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| PREFACE

This Complete Solutions Manual contains detailed solutions to all exercises in the text Multivariable
Calculus, Seventh Edition (Chapters 10-17 of Calculus, Seventh Edition, and Calculus: Early
Transcendentals, Seventh Edition) by James Stewart. A Student Solutions Manual is also available,
which contains solutions to the odd-numbered exercises in each chapter section, review section,
True-False Quiz, and Problems Plus section as well as all solutions to the Concept Check questions.
(It does not, however, include solutions to any of the projects.)

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, users of the Early Transcendentals
text should use the references denoted by “ET.”

While we have extended every effort to ensure the accuracy of the solutions presented, we would
appreciate correspondence regarding any errors that may exist. Other suggestions or comments are
also welcome, and can be sent to dan clegg at dclegg@palomar .edu or in care of the publisher:
Brooks/Cole, Cengage Learning, 20 Davis Drive, Belmont CA 94002-3098.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG

é Palomar College

BARBARA FRANK
Cape Fear Community College
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| ABBREVIATIONS AND SYMBOLS

CD  concave downward
CU  concave upward
D the domain of f
FDT  First Derivative Test
HA  horizontal asymptote(s)

I interval of convergence
I/D  Increasing/Decreasing Test
1P inflection point(s)

R radius of convergence

VA vertical asymptote(s)

2% indicates the use of a computer algebra system.

4 indicates the use of I’Hospital’s Rule.

L indicates the use of Formula j in the Table of Integrals in the back endpapers.
é = indicates the use of the substitution {u = sin z, du = cos x dz}.

= indicates the use of the substitution {u = cos z,du = —sinz dz}.

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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10 [0 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

La=t24t y=t>—t, —2<t<2 y U

t | -2 -1 0 1 2
z| 2 0 0 2 6

t=2
y 6 2 0 0 2 )] (6.2)
t=0
(0,0)
0 2 x
2.x=t% y=t>—4t, —3<t<3 Y =3
(9,15)
t +3 +£2 +£1 0 —
x 9 4 1 0 (=0 (L3
0.0)
y | £15 0 F3 0 0 X -
t=1
1,-3)
1=-3
(9, —15)
3. x=cos’t, y=1-—sint, 0<t<7/2 Y =0
1 L1
t |0 7/6 /3 /2
x |1 3/4 1/4 0 o
6
y |1 172 1-L~013 0
t=§ =3
©.0) ‘
0 1 x
4. ¢z =e b+t y:et—t, —2<t<2 y
t —2 -1 0 1 2
x e? -2 e—1 1 e l+1 e 242
5.39 1.72 1.37 2.14
Y e 242 e 41 1 e—1 e —2
2.14 1.37 1.72 5.39 T
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2 U CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

5 2=3—-4t, y=2—-3t

@
t| -1 0 1 2
x 7 3 -1 -5
y 5 2 -1 —4

b)z=3-4t = 4t=-2+3 = t=—2x+3 50

y=2-3t=2-3(-iz+32)=2+32-9 = y=3z-1
_ _ 1 y
6.r—1—2t,y—5t—1,—2§t§4 7. 1)
@) —
t|l -2 0 2 4
T 5 1 -3 -7
y| -2 -1 0 1
Mz=1-2t = 2t=-z+1 = t=—22+1 50
y=f-1=}(detd) -1=—deti-1 > y=-jo-1
with -7 <2 <5
Ta=1—13 y=1t—-2 —2<t<2 Y
(3.0
t=2
@) \(0.—1) !
t]l -2 -1 0o 1 2 !
z | -3 0 1 0 -3 (1.-2)
t=0
y| -4 -3 -2 -1 0
(—3,—4) (0, -3)
b)y=t—-2 = t=y+2s0x=1-1>=1-(y+2)* = == =1
r=—(y+2)%+1, 0orz=—y*—4y—3,with—-4<y<0
Box=t—1 y=t3+1, —2<t<2 A9
t=2
(@)
t] -2 -1 0 1 2
T -3 -2 —1 0 1 (=1, 1)
= 0,2
vl =7 0 1 2 9 ' >./(,:1)
(-2,0)[ 0 X
Pr=t—1 = t=c+Ls0y=t3+1 = y=(x+1)>+1, r=-1
ory=a%+322+3z+2 with—-3<z<1
(—3,-17)
t=-2
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SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS  [J

