sin2 ) =
0

4 = 2
0
= 2

As a check, note that the curve is a circle of radius 1, so its circumference is 2 (1) = 2 .

46. = 2 + ( )2 =
2

0

(5 )2 + (5 ln 5)2 =
2

0

52 [1 + (ln 5)2]

= 1 + (ln 5)2
2

0

52 = 1 + (ln 5)2
2

0

5 = 1 + (ln 5)2
5

ln 5

2

0

= 1 + (ln 5)2
52

ln 5

1

ln 5
=

1 + (ln 5)2

ln 5
(52 1)

47. = 2 + ( )2 =
2

0

( 2)2 + (2 )2 =
2

0

4 + 4 2

=
2

0

2( 2 + 4) =
2

0

2 + 4

Now let = 2 + 4, so that = 2 = 1
2

and

2

0

2 + 4 =
4 2+4

4

1
2 = 1

2 · 23 3 2
4( 2+1)

4
= 1

3 [4
3 2( 2 + 1)3 2 43 2] = 8

3 [(
2 + 1)3 2 1]

48. = 2 + ( )2 =
2

0

[2(1 + cos )]2 + ( 2 sin )2 =
2

0

4 + 8 cos + 4 cos2 + 4 sin2

=
2

0

8 + 8 cos = 8
2

0

1 + cos = 8
2

0

2 · 1
2
(1 + cos )

= 8
2

0

2 cos2
2

= 8 2
2

0

cos
2

= 4 · 2
0

cos
2

[by symmetry]

= 8 2 sin
2 0

= 8(2) = 16

49. The curve = cos4( 4) is completely traced with 0 4 .

2 + ( )2 = [cos4( 4)]2 + 4cos3( 4) · ( sin( 4)) · 1
4

2

= cos8( 4) + cos6( 4) sin2( 4)

= cos6( 4)[cos2( 4) + sin2( 4)] = cos6( 4)

=
4

0
cos6( 4) =

4

0
cos3( 4)

= 2
2

0
cos3( 4) [since cos3( 4) 0 for 0 2 ] = 8

2

0
cos3 = 1

4

= 8
2

0
(1 sin2 ) cos = 8

1

0
(1 2)

= sin

= cos

= 8 1
3

3 1

0
= 8 1 1

3
= 16

3
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62 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

50. The curve = cos2( 2) is completely traced with 0 2 .

2 + ( )2 = [cos2( 2)]2 + 2cos( 2) · ( sin( 2)) · 1
2

2

= cos4( 2) + cos2 ( 2) sin2( 2)

= cos2( 2)[cos2( 2) + sin2( 2)]

= cos2( 2)

=
2

0
cos2( 2) =

2

0
|cos( 2)| = 2

0
cos( 2) [since cos( 2) 0 for 0 ]

= 4
2

0
cos = 1

2
= 4 sin

2

0
= 4(1 0) = 4

51. One loop of the curve = cos 2 is traced with 4 4.

2 +
2

= cos2 2 + ( 2 sin 2 )2 = cos2 2 + 4 sin2 2 = 1+ 3 sin2 2
4

4

1 + 3 sin2 2 2 4221.

52. 2 +
2

= tan2 + (sec2 )2
3

6

tan2 + sec4 1 2789

53. The curve = sin(6 sin ) is completely traced with 0 . = sin(6 sin ) = cos(6 sin ) · 6 cos , so

2 +
2

= sin2(6 sin ) + 36 cos2 cos2(6 sin )
0

sin2(6 sin ) + 36 cos2 cos2(6 sin ) 8 0091.

54. The curve = sin( 4) is completely traced with 0 8 . = sin( 4) = 1
4 cos( 4), so

2 +
2

= sin2( 4) + 1
16
cos2( 4)

8

0

sin2( 4) + 1
16
cos2( 4) 17 1568.

55. (a) From (10.2.6),

= 2 ( )2 + ( )2

= 2 2 + ( )2 [from the derivation of Equation 10.4.5]

= 2 sin 2 + ( )2

(b) The curve 2 = cos 2 goes through the pole when cos 2 = 0

2 =
2 = 4 . We’ll rotate the curve from = 0 to = 4 and double

this value to obtain the total surface area generated.

2 = cos 2 2 = 2 sin 2
2

=
sin2 2

2
=
sin2 2

cos 2
.

= 2
4

0

2 cos 2 sin cos 2 + sin2 2 cos 2 = 4
4

0

cos 2 sin
cos2 2 + sin2 2

cos 2

= 4
4

0

cos 2 sin
1

cos 2
= 4

4

0

sin = 4 cos
4

0
= 4 2

2
1 = 2 2 2
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SECTION 10.5 CONIC SECTIONS ¤ 63

56. (a) Rotation around = 2 is the same as rotation around the -axis, that is, = 2 where

= ( )2 + ( )2 for a parametric equation, and for the special case of a polar equation, = cos and

= ( )2 + ( )2 = 2 + ( )2 [see the derivation of Equation 10.4.5]. Therefore, for a polar

equation rotated around =
2

, = 2 cos 2 + ( )2 .

(b) As in the solution for Exercise 55(b), we can double the surface area generated by rotating the curve from = 0 to =
4

to obtain the total surface area.

= 2
4

0

2 cos 2 cos cos 2 + (sin2 2 ) cos 2 = 4
4

0

cos 2 cos
cos2 2 + sin2 2

cos 2

= 4
4

0

cos 2 cos
1

cos 2
= 4

4

0

cos = 4 sin
4

0
= 4

2

2
0 = 2 2

10.5 Conic Sections

1. 2 = 6 and 2 = 4 4 = 6 = 3
2 .

The vertex is (0 0), the focus is 0 3
2

, and the directrix

is = 3
2 .

2. 2 2 = 5 2 = 5
2 . 4 = 5

2 = 5
8 .

The vertex is (0 0), the focus is 5
8
0 , and the directrix

is = 5
8 .

3. 2 = 2 2 = 2 . 4 = 2 = 1
2
.

The vertex is (0 0), the focus is 1
2
0 , and the

directrix is = 1
2
.

4. 3 2 + 8 = 0 3 2 = 8 2 = 8
3

.

4 = 8
3

= 2
3
. The vertex is (0 0), the focus

is 0 2
3

, and the directrix is = 2
3
.
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64 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

5. ( + 2)2 = 8 ( 3). 4 = 8, so = 2. The vertex is

( 2 3), the focus is ( 2 5), and the directrix is = 1.

6. 1 = ( + 5)2. 4 = 1, so = 1
4 . The vertex is

(1 5), the focus is 5
4 5 , and the directrix is = 3

4 .

7. 2 + 2 + 12 + 25 = 0

2 + 2 + 1 = 12 24

( + 1)2 = 12( + 2). 4 = 12, so = 3.

The vertex is ( 2 1), the focus is ( 5 1), and the

directrix is = 1.

8. + 12 2 2 = 16 2 2 12 = 16

2( 2 6 + 9) = 16 + 18

2( 3)2 = + 2 ( 3)2 = 1
2
( + 2).

4 = 1
2 , so = 1

8
. The vertex is (3 2), the focus is

3 15
8

, and the directrix is = 17
8 .

9. The equation has the form 2 = 4 , where 0. Since the parabola passes through ( 1 1), we have 12 = 4 ( 1), so

4 = 1 and an equation is 2 = or = 2. 4 = 1, so = 1
4 and the focus is 1

4 0 while the directrix

is = 1
4
.

10. The vertex is (2 2), so the equation is of the form ( 2)2 = 4 ( + 2), where 0. The point (0 0) is on the parabola,

so 4 = 4 (2) and 4 = 2. Thus, an equation is ( 2)2 = 2( + 2). 4 = 2, so = 1
2

and the focus is 2 3
2

while the

directrix is = 5
2
.

11.
2

2
+

2

4
= 1 = 4 = 2, = 2, = 2 2 = 4 2 = 2. The

ellipse is centered at (0 0), with vertices at (0 ±2). The foci are 0 ± 2 .
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SECTION 10.5 CONIC SECTIONS ¤ 65

12.
2

36
+

2

8
= 1 = 36 = 6, = 8,

= 2 2 = 36 8 = 28 = 2 7. The ellipse is centered at (0 0), with

vertices at (±6 0). The foci are (±2 7 0).

13. 2 +9 2 = 9
2

9
+

2

1
= 1 = 9 = 3,

= 1 = 1, = 2 2 = 9 1 = 8 = 2 2.

The ellipse is centered at (0 0), with vertices (±3 0).
The foci are (±2 2 0).

14. 100 2 + 36 2 = 225
2

225
100

+
2

225
36

= 1

2

9
4

+
2

25
4

= 1 = 25
4
= 5

2
, = 9

4
= 3

2
,

= 2 2 = 25
4

9
4
= 2. The ellipse is centered

at (0 0), with vertices 0 ± 5
2

. The foci are (0 ±2).