9. z=+t y=1—t oy =0
(a) 1
t |0 1 2 3 4 (1,0) r=1
z|0 1 1414 1732 2 0 ¥
y|1 0 -1 -2 -3
Mz=vt = t=2> = y=1—t=1—2z% Sincet>0,z>0. o
2,-3) t=4
So the curve is the right half of the parabolay = 1 — 2.
42 __ 43 y
10, z=t"y=1 (4,8)
=
(@)
t | -2 -1 0 1
T 4 1 0 1 r=0| A1) =1
-8 -1 1 0 x
Y (1,—-1) t=—1
2
Dy=t2 = t= f/z; = z=t*= (%) =y?3 teRyecR z>0. @, —8)
t=-2
11 (@) x =sin 36,y = cos 36, -7 < 6 < 7. (b) Y
1
2% + y? = sin? %9 + cos? %9 = 1. For —w < 6 < 0, we have
—1<z<0and0<y<1l.For0< @ <mwehaveO<a<1
and 1 > y > 0. The graph is a semicircle.
-1 0 1
12. (a)x:%cose,y:2sin6’,0§6’§7r. (b) Y
2
(2z)% + (%y)2 =cos’f+sin’f=1 = 4da®+1y°=1 =
xz y2
W + 52 = 1, which is an equation of an ellipse with
x-intercepts i% and y-intercepts +2. For 0 < 6 < /2, we have
1,,
1>z>0and0<y<2 Form/2<6<mwehave0>z>—1
and 2 > y > 0. So the graph is the top half of the ellipse.
—05 0 0.5 X
. - 1 1 ‘
13. (@) x =sint,y =csct,0 <t < §.y =cscl = — = —. (b) Y
sint T
For0 <t < %,wehave 0 <z < 1andy > 1. Thus, the curve is the
portion of the hyperbola y = 1/2 with y > 1. (L1
0 X
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4 [ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

14 (@ z=e —1y=e* (b) Y
y = (e")? = (x +1)? and since z > —1, we have the right side of the

parabolay = (z + 1)%.

/1
-1 0 X
5. @zr=¢" = 2=z = t=3Inwz (b) Y
y:tJrl:élnerl. 1+
0 i x
6. @z=+vI+1 = 2’=t+1 = t=gz>-1 (b) y
y=+t—1= /(22 —1) —1=+/22 — 2. The curve is the part of the
hyperbola 2 — 3? = 2 with z > /2 and y > 0.
0 \/2 X
17. (@) « = sinht,y = cosht = 4* —2? = cosh®t — sinh? ¢ = 1. Since (b) Y
y = cosht > 1, we have the upper branch of the hyperbola y? — 2> = 1. /
1
0 X
18. (@) » = tan? 0, y = sech, —/2 < 0 < /2. () 7
1+tan?0 =sec’d = 1+z=9y> = z=19>—1 For —
/

—7m/2 <60 <0,wehavex >0andy > 1. For 0 < 6 < 7/2, we have

0 < zand 1 < y. Thus, the curve is the portion of the parabola z = y* — 1

in the first quadrant. As € increases from — /2 to 0, the point (z, y) 0

=

approaches (0, 1) along the parabola. As 6 increases from 0 to /2, the

point (x, y) retreats from (0, 1) along the parabola.

19. x =3+ 2cost,y =1+ 2sint, 7/2 <t < 3w/2. By Example 4 withr =2, h = 3, and k£ = 1, the motion of the particle
takes place on a circle centered at (3, 1) with a radius of 2. As ¢ goes from Z to 37“ the particle starts at the point (3, 3) and

moves counterclockwise along the circle (z — 3)? + (y — 1)? = 4to (3, —1) [one-half of a circle].

2
20. x = 2sint,y =4+ cost = sintzg,cost:yfél. sin?t 4+ cos’t=1 = (%) + (y — 4) = 1. The motion

of the particle takes place on an ellipse centered at (0, 4). As ¢ goes from 0 to 37“ the particle starts at the point (0, 5) and

moves clockwise to (—2,4) [three-quarters of an ellipse].
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25.

26.

27.

SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS [ 5

2 2
r =5sint,y = 2cost = sint:%,cost:%. sin?t+cos’t=1 = (%) —&—(%) = 1. The motion of the

particle takes place on an ellipse centered at (0, 0). As ¢ goes from — to 5, the particle starts at the point (0, —2) and moves
clockwise around the ellipse 3 times.

y=cos’t =1—sin?t = 1 — 2. The motion of the particle takes place on the parabolay = 1 — 2%. As t goes from —2 to
—, the particle starts at the point (0, 1), moves to (1,0), and goes back to (0, 1). As ¢ goes from —= to 0, the particle moves

to (—1,0) and goes back to (0, 1). The particle repeats this motion as ¢ goes from 0 to 2.
We must have 1 < z < 4 and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

(a) From the first graph, we have 1 < x < 2. From the second graph, we have —1 < y < 1. The only choice that satisfies
either of those conditions is I11.

(b) From the first graph, the values of = cycle through the values from —2 to 2 four times. From the second graph, the values
of y cycle through the values from —2 to 2 six times. Choice | satisfies these conditions.

(c) From the first graph, the values of x cycle through the values from —2 to 2 three times. From the second graph, we have
0 < y < 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of x cycle through the values from —2 to 2 two times. From the second graph, the values of

y do the same thing. Choice Il satisfies these conditions.

Whent = —1, (z,y) = (0, —1). As ¢ increases to 0, = decreases to —1 and y Y

increases to 0. As ¢ increases from 0 to 1, x increases to 0 and y increases to 1. /(i -

As t increases beyond 1, both = and y increase. For ¢t < —1, x is positive and /

decreasing and y is negative and increasing. We could achieve greater accuracy ;_:1’00)\ 0-1) 1= _lx

by estimating x- and y-values for selected values of ¢ from the given graphs and

plotting the corresponding points.

For t < —1, « is positive and decreasing, while y is negative and increasing (these Y

points are in Quadrant IV). When ¢t = —1, (x,y) = (0,0) and, as ¢ increases from

—11t0 0, = becomes negative and y increases from0to 1. Att =0, (z,y) = (0,1)

and, as ¢ increases from 0 to 1, y decreases from 1 to 0 and x is positive. At

t =1, (z,y) = (0, 0) again, so the loop is completed. For ¢ > 1, z and y both
become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating z- and

y-values for selected values of ¢ from the given graphs and plotting the corresponding points.

When ¢t = 0 we see that = 0 and y = 0, so the curve starts at the origin. As ¢ J
increases from 0 to 1, the graphs show that y increases from 0 to 1 while =

increases from 0 to 1, decreases to 0 and to —1, then increases back to 0, so we

arrive at the point (0, 1). Similarly, as ¢ increases from % to 1, y decreases from 1

to 0 while x repeats its pattern, and we arrive back at the origin. \We could achieve greater accuracy by estimating x- and

y-values for selected values of ¢ from the given graphs and plotting the corresponding points.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

28 @ax=t*—t+1=(t*+1)—1t>0 [think of the graphs of y = t* + 1 and y = ] and y = ¢* > 0, so these equations

29.

30.

31.

are matched with graph V.

by y=+1t>0. x=1t>—2t=t(t—2)isnegative for 0 < t < 2, so these equations are matched with graph I.
(c) * = sin 2t has period 27/2 = 7. Note that
y(t + 2m) = sin[t + 27 + sin 2(¢ + 27)] = sin(¢ + 27 + sin 2t) = sin(¢ + sin 2¢) = y(¢), S0 y has period 27.
These equations match graph 11 since x cycles through the values —1 to 1 twice as y cycles through those values once.
(d) = = cos 5t has period 27r/5 and y = sin 2t has period 7, so = will take on the values —1 to 1, and then 1 to —1, before y
takes on the values —1 to 1. Note that when ¢t = 0, (z,y) = (1,0). These equations are matched with graph VI.
(€) x =t +sindt, y = t> + cos3t. Ast becomes large, ¢t and t2 become the dominant terms in the expressions for x and

y, S0 the graph will look like the graph of y = z2, but with oscillations. These equations are matched with graph 1V.