15. 9 2 18 + 4 2 = 27

9( 2 2 + 1) + 4 2 = 27 + 9

9( 1)2 + 4 2 = 36
( 1)2

4
+

2

9
= 1

= 3, = 2, = 5 center (1 0),

vertices (1 ±3), foci 1 ± 5

16. 2 + 3 2 + 2 12 + 10 = 0

2 + 2 + 1 + 3( 2 4 + 4) = 10 + 1 + 12

( + 1)2 + 3( 2)2 = 3

( + 1)2

3
+
( 2)2

1
= 1 = 3, = 1,

= 2 center ( 1 2), vertices 1± 3 2 ,

foci 1± 2 2

17. The center is (0 0), = 3, and = 2, so an equation is
2

4
+

2

9
= 1. = 2 2 = 5, so the foci are 0 ± 5 .
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66 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

18. The ellipse is centered at (2 1), with = 3 and = 2. An equation is ( 2)2

9
+
( 1)2

4
= 1. = 2 2 = 5, so

the foci are 2± 5 1 .

19.
2

25

2

9
= 1 = 5, = 3, = 25 + 9 = 34

center (0 0), vertices (0 ±5), foci 0 ± 34 , asymptotes = ± 5
3

.

Note: It is helpful to draw a 2 -by-2 rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

20.
2

36

2

64
= 1 = 6, = 8, = 36 + 64 = 10

center (0 0), vertices (±6 0), foci (±10 0), asymptotes = ±8
6
= ± 4

3

21. 2 2 = 100
2

100

2

100
= 1 = = 10,

= 100 + 100 = 10 2 center (0 0), vertices (±10 0),
foci ±10 2 0 , asymptotes = ± 10

10
= ±   

22. 2 16 2 = 16
2

16

2

1
= 1 = 4, = 1,

= 16 + 1 = 17 center (0 0), vertices (0 ±4),
foci 0 ± 17 , asymptotes = ±4

1 = ±4
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SECTION 10.5 CONIC SECTIONS ¤ 67

23. 4 2 2 24 4 + 28 = 0

4( 2 6 + 9) ( 2 + 4 + 4) = 28 + 36 4

4( 3)2 ( + 2)2 = 4
( 3)2

1

( + 2)2

4
= 1

= 1 = 1, = 4 = 2, = 1 + 4 = 5

center (3 2), vertices (4 2) and (2 2), foci 3± 5 2 ,

asymptotes + 2 = ±2( 3).

24. 2 4 2 2 + 16 = 31

( 2 2 + 1) 4( 2 4 + 4) = 31 + 1 16

( 1)2 4( 2)2 = 16

( 1)2

16

( 2)2

4
= 1 = 16 = 4, = 4 = 2,

= 16 + 4 = 20 center (2 1), vertices (2 1± 4),
foci 2 1± 20 , asymptotes 1 = ±2( 2).

25. 2 = + 1 2 = 1( + 1). This is an equation of a parabola with 4 = 1, so = 1
4
. The vertex is (0 1) and the

focus is 0 3
4

.

26. 2 = 2 + 1 2 2 = 1. This is an equation of a hyperbola with vertices (±1 0). The foci are at

± 1 + 1 0 = ± 2 0 .

27. 2 = 4 2 2 2 + 2 2 4 = 0 2 + 2( 2 2 + 1) = 2 2 + 2( 1)2 = 2

2

2
+
( 1)2

1
= 1. This is an equation of an ellipse with vertices at ± 2 1 . The foci are at ± 2 1 1 = (±1 1).

28. 2 8 = 6 16 2 8 + 16 = 6 ( 4)2 = 6 . This is an equation of a parabola with 4 = 6,

so = 3
2
. The vertex is (0 4) and the focus is 3

2
4 .

29. 2 +2 = 4 2 +3 2 +2 +1 = 4 2 +4 ( + 1)2 4 2 = 4
( + 1)2

4
2 = 1. This is an equation

of a hyperbola with vertices (0 1± 2) = (0 1) and (0 3). The foci are at 0 1± 4 + 1 = 0 1± 5 .

30. 4 2 + 4 + 2 = 0 4 2 + + 1
4
+ 2 = 1 4 + 1

2

2
+ 2 = 1

+ 1
2

2

1 4
+ 2 = 1. This is an

equation of an ellipse with vertices 1
2
0± 1 = 1

2
±1 . The foci are at 1

2
0± 1 1

4
= 1

2
± 3 2 .
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68 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

31. The parabola with vertex (0 0) and focus (1 0) opens to the right and has = 1, so its equation is 2 = 4 , or 2 = 4 .

32. The parabola with focus (0 0) and directrix = 6 has vertex (0 3) and opens downward, so = 3 and its equation is

( 0)2 = 4 ( 3), or 2 = 12( 3).

33. The distance from the focus ( 4 0) to the directrix = 2 is 2 ( 4) = 6, so the distance from the focus to the vertex is

1
2 (6) = 3 and the vertex is ( 1 0). Since the focus is to the left of the vertex, = 3. An equation is 2 = 4 ( + 1)

2 = 12( + 1).

34. The distance from the focus (3 6) to the vertex (3 2) is 6 2 = 4. Since the focus is above the vertex, = 4.

An equation is ( 3)2 = 4 ( 2) ( 3)2 = 16( 2).

35. A parabola with vertical axis and vertex (2 3) has equation 3 = ( 2)2. Since it passes through (1 5), we have

5 3 = (1 2)2 = 2, so an equation is 3 = 2( 2)2.

36. A parabola with horizontal axis has equation = 2 + + . Since the parabola passes through the point ( 1 0),

substitute 1 for and 0 for : 1 = 0 + 0 + . Now with = 1, substitute 1 for and 1 for : 1 = 1 (1);

and then 3 for and 1 for : 3 = + 1 (2) Add (1) and (2) to get 4 = 2 2 = 3 and then = 1.

Thus, the equation is = 3 2 + 1.

37. The ellipse with foci (±2 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with = 5 and = 2,

so 2 = 2 2 = 25 4 = 21. An equation is
2

25
+

2

21
= 1.

38. The ellipse with foci (0 ±5) and vertices (0 ±13) has center (0 0) and a vertical major axis, with = 5 and = 13,

so = 2 2 = 12. An equation is
2

144
+

2

169
= 1.

39. Since the vertices are (0 0) and (0 8), the ellipse has center (0 4) with a vertical axis and = 4. The foci at (0 2) and (0 6)

are 2 units from the center, so = 2 and = 2 2 = 42 22 = 12. An equation is ( 0)2

2
+
( 4)2

2
= 1

2

12
+
( 4)2

16
= 1.

40. Since the foci are (0 1) and (8 1), the ellipse has center (4 1) with a horizontal axis and = 4.

The vertex (9 1) is 5 units from the center, so = 5 and = 2 2 = 52 42 = 9. An equation is

( 4)2

2
+
( + 1)2

2
= 1

( 4)2

25
+
( + 1)2

9
= 1.

41. An equation of an ellipse with center ( 1 4) and vertex ( 1 0) is ( + 1)2

2
+
( 4)2

42
= 1. The focus ( 1 6) is 2 units

from the center, so = 2. Thus, 2 + 22 = 42 2 = 12, and the equation is ( + 1)2

12
+
( 4)2

16
= 1.
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SECTION 10.5 CONIC SECTIONS ¤ 69

42. Foci 1( 4 0) and 2(4 0) = 4 and an equation is
2

2
+

2

2
= 1. The ellipse passes through ( 4 1 8), so

2 = | 1|+ | 2| 2 = 1 8 + 82 + (1 8)2 2 = 1 8 + 8 2 = 5.

2 = 2 2 = 25 16 = 9 and the equation is
2

25
+

2

9
= 1.

43. An equation of a hyperbola with vertices (±3 0) is
2

32

2

2
= 1. Foci (±5 0) = 5 and 32 + 2 = 52

2 = 25 9 = 16, so the equation is
2

9

2

16
= 1.

44. An equation of a hyperbola with vertices (0 ±2) is
2

22

2

2
= 1. Foci (0 ±5) = 5 and 22 + 2 = 52

2 = 25 4 = 21, so the equation is
2

4

2

21
= 1.

45. The center of a hyperbola with vertices ( 3 4) and ( 3 6) is ( 3 1), so = 5 and an equation is

( 1)2

52
( + 3)2

2
= 1. Foci ( 3 7) and ( 3 9) = 8, so 52 + 2 = 82 2 = 64 25 = 39 and the

equation is ( 1)2

25

( + 3)2

39
= 1.

46. The center of a hyperbola with vertices ( 1 2) and (7 2) is (3 2), so = 4 and an equation is ( 3)2

42
( 2)2

2
= 1.

Foci ( 2 2) and (8 2) = 5, so 42 + 2 = 52 2 = 25 16 = 9 and the equation is

( 3)2

16

( 2)2

9
= 1.

47. The center of a hyperbola with vertices (±3 0) is (0 0), so = 3 and an equation is
2

32

2

2
= 1.

Asymptotes = ±2 = 2 = 2(3) = 6 and the equation is
2

9

2

36
= 1.

48. The center of a hyperbola with foci (2 0) and (2 8) is (2 4), so = 4 and an equation is ( 4)2

2

( 2)2

2
= 1.

The asymptote = 3 + 1
2

has slope 1
2
, so =

1

2
= 2 and 2 + 2 = 2 2 + (2 )2 = 42

5 2 = 16 2 = 16
5

and so 2 = 16 16
5
= 64

5
. Thus, an equation is ( 4)2

16 5

( 2)2

64 5
= 1.