sin 2¢ cos 2t . .
fx= el y=7 e Ast — oo, z and y both approach 0. These equations are matched with graph IlI.
Use y = tand z = ¢ — 2 sin 7t with a ¢-interval of [—7, 7]. ”S
—4 4

1T
Usez; =t,y1 =t> — 4t and o = t3 — 4t, yo = ¢ with a t-interval of 4 y=x—4x
[—3, 3]. There are 9 points of intersection; (0, 0) is fairly obvious. The point x=y —dy
in quadrant | is approximately (2.2, 2.2), and by symmetry, the point in
quadrant 111 is approximately (—2.2, —2.2). The other six points are - 4
approximately (¥1.9, £0.5), (1.7, £1.7), and (0.5, £1.9).

-4

@ z=z14+ (z2 —x1)t,y = y1 + (y2 — y1)t, 0 < ¢t < 1. Clearly the curve passes through P (z1,y1) when ¢t = 0 and

through Pz (x2,y2) whent = 1. For 0 < ¢ < 1, z is strictly between z; and x» and y is strictly between y; and y.. For
every value of ¢, x and y satisfy the relation y — y1 = % (z — x1), which is the equation of the line through
2 — 41

Pl(l'l, y1) and Pz(xz, yz).

Finally, any point (x, y) on that line satisfies y—u _ 73 ; if we call that common value ¢, then the given
Y2 — 1 T2 — X1

parametric equations yield the point (z, y); and any (z, y) on the line between Py (z1,y1) and P»(z2, y2) yields a value of

tin [0, 1]. So the given parametric equations exactly specify the line segment from Py (z1,y1) t0 Pa(z2, y2).

Mz=-2+3—(-2)t=-2+5btandy=7+(—1—-7)t=7—8tfor0 <¢ < 1.
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35.

SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS [ 7

For the side of the triangle from A to B, use (z1,v1) = (1,1) and (z2,y2) = (4,2). 6

Hence, the equations are

z=z1+ (@2 —21)t=14+4—-1)t =1+ 3,
y=yi+@—yp)t=1+2-1)t=1+¢t

Graphing x =1+ 3tand y = 1 + t with 0 < ¢ < 1 gives us the side of the 0 6
triangle from A to B. Similarly, for the side BC' we use © = 4 — 3t and y = 2 + 3t, and for the side AC' we use x = 1

and y = 1 + 4t¢.

The circle 2% + (y — 1)® = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by = = 2 cost,

y =1+ 2sint, 0 <t < 2. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise orientation, we could change the equations to x = 2 cost, y = 1 — 2sint, 0 < ¢ < 2.
(b) To get three times around in the counterclockwise direction, we use the original equations = 2 cost, y = 1 + 2sin ¢ with
the domain expanded to 0 < ¢ < 6.
(c) To start at (0, 3) using the original equations, we must have =1 = 0; that is, 2 cost = 0. Hence, t = Z. So we use
z=2cost,y=1+2sint, § <t < %’r
Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use
r=—2sint,y =1+ 2cost,0 <t <.

(@) Let 2% /a® = sin® t and y* /b* = cos? ¢ to obtain 2 = asint and

4 A
b=8
y = beost with 0 < ¢t < 27 as possible parametric equations for the ellipse bh=4
2702 40202 =1 h=2
z?/a® +y°/b° = 1. b=1
) -8 8
(b) The equations are x = 3sintand y = bcost for b € {1, 2,4, 8}.
(c) As b increases, the ellipse stretches vertically.
. J
-8

Big circle: It’s centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

r =2+ 2cost, y =2+ 2sint, 0<t<2r

Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are
(left) x=1+0.1cost, y =34 0.1sint, 0<t<2mr
and (right) =3+ 0.1cost, y=3+40.1sint, 0<t<2n
Semicircle: It’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are
r =2+ lcost, y =2+ 1lsint, T<t<2mw
To get all four graphs on the same screen with a typical graphing calculator, we need to change the last ¢-interval to[0, 2] in

order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “—" in the y-assignment, giving us

x = 2+ 1cos(0.5t), y =2 — 1sin(0.5¢), 0<t<2r
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8 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

36. If you are using a calculator or computer that can overlay graphs (using multiple ¢-intervals), the following is appropriate.