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

from it) while the farthest point is the other vertex (at a distance of + ). So for this lunar orbit,

( ) + ( + ) = 2 = (1728 + 110) + (1728 + 314), or = 1940; and ( + ) ( ) = 2 = 314 110,

or = 102. Thus, 2 = 2 2 = 3,753,196, and the equation is
2

3,763,600
+

2

3,753,196
= 1.
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70 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

50. (a) Choose to be the origin, with -axis through and . Then is ( 0), is ( 5), so substituting into the

equation 2 = 4 gives 25 = 4 2 so = 5
2

and 2 = 10 .

(b) = 11 = 110 | | = 2 110

51. (a) Set up the coordinate system so that is ( 200 0) and is (200 0).

| | | | = (1200)(980) = 1,176,000 ft = 2450
11

mi = 2 = 1225
11

, and = 200 so

2 = 2 2 =
3,339,375
121

121 2

1,500,625
121 2

3,339,375
= 1.

(b) Due north of = 200
(121)(200)2

1,500,625
121 2

3,339,375
= 1 =

133,575
539

248 mi

52. | 1| | 2| = ±2 ( + )2 + 2 ( )2 + 2 = ±2

( + )2 + 2 = ( )2 + 2 ± 2 ( + )2 + 2 = ( )2 + 2 + 4 2 ± 4 ( )2 + 2

4 4 2 = ±4 ( )2 + 2 2 2 2 2 + 4 = 2( 2 2 + 2 + 2)

( 2 2) 2 2 2 = 2( 2 2) 2 2 2 2 = 2 2 [where 2 = 2 2]
2

2

2

2
= 1

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

= ( ) = 1 +
2

2
= 2 + 2, so 0 = ( 2 + 2) 1 2 and

00 = ( 2 + 2) 1 2 2( 2 + 2) 3 2 = ( 2 + 2) 3 2 0 for all , and so is concave upward.

54. We can follow exactly the same sequence of steps as in the derivation of Formula 4, except we use the points (1 1) and

( 1 1) in the distance formula (first equation of that derivation) so ( 1)2 + ( 1)2 + ( + 1)2 + ( + 1)2 = 4

will lead (after moving the second term to the right, squaring, and simplifying) to 2 ( + 1)2 + ( + 1)2 = + + 4,

which, after squaring and simplifying again, leads to 3 2 2 + 3 2 = 8.

55. (a) If 16, then 16 0, and
2

+
2

16
= 1 is an ellipse since it is the sum of two squares on the left side.

(b) If 0 16, then 16 0, and
2

+
2

16
= 1 is a hyperbola since it is the difference of two squares on the

left side.

(c) If 0, then 16 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) In case (a), 2 = , 2 = 16, and 2 = 2 2 = 16, so the foci are at (±4 0). In case (b), 16 0, so 2 = ,

2 = 16 , and 2 = 2 + 2 = 16, and so again the foci are at (±4 0).
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SECTION 10.5 CONIC SECTIONS ¤ 71

56. (a) 2 = 4 2 0 = 4 0 =
2 , so the tangent line is

0 =
2

0
( 0) 0

2
0 = 2 ( 0)

0 4 0 = 2 2 0 0 = 2 ( + 0).

(b) The -intercept is 0.

57. 2 = 4 2 = 4 0 0 =
2

, so the tangent line at ( 0 0) is

2
0

4
=

0

2
( 0). This line passes through the point ( ) on the

directrix, so
2
0

4
=

0

2
( 0) 4 2 2

0 = 2 0 2 2
0

2
0 2 0 4 2 = 0 2

0 2 0 +
2 = 2 + 4 2

( 0 )2 = 2 + 4 2
0 = ± 2 + 4 2. The slopes of the tangent lines at = ± 2 + 4 2

are
± 2 + 4 2

2
, so the product of the two slopes is

+ 2 + 4 2

2
·

2 + 4 2

2
=

2 ( 2 + 4 2)

4 2
=

4 2

4 2
= 1,

showing that the tangent lines are perpendicular.

58. Without a loss of generality, let the ellipse, hyperbola, and foci be as shown in the figure.

The curves intersect (eliminate 2)

2
2

2

2

2
+ 2

2

2
+

2

2
= 2 + 2

2 2

2
+

2 2

2
= 2 + 2 2

2

2
+

2

2
= 2 + 2

2 =
2 + 2

2 2 + 2 2

2 2

=
2 2( 2 + 2)
2 2 + 2 2

.

Similarly, 2 =
2 2( 2 2)
2 2 + 2 2

.

Next we find the slopes of the tangent lines of the curves:
2

2
+

2

2
= 1

2
2
+
2 0

2
= 0

0

2
=

2

0 =
2

2
and

2

2

2

2
= 1

2
2

2 0

2
= 0

0

2
=

2
0 =

2

2
. The product of the slopes

at ( 0 0) is 0 0 =
2 2 2

0

2 2 2
0

=

2 2
2 2( 2 + 2)
2 2 + 2 2

2 2
2 2( 2 2)
2 2 + 2 2

=
2 + 2

2 2
. Since 2 2 = 2 and 2 + 2 = 2,

we have 2 2 = 2 + 2 2 2 = 2 + 2, so the product of the slopes is 1, and hence, the tangent lines at

each point of intersection are perpendicular.
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72 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

59. 9 2 + 4 2 = 36
2

4
+

2

9
= 1. We use the parametrization = 2 cos , = 3 sin , 0 2 . The circumference

is given by

=
2

0
( )2 + ( )2 =

2

0
( 2 sin )2 + (3 cos )2 =

2

0
4 sin2 + 9cos2

=
2

0
4 + 5 cos2

Now use Simpson’s Rule with = 8, =
2 0

8
=
4

, and ( ) = 4 + 5 cos2 to get

8 =
4
3

(0) + 4
4
+ 2

2
+ 4 3

4
+ 2 ( ) + 4 5

4
+ 2 3

2
+ 4 7

4
+ (2 ) 15 9.

60. The length of the major axis is 2 , so = 1
2
(1 18× 1010) = 5 9× 109. The length of the minor axis is 2 , so

= 1
2
(1 14× 1010) = 5 7× 109. An equation of the ellipse is

2

2
+

2

2
= 1, or converting into parametric equations,

= cos and = sin . So

= 4
2

0
( )2 + ( )2 = 4

2

0
2 sin2 + 2 cos2

Using Simpson’s Rule with = 10, = 2 0
10

=
20

, and ( ) = 2 sin2 + 2 cos2 , we get

4 · 10 = 4 · 20 · 3 (0) + 4
20

+ 2 2
20

+ · · ·+ 2 8
20

+ 4 9
20

+
2

3 64× 1010 km

61.
2

2

2

2
= 1

2

2
=

2 2

2
= ± 2 2.

= 2 2 2 39
=
2

2
2 2

2

2
ln + 2 2

= 2 2 2 ln + 2 2 + 2 ln | |
Since 2 + 2 = 2 2 2 = 2, and 2 2 = .

= 2 ln( + ) + 2 ln = + 2(ln ln( + ))

= 2 + ln[ ( + )], where 2 = 2 + 2.

62. (a)
2

2
+

2

2
= 1

2

2
=

2 2

2
= ± 2 2.

= 2 2

2

= 2
2

2
0

( 2 2)

=
2 2

2
2 1

3
3

0
=
2 2

2

2 3

3
=
4

3
2

(b)
2

2
+

2

2
= 1

2

2
=

2 2

2
= ± 2 2.

= 2 2
2

= 2
2

2
0

( 2 2)

=
2 2

2
2 1

3
3

0
=
2 2

2

2 3

3
=
4

3
2
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SECTION 10.5 CONIC SECTIONS ¤ 73

63. 9 2 +4 2 = 36
2

4
+

2

9
= 1 = 3, = 2. By symmetry, = 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is 1
2
( ) = 3 . Solve 9 2 + 4 2 = 36 for to get an equation for the top half of the ellipse:

9 2 + 4 2 = 36 4 2 = 36 9 2 2 = 9
4
(4 2) = 3

2
4 2. Now

=
1 1

2
[ ( )]2 =

1

3

2

2

1

2

3

2
4 2

2

=
3

8

2

2

(4 2)

=
3

8
· 2

2

0

(4 2) =
3

4
4

1

3
3

2

0

=
3

4

16

3
=
4

so the centroid is (0 4 ).

64. (a) Consider the ellipse
2

2
+

2

2
= 1 with , so that the major axis is the -axis. Let the ellipse be parametrized by

= cos , = sin , 0 2 . Then
2

+
2

= 2 sin2 + 2 cos2 = 2(1 cos2 ) + 2 cos2 = 2 + ( 2 2) cos2 = 2 2 cos2 ,

where 2 = 2 2. Using symmetry and rotating the ellipse about the major axis gives us surface area

= 2 = 2
2

0

2 ( sin ) 2 2 cos2 = 4
0

2 2
1 = cos

= sin

=
4

0

2 2 30
=
4

2
2 2 +

2

2
sin 1

0

=
2

2 2 + 2 sin 1

=
2

+ 2 sin 1

(b) As in part (a),
2

+
2

= 2 sin2 + 2 cos2 = 2 sin2 + 2(1 sin2 ) = 2 + ( 2 2) sin2 = 2 + 2 sin2 .

Rotating about the minor axis gives us

= 2 = 2
2

0

2 ( cos ) 2 + 2 sin2 = 4
0

2 + 2
1 = sin

= cos

21
=
4

2
2 + 2 +

2

2
ln + 2 + 2

0

=
2

2 + 2 + 2 ln + 2 + 2 2 ln

=
2

+ 2 ln
+

65. Differentiating implicitly,
2

2
+

2

2
= 1

2
2
+
2 0

2
= 0 0 =

2

2
[ 6= 0]. Thus, the slope of the tangent

line at is
2

1

2
1

. The slope of 1 is 1

1 +
and of 2 is 1

1
. By the formula from Problems Plus, we have

tan =

1

1 +
+

2
1

2
1

1
2

1 1

2
1( 1 + )

=
2 2
1 +

2
1( 1 + )

2
1( 1 + ) 2

1 1
=

2 2 + 2
1

2
1 1 + 2

1

using 2 2
1 +

2 2
1 =

2 2,
and 2 2 = 2

=
2

1 +
2

1( 1 + 2)
=

2

1 [continued]

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.



74 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

and

tan =

2
1

2
1

1

1

1
2

1 1

2
1( 1 )

=
2 2
1

2
1( 1 )

2
1 ( 1 ) 2

1 1
=

2 2 + 2
1

2
1 1

2
1
=

2
1

2

1( 1
2)
=

2

1

Thus, = .

66. The slopes of the line segments 1 and 2 are 1

1 +
and 1

1
, where is ( 1 1). Differentiating implicitly,

2
2

2 0

2
= 0 0 =

2

2
the slope of the tangent at is

2
1

2
1

, so by the formula in Problem 19 on text

page 271,

tan =

2
1

2
1

1

1 +

1 +
2

1 1

2
1( 1 + )

=
2

1( 1 + ) 2 2
1

2
1( 1 + ) + 2

1 1
=

2( 1 +
2)

1( 1 + 2)

using 2
1

2 2
1

2 = 1,
and 2 + 2 = 2

=
2

1

and tan =

2
1

2
1
+

1

1

1 +
2

1 1

2
1( 1 )

=
2

1( 1 ) + 2 2
1

2
1( 1 ) + 2

1 1
=

2( 1
2)

1( 1
2)
=

2

1

So = .

10.6 Conic Sections in Polar Coordinates

1. The directrix = 4 is to the right of the focus at the origin, so we use the form with “+ cos ” in the denominator.

(See Theorem 6 and Figure 2.) An equation is =
1 + cos

=
1
2
· 4

1 + 1
2
cos

=
4

2 + cos
.

2. The directrix = 3 is to the left of the focus at the origin, so we use the form with “ cos ” in the denominator.

= 1 for a parabola, so an equation is =
1 cos

=
1 · 3

1 1 cos
=

3

1 cos
.

3. The directrix = 2 is above the focus at the origin, so we use the form with “+ sin ” in the denominator. An equation is

=
1 + sin

=
1 5(2)

1 + 1 5 sin
=

6

2 + 3 sin
.

4. The directrix = 3 is to the right of the focus at the origin, so we use the form with “+ cos ” in the denominator. An

equation is =
1 + cos

=
3 · 3

1 + 3 cos
=

9

1 + 3 cos
.

5. The vertex (4 3 2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus ( = 8), and we

use the form with “ sin ” in the denominator. = 1 for a parabola, so an equation is

=
1 sin

=
1(8)

1 1 sin
=

8

1 sin
.

6. The vertex (1 2) is 1 unit above the focus at the origin, so | | = 1 and we use the form with “+ sin ” in the

denominator. The distance from the focus to the directrix is , so
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES ¤ 75

=
| |
| | 0 8 =

1

1
0 8 0 8 = 1 0 8 = 1 8 = 2 25.

An equation is =
1 + sin

=
0 8(2 25)

1 + 0 8 sin
· 5
5
=

9

5 + 4 sin
.

7. The directrix = 4 sec (equivalent to cos = 4 or = 4) is to the right of the focus at the origin, so we will use the form

with “+ cos ” in the denominator. The distance from the focus to the directrix is = 4, so an equation is

=
1 + cos

=
1
2
(4)

1 + 1
2 cos

· 2
2
=

4

2 + cos
.

8. The directrix = 6 csc (equivalent to sin = 6 or = 6) is below the focus at the origin, so we will use the form

with “ sin ” in the denominator. The distance from the focus to the directrix is = 6, so an equation is

=
1 sin

=
3(6)

1 3 sin
=

18

1 3 sin
.

9. =
4

5 4 sin
· 1 5
1 5

=
4 5

1 4
5
sin

, where = 4
5

and = 4
5

= 1.

(a) Eccentricity= = 4
5

(b) Since = 4
5

1, the conic is an ellipse.

(c) Since “ sin ” appears in the denominator, the directrix is below the focus

at the origin, = | | = 1, so an equation of the directrix is = 1.

(d) The vertices are 4
2

and 4
9

3
2

.

10. =
12

3 10 cos
· 1 3
1 3

=
4

1 10
3
cos

, where = 10
3

and = 4 = 4 3
10

= 6
5
.

(a) Eccentricity= = 10
3

(b) Since = 10
3

1, the conic is a hyperbola.

(c) Since “ cos ” appears in the denominator, the directrix is to the left of the

focus at the origin. = | | = 6
5
, so an equation of the directrix is = 6

5
.

(d) The vertices are 12
7
0 and 12

13
, so the center is midway between them,

that is, 120
91

.

11. =
2

3 + 3 sin
· 1 3
1 3

=
2 3

1 + 1 sin
, where = 1 and = 2

3
= 2

3
.

(a) Eccentricity= = 1

(b) Since = 1, the conic is a parabola.

(c) Since “+ sin ” appears in the denominator, the directrix is above the focus

at the origin. = | | = 2
3
, so an equation of the directrix is = 2

3
.

(d) The vertex is at 1
3 2

, midway between the focus and directrix.
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76 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

12. =
3

2 + 2 cos
· 1 2
1 2

=
3 2

1 + 1 cos
, where = 1 and = 3

2
= 3

2
.

(a) Eccentricity= = 1

(b) Since = 1, the conic is a parabola.

(c) Since “+ cos ” appears in the denominator, the directrix is to the right of

the focus at the origin. = | | = 3
2
, so an equation of the directrix is

= 3
2 .

(d) The vertex is at 3
4
0 , midway between the focus and directrix.

13. =
9

6 + 2 cos
· 1 6
1 6

=
3 2

1 + 1
3 cos

, where = 1
3 and = 3

2 = 9
2 .

(a) Eccentricity= = 1
3

(b) Since = 1
3 1, the conic is an ellipse.

(c) Since “+ cos ” appears in the denominator, the directrix is to the right of

the focus at the origin. = | | = 9
2
, so an equation of the directrix is

= 9
2
.

(d) The vertices are 9
8
0 and 9

4
, so the center is midway between them,

that is, 9
16 .

14. =
8

4 + 5 sin
· 1 4
1 4

=
2

1 + 5
4
sin

, where = 5
4

and = 2 = 2 4
5
= 8

5
.

(a) Eccentricity= = 5
4

(b) Since = 5
4 1, the conic is a hyperbola.

(c) Since “+ sin ” appears in the denominator, the directrix is above the

focus at the origin. = | | = 8
5
, so an equation of the directrix is = 8

5
.

(d) The vertices are 8
9 2

and 8 3
2

, so the center is midway between them,

that is, 40
9 2

.

15. =
3

4 8 cos
· 1 4
1 4

=
3 4

1 2 cos
, where = 2 and = 3

4 = 3
8 .

(a) Eccentricity= = 2

(b) Since = 2 1, the conic is a hyperbola.

(c) Since “ cos ” appears in the denominator, the directrix is to the left of

the focus at the origin. = | | = 3
8
, so an equation of the directrix is

= 3
8 .

(d) The vertices are 3
4
0 and 1

4
, so the center is midway between them,

that is, 1
2 .
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES ¤ 77

16. =
10

5 6 sin
· 1 5
1 5

=
2

1 6
5 sin

, where = 6
5

and = 2 = 2 5
6
= 5

3
.

(a) Eccentricity= = 6
5

(b) Since = 6
5

1, the conic is a hyperbola.

(c) Since “ sin ” appears in the denominator, the directrix is below the focus

at the origin. = | | = 5
3
, so an equation of the directrix is = 5

3
.

(d) The vertices are 10
2

and 10
11

3
2

, so the center is midway between them,

that is, 60
11

3
2

.

17. (a) =
1

1 2 sin
, where = 2 and = 1 = 1

2
. The eccentricity

= 2 1, so the conic is a hyperbola. Since “ sin ” appears in the

denominator, the directrix is below the focus at the origin. = | | = 1
2
,

so an equation of the directrix is = 1
2
. The vertices are 1

2
and

1
3

3
2

, so the center is midway between them, that is, 2
3

3
2

.

(b) By the discussion that precedes Example 4, the equation

is =
1

1 2 sin 3
4

.

18. =
4

5 + 6 cos
=

4 5

1 + 6
5
cos

, so = 6
5

and = 4
5

= 2
3
.

An equation of the directrix is = 2
3 cos = 2

3 =
2

3 cos
.

If the hyperbola is rotated about its focus (the origin) through an angle 3,

its equation is the same as that of the original, with replaced by 3

(see Example 4), so =
4

5 + 6 cos
3

.

19. For 1 the curve is an ellipse. It is nearly circular when is close to 0. As

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At = 1, the curve becomes a parabola with focus at the origin.
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78 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

20. (a) The value of does not seem to affect the shape of the conic (a parabola) at

all, just its size, position, and orientation (for 0 it opens upward, for

0 it opens downward).

(b) We consider only positive values of . When 0 1, the conic is an

ellipse. As 0+, the graph approaches perfect roundness and zero size.

As increases, the ellipse becomes more elongated, until at = 1 it turns

into a parabola. For 1, the conic is a hyperbola, which moves

downward and gets broader as continues to increase.

= 0 1

= 0 5 = 0 9 = 1

= 1 1 = 1 5 = 10

21. | | = | | = [ cos( )] = ( + cos )

(1 cos ) = =
1 cos

22. | | = | | = [ sin ] (1 + sin ) =

=
1 + sin

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

© Cengage Learning. All Rights Reserved.



SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES ¤ 79

23. | | = | | = [ sin( )] = ( + sin )

(1 sin ) = =
1 sin

24. The parabolas intersect at the two points where
1 + cos

=
1 cos

cos =
+

=
+

2
.

For the first parabola, =
sin

(1 + cos )2
, so

=
( ) sin + cos

( ) cos sin
=

sin2 + cos (1 + cos )

sin cos sin (1 + cos )
=
1 + cos

sin

and similarly for the second, =
1 cos

sin
=

sin

1 + cos
. Since the product of these slopes is 1, the parabolas intersect

at right angles.

25. We are given = 0 093 and = 2 28× 108. By (7), we have

=
(1 2)

1 + cos
=
2 28× 108[1 (0 093)2]

1 + 0 093 cos

2 26× 108
1 + 0 093 cos

26. We are given = 0 048 and 2 = 1 56× 109 = 7 8× 108. By (7), we have

=
(1 2)

1 + cos
=
7 8× 108[1 (0 048)2]

1 + 0 048 cos

7 78× 108
1 + 0 048 cos

27. Here 2 = length of major axis = 36 18 AU = 18 09 AU and = 0 97. By (7), the equation of the orbit is

=
18 09[1 (0 97)2]

1 + 0 97 cos

1 07

1 + 0 97 cos
. By (8), the maximum distance from the comet to the sun is

18 09(1 + 0 97) 35 64 AU or about 3 314 billion miles.

28. Here 2 = length of major axis = 356 5 AU = 178 25 AU and = 0 9951. By (7), the equation of the orbit

is =
178 25[1 (0 9951)2]

1 + 0 9951 cos

1 7426

1 + 0 9951 cos
. By (8), the minimum distance from the comet to the sun is

178 25(1 0 9951) 0 8734 AU or about 81 million miles.

29. The minimum distance is at perihelion, where 4 6× 107 = = (1 ) = (1 0 206) = (0 794)

= 4 6 × 107 0 794. So the maximum distance, which is at aphelion, is

= (1 + ) = 4 6× 107 0 794 (1 206) 7 0× 107 km.

30. At perihelion, = (1 ) = 4 43× 109, and at aphelion, = (1 + ) = 7 37× 109. Adding, we get 2 = 11 80× 109,

so = 5 90× 109 km. Therefore 1 + = (1 + ) = 7 37
5 90

1 249 and 0 249.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.



80 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

31. From Exercise 29, we have = 0 206 and (1 ) = 4 6× 107 km. Thus, = 4 6× 107 0 794. From (7), we can write the

equation of Mercury’s orbit as =
1 2

1 + cos
. So since

=
(1 2) sin

(1 + cos )2

2 +
2

=
2(1 2)2

(1 + cos )2
+

2(1 2)2 2 sin2

(1 + cos )4
=

2(1 2)2

(1 + cos )4
(1 + 2 cos + 2)

the length of the orbit is

=
2

0

2 + ( )2 = (1 2)
2

0

1 + 2 + 2 cos

(1 + cos )2
3 6× 108 km

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius

is 2 3 6× 108 km.

10 Review

1. (a) A parametric curve is a set of points of the form ( ) = ( ( ) ( )), where and are continuous functions of a

variable .

(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the

curve by finding ( ) and ( ) for various values of , either by hand or with a calculator or computer. Sometimes, when

and are given by formulas, we can eliminate from the equations = ( ) and = ( ) to get a Cartesian equation

relating and . It may be easier to graph that equation than to work with the original formulas for and in terms of .

2. (a) You can find as a function of by calculating = [if 6= 0].

(b) Calculate the area as = ( ) 0( ) [or ( ) 0( ) if the leftmost point is ( ( ) ( )) rather

than ( ( ) ( ))].

3. (a) = ( )2 + ( )2 = [ 0( )]2 + [ 0( )]2

(b) = 2 ( )2 + ( )2 = 2 ( ) [ 0( )]2 + [ 0( )]2

4. (a) See Figure 5 in Section 10.3.

(b) = cos , = sin

(c) To find a polar representation ( ) with 0 and 0 2 , first calculate = 2 + 2. Then is specified by

cos = and sin = .

5. (a) Calculate = =
( )

( )
=

( sin )

( cos )
=

sin + cos

cos sin

, where = ( ).

(b) Calculate = 1
2

2 = 1
2
[ ( )]2

(c) = ( )2 + ( )2 = 2 + ( )2 = [ ( )]2 + [ 0( )]2
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CHAPTER 10 REVIEW ¤ 81

6. (a) A parabola is a set of points in a plane whose distances from a fixed point (the focus) and a fixed line (the directrix)

are equal.

(b) 2 = 4 ; 2 = 4

7. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

(b)
2

2
+

2

2 2
= 1.

8. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.

This difference should be interpreted as the larger distance minus the smaller distance.

(b)
2

2

2

2 2
= 1

(c) = ±
2 2

9. (a) If a conic section has focus and corresponding directrix , then the eccentricity is the fixed ratio | | | | for points

of the conic section.

(b) 1 for an ellipse; 1 for a hyperbola; = 1 for a parabola.

(c) = : =
1 + cos

. = : =
1 cos

. = : =
1 + sin

. = : =
1 sin

.

1. False. Consider the curve defined by = ( ) = ( 1)3 and = ( ) = ( 1)2. Then 0( ) = 2( 1), so 0(1) = 0,

but its graph has a vertical tangent when = 1. Note: The statement is true if 0(1) 6= 0 when 0(1) = 0.

2. False. If = ( ) and = ( ) are twice differentiable, then
2

2
= = .

3. False. For example, if ( ) = cos and ( ) = sin for 0 4 , then the curve is a circle of radius 1, hence its length

is 2 , but 4

0
[ 0( )]2 + [ 0( )]2 =

4

0
( sin )2 + (cos )2 =

4

0
1 = 4 , since as increases

from 0 to 4 , the circle is traversed twice.

4. False. If ( ) = (1 ), then ( ) = ( 1 0), so tan 1( ) = tan 1 0 = 0 6= . The statement is true for points in

quadrants I and IV.

5. True. The curve = 1 sin 2 is unchanged if we rotate it through 180 about because

1 sin 2( + ) = 1 sin(2 + 2 ) = 1 sin 2 . So it’s unchanged if we replace by . (See the discussion

after Example 8 in Section 10.3.) In other words, it’s the same curve as = (1 sin 2 ) = sin 2 1.

6. True. The polar equation = 2, the Cartesian equation 2 + 2 = 4, and the parametric equations = 2 sin 3 ,

= 2cos 3 [0 2 ] all describe the circle of radius 2 centered at the origin.
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82 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

7. False. The first pair of equations gives the portion of the parabola = 2 with 0, whereas the second pair of equations

traces out the whole parabola = 2.

8. True. 2 = 2 + 3 ( 1)2 = 3 + 1 = 3 + 1
3
= 4 3

4
+ 1

3
, which is the equation of a parabola with

vertex ( 1
3
1) and focus 1

3
+ 3

4
1 , opening to the right.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form = 2, where 0.

The tangent at the point 2 is the line 2 = 2 ( ); i.e., = 2 2. This tangent meets

the parabola at the points 2 where 2 = 2 2. This equation is equivalent to 2 = 2 2

[since 0]. But 2 = 2 2 2 2 + 2 = 0 ( )2 = 0 =

2 = 2 . This shows that each tangent meets the parabola at exactly one point.

10. True. Consider a hyperbola with focus at the origin, oriented so that its polar equation is =
1 + cos

, where 1.

The directrix is = , but along the hyperbola we have = cos =
cos

1 + cos
=

cos

1 + cos
6= .

1. = 2 + 4 , = 2 , 4 1. = 2 , so

= (2 )2 + 4(2 ) = 4 4 + 2 + 8 4 = 2 8 + 12

+ 4 = 2 8 + 16 = ( 4)2. This is part of a parabola with vertex

( 4 4), opening to the right.

2. = 1 + 2 , = .

= 1 + 2 = 1 + ( )2 = 1 + 2, 0.

3. = sec =
1

cos
=
1 . Since 0 2, 0 1 and 1.

This is part of the hyperbola = 1 .
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CHAPTER 10 REVIEW ¤ 83

4. = 2cos , = 1 + sin , cos2 + sin2 = 1

2

2

+ ( 1)2 = 1
2

4
+ ( 1)2 = 1. This is an ellipse,

centered at (0 1), with semimajor axis of length 2 and semiminor axis of

length 1.

5. Three different sets of parametric equations for the curve = are

(i) = , =

(ii) = 4, = 2

(iii) = tan2 , = tan , 0 2

There are many other sets of equations that also give this curve.

6. For 1, 0 and 0 with decreasing and increasing. When

= 1, ( ) = (0 0). When 1 0, we have 1 0 and

0 1 2. When = 0, ( ) = ( 1 0). When 0 1,

1 0 and 1
2

0. When = 1, ( ) = (0 0) again.

When 1, both and are positive and increasing.

7. (a) The Cartesian coordinates are = 4cos 2
3
= 4 1

2
= 2 and

= 4 sin 2
3
= 4 3

2
= 2 3, that is, the point 2 2 3 .

(b) Given = 3 and = 3, we have = ( 3)2 + 32 = 18 = 3 2. Also, tan = tan =
3

3
, and since

( 3 3) is in the second quadrant, = 3
4

. Thus, one set of polar coordinates for ( 3 3) is 3 2 3
4

, and two others are

3 2 11
4

and 3 2 7
4

.

8. 1 2,
6

5
6
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84 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

9. = 1 cos . This cardioid is
symmetric about the polar axis.

10. = sin 4 . This is an
eight-leaved rose.

11. = cos 3 . This is a

three-leaved rose. The curve is

traced twice.

12. = 3 + cos 3 . The curve is
symmetric about the horizontal
axis.

13. = 1 + cos 2 . The curve is

symmetric about the pole and

both the horizontal and vertical
axes.

14. = 2 cos ( 2) The curve is
symmetric about the pole and
both the horizontal and vertical
axes.
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CHAPTER 10 REVIEW ¤ 85

15. =
3

1 + 2 sin
= 2 1, so the conic is a hyperbola. = 3

= 3
2

and the form “+2 sin ” imply that the directrix is above the focus at

the origin and has equation = 3
2
. The vertices are 1

2
and 3 3

2
.

16. =
3

2 2 cos
· 1 2
1 2

=
3 2

1 1 cos
= 1, so the conic is a

parabola. = 3
2 = 3

2 and the form “ 2 cos ” imply that the

directrix is to the left of the focus at the origin and has equation = 3
2
.

The vertex is 3
4

.

17. + = 2 cos + sin = 2 (cos + sin ) = 2 =
2

cos + sin

18. 2 + 2 = 2 2 = 2 = 2. [ = 2 gives the same curve.]

19. = (sin ) . As ± , 0.

As 0, 1. In the first figure,

there are an infinite number of
-intercepts at = , a nonzero

integer. These correspond to pole

points in the second figure.

20. =
2

4 3 cos
=

1 2

1 3
4
cos

= 3
4

and = 2
3
. The equation of

the directrix is = 2
3

= 2 (3 cos ). To obtain the equation

of the rotated ellipse, we replace in the original equation with 2
3

,

and get =
2

4 3 cos 2
3

.

21. = ln , = 1 + 2; = 1. = 2 and =
1 , so = =

2

1
= 2 2.

When = 1, ( ) = (0 2) and = 2.

22. = 3 + 6 + 1, = 2 2; = 1. = =
2 2

3 2 + 6
. When = 1, ( ) = ( 6 3) and =

4

9
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

INSTRUCTOR USE ONLY °°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

© Cengage Learning. All Rights Reserved.



86 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

23. = = sin = sin and = cos = cos

= =
sin + cos

cos sin
=

sin + cos

cos sin
· =

sin cos

cos + sin
.

When = , =
0 ( 1)

1 + 0
=

1

1
= 1.

24. = 3 + cos 3 = =
sin + cos

cos sin
=

3 sin 3 sin + (3 + cos 3 ) cos

3 sin 3 cos (3 + cos 3 ) sin
.

When = 2, =
( 3)( 1)(1) + (3 + 0) · 0
( 3)( 1)(0) (3 + 0) · 1 =

3

3
= 1.

25. = + sin , = cos = =
1 + sin

1 + cos

2

2
= =

(1 + cos ) cos (1 + sin )( sin )

(1 + cos )2

1 + cos
=
cos + cos2 + sin + sin2

(1 + cos )3
=
1 + cos + sin

(1 + cos )3

26. = 1 + 2, = 3. = 1 3 2 and = 2 , so = =
1 3 2

2
= 1

2
1 3

2
.

2

2
=

( )
=

1
2

2 3
2

2
= 1

4
3 3

4
1 =

1

4 3
1 + 3 2 =

3 2 + 1

4 3
.

27. We graph the curve = 3 3 , = 2 + + 1 for 2 2 1 2.

By zooming in or using a cursor, we find that the lowest point is about

(1 4 0 75). To find the exact values, we find the -value at which

= 2 + 1 = 0 = 1
2

( ) = 11
8

3
4

28. We estimate the coordinates of the point of intersection to be ( 2 3). In fact this is exact, since both = 2 and = 1 give

the point ( 2 3). So the area enclosed by the loop is

=1

= 2
=

1

2
( 2 + + 1)(3 2 3) =

1

2
(3 4 + 3 3 3 3)

= 3
5
5 + 3

4
4 3

2
2 3

1

2
= 3

5
+ 3

4
3
2

3 96
5
+ 12 6 ( 6) = 81

20

29. = 2 cos cos 2 = 2 sin + 2 sin 2 = 2 sin (2 cos 1) = 0

sin = 0 or cos = 1
2 = 0, 3 , , or 5

3 .

= 2 sin sin 2 = 2 cos 2 cos 2 = 2 1 + cos 2 cos2 = 2 (1 cos )(1 + 2 cos ) = 0

= 0, 23 , or 4
3

.

Thus the graph has vertical tangents where = 3
, and 5

3
, and horizontal tangents where = 2

3
and 4

3
. To determine
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CHAPTER 10 REVIEW ¤ 87

what the slope is where = 0, we use l’Hospital’s Rule to evaluate lim
0

= 0, so there is a horizontal tangent there.

0 0

3
3
2

3
2

2
3

1
2

3 3
2

3 0
4
3

1
2

3 3
2

5
3

3
2

3
2

30. From Exercise 29, = 2 cos cos 2 , = 2 sin sin 2

= 2
0
(2 sin sin 2 )( 2 sin + 2 sin 2 ) = 4 2

0
(2 sin2 + sin2 2 3 sin sin 2 )

= 4 2
0
(1 cos 2 ) + 1

2 (1 cos 4 ) 6 sin2 cos = 4 2 1
2 sin 2 +

1
2

1
8 sin 4 2 sin3

0

= 4 2 3
2

= 6 2

31. The curve 2 = 9 cos 5 has 10 “petals.” For instance, for
10 10

, there are two petals, one with 0 and one

with 0.

= 10
10

10
1
2

2 = 5
10

10
9 cos 5 = 5 · 9 · 2 10

0
cos 5 = 18 sin 5

10

0
= 18

32. = 1 3 sin . The inner loop is traced out as goes from = sin 1 1
3

to , so

= 1
2

2 =
2
(1 3 sin )2 =

2
1 6 sin + 9

2
(1 cos 2 )

= 11
2
+ 6cos 9

4
sin 2

2
= 11

4
11
2
sin 1 1

3
3 2

33. The curves intersect when 4 cos = 2 cos = 1
2

= ±
3

for . The points of intersection are 2 3
and 2

3
.

34. The two curves clearly both contain the pole. For other points of intersection, cot = 2 cos( + 2 ) or

2 cos( + +2 ), both of which reduce to cot = 2 cos cos = 2 sin cos cos (1 2 sin ) = 0

cos = 0 or sin = 1
2 = 6 , 2 , 56 or 3

2 intersection points are 0 2
, 3 6

, and 3 11
6

.

35. The curves intersect where 2 sin = sin + cos

sin = cos =
4

, and also at the origin (at which = 3
4

on the second curve).

=
4

0
1
2
(2 sin )2 +

3 4

4
1
2
(sin + cos )2

=
4

0
(1 cos 2 ) + 1

2

3 4

4
(1 + sin 2 )

= 1
2
sin 2

4

0
+ 1

2
1
4
cos 2

3 4

4
= 1

2
( 1)
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88 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

36. = 2
6

2
1
2
(2 + cos 2 )2 (2 + sin )2

=
6

2
4 cos 2 + cos2 2 4 sin sin2

= 2 sin 2 + 1
2
+ 1

8
sin 4 + 4 cos 1

2
+ 1

4
sin 2

6

2

= 51
16 3

37. = 3 2, = 2 3.

=
2

0
( )2 + ( )2 =

2

0
(6 )2 + (6 2)2 =

2

0
36 2 + 36 4 =

2

0
36 2 1 + 2

=
2

0
6 | | 1 + 2 = 6

2

0
1 + 2 = 6

5

1
1 2 1

2
= 1 + 2, = 2

= 6 · 1
2
· 2
3

3 2
5

1
= 2(53 2 1) = 2 5 5 1

38. = 2 + 3 , = cosh 3 ( )2 + ( )2 = 32 + (3 sinh 3 )2 = 9(1 + sinh2 3 ) = 9 cosh2 3 , so

=
1

0
9 cosh2 3 =

1

0
|3 cosh 3 | =

1

0
3 cosh 3 = sinh 3

1

0
= sinh 3 sinh 0 = sinh 3.

39. =
2 2 + ( )2 =

2
(1 )2 + ( 1 2)2 =

2 2 + 1
2

24
=

2 + 1
+ ln + 2 + 1

2

=
2 + 1 4 2 + 1

2
+ ln

2 + 4 2 + 1

+ 2 + 1

=
2 2 + 1 4 2 + 1

2
+ ln

2 + 4 2 + 1

+ 2 + 1

40. =
0

2 + ( )2 =
0

sin6 1
3

+ sin4 1
3

cos2 1
3

=
0
sin2 1

3
= 1

2
3
2
sin 2

3 0
= 1

2
3
8

3

41. = 4 , =
3

3
+

1

2 2
, 1 4

=
4

1
2 ( )2 + ( )2 =

4

1
2 1

3
3 + 1

2
2 2

2
+ ( 2 3)2

= 2
4

1
1
3
3 + 1

2
2 ( 2 + 3)2 = 2

4

1
1
3
5 + 5

6
+ 1

2
5 = 2 1

18
6 + 5

6
1
8

4 4

1
= 471,295

1024

42. = 2 + 3 , = cosh 3 ( )2 + ( )2 = 32 + (3 sinh 3 )2 = 9(1 + sinh2 3 ) = 9 cosh2 3 , so

=
1

0
2 =

1

0
2 cosh 3 9 cosh2 3 =

1

0
2 cosh 3 |3 cosh 3 | =

1

0
2 cosh 3 · 3 cosh 3

= 6
1

0
cosh2 3 = 6

1

0
1
2
(1 + cosh 6 ) = 3 + 1

6
sinh 6

1

0
= 3 1 + 1

6
sinh 6 = 3 +

2
sinh 6
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CHAPTER 10 REVIEW ¤ 89

43. For all except 1, the curve is asymptotic to the line = 1. For

1, the curve bulges to the right near = 0. As increases, the

bulge becomes smaller, until at = 1 the curve is the straight line = 1.

As continues to increase, the curve bulges to the left, until at = 0 there

is a cusp at the origin. For 0, there is a loop to the left of the origin,

whose size and roundness increase as increases. Note that the -intercept

of the curve is always

44. For close to 0, the graph consists of four thin petals. As increases, the petals get wider, until as , each petal

occupies almost its entire quarter-circle.

= 0 01 = 0 1 = 1

= 5 = 10 = 25

45.
2

9
+

2

8
= 1 is an ellipse with center (0 0).

= 3, = 2 2, = 1

foci (±1 0), vertices (±3 0).

46. 4 2 2 = 16
2

4

2

16
= 1 is a hyperbola

with center (0 0), vertices (±2 0), = 2, = 4,

= 16 + 4 = 2 5, foci ±2 5 0 and
asymptotes = ±2 .
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90 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

47. 6 2 + 36 + 55 = 0

6( 2 6 + 9) = ( + 1)

( 3)2 = 1
6
( + 1), a parabola with vertex ( 1 3),

opening to the left, = 1
24

focus 25
24
3 and

directrix = 23
24 .

48. 25 2 + 4 2 + 50 16 = 59

25( + 1)2 + 4( 2)2 = 100

1
4
( + 1)2 + 1

25
( 2)2 = 1 is an ellipse centered at

( 1 2) with foci on the line = 1, vertices ( 1 7)

and ( 1 3); = 5, = 2 = 21

foci 1 2± 21 .

49. The ellipse with foci (±4 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with = 5 and = 4,

so 2 = 2 2 = 52 42 = 9. An equation is
2

25
+

2

9
= 1.

50. The distance from the focus (2 1) to the directrix = 4 is 2 ( 4) = 6, so the distance from the focus to the vertex

is 1
2 (6) = 3 and the vertex is ( 1 1). Since the focus is to the right of the vertex, = 3. An equation is

( 1)2 = 4 · 3[ ( 1)], or ( 1)2 = 12( + 1).

51. The center of a hyperbola with foci (0 ±4) is (0 0), so = 4 and an equation is
2

2

2

2
= 1.

The asymptote = 3 has slope 3, so =
3

1
= 3 and 2 + 2 = 2 (3 )2 + 2 = 42

10 2 = 16 2 = 8
5 and so 2 = 16 8

5 =
72
5 . Thus, an equation is

2

72 5

2

8 5
= 1, or 5

2

72

5 2

8
= 1.

52. Center is (3 0), and = 8
2
= 4, = 2 = 42 22 = 12

an equation of the ellipse is ( 3)2

12
+

2

16
= 1.

53. 2 = ( 100) has its vertex at (0 100), so one of the vertices of the ellipse is (0 100). Another form of the equation of a

parabola is 2 = 4 ( 100) so 4 ( 100) = ( 100) 4 = 1 = 1
4
. Therefore the shared focus is

found at 0 399
4

so 2 = 399
4

0 = 399
8

and the center of the ellipse is 0 399
8

. So = 100 399
8
= 401

8
and

2 = 2 2 =
4012 3992

82
= 25. So the equation of the ellipse is

2

2
+

399
8

2

2
= 1

2

25
+

399
8

2

401
8

2 = 1,

or
2

25
+
(8 399)2

160,801
= 1.

54.
2

2
+

2

2
= 1

2
2
+
2
2

= 0 =
2

2
. Therefore = =

2

2
. Combining this

condition with
2

2
+

2

2
= 1, we find that = ±

2

2 2 + 2
. In other words, the two points on the ellipse where the
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CHAPTER 10 REVIEW ¤ 91

tangent has slope are ±
2

2 2 + 2

2

2 2 + 2
. The tangent lines at these points have the equations

±
2

2 2 + 2
=

2

2 2 + 2
or =

2 2

2 2 + 2

2

2 2 + 2
= 2 2 + 2.

55. Directrix = 4 = 4, so = 1
3

=
1 + cos

=
4

3 + cos
.

56. See the end of the proof of Theorem 10.6.1. If 1, then 1 2 0 and Equations 10.6.4 become 2 =
2 2

( 2 1)2
and

2 =
2 2

2 1
, so

2

2
= 2 1. The asymptotes = ± have slopes± = ± 2 1, so the angles they make with the

polar axis are± tan 1 2 1 = cos 1(±1 ).

57. (a) If ( ) lies on the curve, then there is some parameter value 1 such that 3 1

1 + 3
1

= and 3 2
1

1 + 3
1

= . If 1 = 0,

the point is (0 0), which lies on the line = . If 1 6= 0, then the point corresponding to =
1

1
is given by

=
3(1 1)

1 + (1 1)3
=

3 2
1

3
1 + 1

= , =
3(1 1)

2

1 + (1 1)3
=

3 1

3
1 + 1

= . So ( ) also lies on the curve. [Another way to see

this is to do part (e) first; the result is immediate.] The curve intersects the line = when 3

1 + 3
=

3 2

1 + 3

= 2 = 0 or 1, so the points are (0 0) and 3
2

3
2

.

(b) =
(1 + 3)(6 ) 3 2(3 2)

(1 + 3)2
=
6 3 4

(1 + 3)2
= 0 when 6 3 4 = 3 (2 3) = 0 = 0 or = 3 2, so there are

horizontal tangents at (0 0) and 3 2 3 4 . Using the symmetry from part (a), we see that there are vertical tangents at

(0 0) and 3 4 3 2 .

(c) Notice that as 1+, we have and . As 1 , we have and . Also

( 1) = + + 1 =
3 + 3 2 + (1 + 3)

1 + 3
=
( + 1)3

1 + 3
=

( + 1)2

2 + 1
0 as 1. So = 1 is a

slant asymptote.

(d) =
(1 + 3)(3) 3 (3 2)

(1 + 3)2
=

3 6 3

(1 + 3)2
and from part (b) we have =

6 3 4

(1 + 3)2
. So = =

(2 3)

1 2 3
.

Also
2

2
= =

2(1 + 3)4

3(1 2 3)3
0

1
3 2

.

So the curve is concave upward there and has a minimum point at (0 0)

and a maximum point at 3 2 3 4 . Using this together with the

information from parts (a), (b), and (c), we sketch the curve.
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92 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(e) 3 + 3 =
3

1 + 3

3

+
3 2

1 + 3

3

=
27 3 + 27 6

(1 + 3)3
=
27 3(1 + 3)

(1 + 3)3
=

27 3

(1 + 3)2
and

3 = 3
3

1 + 3

3 2

1 + 3
=

27 3

(1 + 3)2
, so 3 + 3 = 3 .

(f ) We start with the equation from part (e) and substitute = cos , = sin . Then 3 + 3 = 3

3 cos3 + 3 sin3 = 3 2 cos sin . For 6= 0, this gives =
3 cos sin

cos3 + sin3
. Dividing numerator and denominator

by cos3 , we obtain =

3
1

cos

sin

cos

1 +
sin3

cos3

=
3 sec tan

1 + tan3
.

(g) The loop corresponds to 0
2

, so its area is

=
2

0

2

2
=
1

2

2

0

3 sec tan

1 + tan3

2

=
9

2

2

0

sec2 tan2

(1 + tan3 )2
=
9

2 0

2

(1 + 3)2
[let = tan ]

= lim 9
2

1
3
(1 + 3) 1

0
= 3

2

(h) By symmetry, the area between the folium and the line = 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1
2
, and since = 1

sin = cos 1 =
1

sin + cos
, the area in the fourth quadrant is

1

2

4

2

1

sin + cos

2
3 sec tan

1 + tan3

2
CAS
=
1

2
. Therefore, the total area is 1

2
+ 2 1

2
= 3

2
.
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PROBLEMS PLUS

1. =
1

cos , =
1

sin , so by FTC1, we have =
cos and =

sin . Vertical tangent lines occur when

= 0 cos = 0. The parameter value corresponding to ( ) = (0, 0) is = 1, so the nearest vertical tangent

occurs when = 2 . Therefore, the arc length between these points is

=
2

1

2

+
2

=
2

1

cos2

2
+
sin2

2
=

2

1

= ln
2

1
= ln

2

2. (a) The curve 4 + 4 = 2 + 2 is symmetric about both axes and about the line = (since interchanging

and does not change the equation) so we need only consider 0 to begin with. Implicit differentiation gives

4 3 + 4 3 0 = 2 + 2 0 0 =
(1 2 2)

(2 2 1)
0 = 0 when = 0 and when = ± 1

2
. If = 0, then

4 = 2 2( 2 1) = 0 = 0 or ±1. The point (0 0) can’t be a highest or lowest point because it is

isolated. [If 1 1 and 1 1, then 4 2 and 4 2 4 + 4 2 + 2, except for (0 0).]

If = 1

2
, then 2 = 1

2
, 4 = 1

4
, so 1

4
+ 4 = 1

2
+ 2 4 4 4 2 1 = 0 2 = 4± 16+16

8
= 1± 2

2
.

But 2 0, so 2 = 1+ 2
2 = ± 1

2
1 + 2 . Near the point (0 1), the denominator of 0 is positive and the

numerator changes from negative to positive as increases through 0, so (0 1) is a local minimum point. At

1

2

1+ 2
2

, 0 changes from positive to negative, so that point gives a maximum. By symmetry, the highest points

on the curve are ± 1

2

1+ 2
2

and the lowest points are ± 1

2

1+ 2
2

.

(b) We use the information from part (a), together with symmetry with respect to the

axes and the lines = ± , to sketch the curve.

(c) In polar coordinates, 4 + 4 = 2 + 2 becomes 4 cos4 + 4 sin4 = 2 or

2 =
1

cos4 + sin4
. By the symmetry shown in part (b), the area enclosed by

the curve is = 8
4

0

1

2
2 = 4

4

0 cos4 + sin4
CAS
= 2 .

3. In terms of and , we have = cos = (1 + sin ) cos = cos + sin cos = cos + 1
2
sin 2 and

= sin = (1 + sin ) sin = sin + sin2 . Now 1 sin 1 1 sin + sin2 1 + 2, so

1 2. Furthermore, = 2 when = 1 and =
2

, while = 1 for = 0 and = 3
2

. Therefore, we need a viewing

rectangle with 1 2.

To find the -values, look at the equation = cos + 1
2
sin 2 and use the fact that sin 2 0 for 0

2
and

sin 2 0 for
2

0. [Because = 1 + sin is symmetric about the -axis, we only need to consider
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94 ¤ CHAPTER 10 PROBLEMS PLUS

2 2 .] So for 2 0, has a maximum value when = 0 and then = cos has a maximum value

of 1 at = 0. Thus, the maximum value of must occur on 0
2

with = 1. Then = cos + 1
2
sin 2

= sin + cos 2 = sin + 1 2 sin2 = (2 sin 1)(sin + 1) = 0 when sin = 1 or 1
2

[but sin 6= 1 for 0
2

]. If sin = 1
2
, then =

6
and

= cos
6
+ 1

2
sin

3
= 3

4
3. Thus, the maximum value of is 3

4
3, and,

by symmetry, the minimum value is 3
4 3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

= 1 + sin , where 0 1, is 3
4
3 3

4
3 × [ 1 2].

4. (a) Let us find the polar equation of the path of the bug that starts in the upper

right corner of the square. If the polar coordinates of this bug, at a

particular moment, are ( ), then the polar coordinates of the bug that it is

crawling toward must be + 2
. (The next bug must be the same

distance from the origin and the angle between the lines joining the bugs to

the pole must be
2

.) The Cartesian coordinates of the first bug are

( cos sin ) and for the second bug we have

= cos +
2
= sin , = sin +

2
= cos . So the slope of the line joining the bugs is

cos sin

sin cos
=
sin cos

sin + cos
. This must be equal to the slope of the tangent line at ( ), so by

Equation 10.3.3 we have ( ) sin + cos

( ) cos sin
=
sin cos

sin + cos
. Solving for , we get

sin2 + sin cos + sin cos + cos2 = sin cos cos2 sin2 + sin cos

sin2 + cos2 + cos2 + sin2 = 0 = . Solving this differential equation as a separable

equation (as in Section 9.3), or using Theorem 9.4.2 with = 1, we get = . To determine we use the fact that,

at its starting position, =
4

and = 1

2
, so 1

2
= 4 = 1

2

4. Therefore, a polar equation of the

bug’s path is = 1

2

4 or = 1

2

( 4) .

(b) The distance traveled by this bug is =
4

2 + ( )2 , where =
2

4( ) and so

2 + ( )2 = 1
2

2 2 2 + 1
2

2 2 2 = 2 2 2 . Thus

=
4

4 = 4 lim
4

= 4 lim
4

= 4 lim 4 = 4 4 =
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CHAPTER 10 PROBLEMS PLUS ¤ 95

5. Without loss of generality, assume the hyperbola has equation
2

2

2

2
= 1. Use implicit differentiation to get

2
2

2 0

2
= 0, so 0 =

2

2
. The tangent line at the point ( ) on the hyperbola has equation =

2

2
( ).

The tangent line intersects the asymptote = when =
2

2
( ) 2 2 = 2 2 2

2 = 2 2 2 2 =
2 2 2 2

( )
=

+ and the -value is +
=

+ .

Similarly, the tangent line intersects = at . The midpoint of these intersection points is

1

2

+
+

1

2

+
+ =

1

2

2 1

2

2
= ( ), the point of tangency.

Note: If = 0, then at (± 0), the tangent line is = ± , and the points of intersection are clearly equidistant from the point

of tangency.

6. (a) Since the smaller circle rolls without slipping around , the amount of arc

traversed on (2 in the figure) must equal the amount of arc of the smaller

circle that has been in contact with . Since the smaller circle has radius ,

it must have turned through an angle of 2 = 2 . In addition to turning

through an angle 2 , the little circle has rolled through an angle against .

Thus, has turned through an angle of 3 as shown in the figure. (If the little

circle had turned through an angle of 2 with its center pinned to the -axis,

then would have turned only 2 instead of 3 . The movement of the little circle around adds to the angle.) From the

figure, we see that the center of the small circle has coordinates (3 cos 3 sin ). Thus, has coordinates ( ), where

= cos 3 + 3 cos and = sin 3 + 3 sin .

(b)

= 1
5 = 2

5 = 3
5

= 4
5

(c) The diagram gives an alternate description of

point on the epitrochoid. moves around

a circle of radius , and rotates one-third as

fast with respect to at a distance of 3 .

Place an equilateral triangle with sides of

length 3 3 so that its centroid is at and

one vertex is at . (The distance from the centroid to a vertex is 1

3
times the length of a side of the equilateral triangle.)
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96 ¤ CHAPTER 10 PROBLEMS PLUS

As increases by 2
3 , the point travels once around the circle of radius , returning to its original position. At the

same time, (and the rest of the triangle) rotate through an angle of 2
3

about , so ’s position is occupied by another

vertex. In this way, we see that the epitrochoid traced out by is simultaneously traced out by the other two vertices as

well. The whole equilateral triangle sits inside the epitrochoid (touching it only with its vertices) and each vertex traces out

the curve once while the centroid moves around the circle three times.

(d) We view the epitrochoid as being traced out in the same way as in part (c), by a rotor for which the distance from its center

to each vertex is 3 , so it has radius 6 . To show that the rotor fits inside the epitrochoid, it suffices to show that for any

position of the tracing point , there are no points on the opposite side of the rotor which are outside the epitrochoid. But

the most likely case of intersection is when is on the -axis, so as long as the diameter of the rotor which is 3 3 is

less than the distance between the -intercepts, the rotor will fit. The -intercepts occur when =
2 or = 3

2

= + 3 or = 3 , so the distance between the intercepts is ( + 3 ) ( 3 ) = 6 2 , and the rotor will

fit if 3 3 6 2 2 6 3 3 3
2
2 3 .
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