Left side: x = 1 and y goes from 1.5 to 4, so use

Handle: It starts at (10,4) and ends at (13, 7), so use
z=10+t, y=4+t, 0<t<3
Left wheel: It’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

z =3+ lcost, y =1+ 1sint, %’Tgtg”—”

Right wheel: Similar to the left wheel with center (8, 1), so use

r =8+ lcost, y =1+ 1sint, %”Stgw—”
If you are using a calculator or computer that cannot overlay graphs (using one ¢-interval), the following is appropriate.
We’ll start by picking the ¢-interval [0, 2.5] since it easily matches the ¢-values for the two sides. We now need to find
parametric equations for all graphs with 0 < ¢ < 2.5.
Left side: = 1 and y goes from 1.5 to 4, so use
z=1, y=15+1, 0<t<25
Right side: = = 10 and y goes from 1.5 to 4, so use
z = 10, y=15+t, 0<t<25
Bottom: = goes from 1 to 10 and y = 1.5, so use
z=1+36t, y=15  0<t<25
To get the x-assignment, think of creating a linear function such that when ¢ = 0, x = 1 and when ¢ = 2.5,

x = 10. We can use the point-slope form of a line with (t1,z1) = (0,1) and (¢2, 22) = (2.5, 10).

10-1
25-0

r—1= (t—0) = xz=1+3.6t.

Handle: It starts at (10,4) and ends at (13, 7), so use
x =10+ 1.2t y=4+1.2t, 0<t<25

13 -10
25-0
7T—4
25-0

(t1,21) = (0,10) and (t2,x2) = (2.5,13) givesus z — 10 = (t—0) = x=10+1.2t.

(t1,91) = (0,4) and (t2,y2) = (2.5,7) givesus y — 4 =

(t—0) = y=4+12t
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SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS (I
Left wheel: It’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

sz—l—lcos(?—gt—&—%"), y=1+lsin(§—’gt+%ﬂ), 0<t<25

,_.
3

3w _ 5m
(t1701):(O,%)and(tzﬁz):(%,”’T’*)givesuse—%:ﬁ(t—o) = 0=3 42714,

cj|
00

Nt

Right wheel: Similar to the left wheel with center (8, 1), so use

sz—l—lcos(?—gt—&—%), y=1+lsin(§—’gt+%’r), 0<t<25

M@=t = t=a'3s0y=1>=a" b z=t" = t=2'%s0oy=1t*=2a"%=4z5
We get the entire curve y = 2/2 traversed in a left to Since 2 = t® > 0, we only get the right half of the
right direction. curve y = 2%/3,

y y
.r:t{y:tz x=t6,
y=t* t>0
/'
“T<0
0 X 0 X
©rx=e3= (eft)3 [soe™t = $1/3], Y
x=e
y=e 2t _ (6 t)2 — ($1/3)2 — 1,2/3. y:(72’ <0
If ¢t < 0, then = and y are both larger than 1. If ¢ > 0, then x and y >0 /
. . (L1
are between 0 and 1. Since > 0 and y > 0, the curve never quite 5 -
reaches the origin.

38. (@) x =t,s0y =t 2 = 22 We get the entire curve y = 1/z? traversed in a

left-to-right direction.

y
1 1 .
(b) & = cost,y =sec’t = = —. Since sect > 1, we only get the X =cost,
cos2t  x2 y=sec’t
parts of the curve y = 1/ with y > 1. We get the first quadrant portion of
. 1+
the curve when x > 0, that is, cost > 0, and we get the second quadrant . .
. . 21 Joq
portion of the curve when x < 0, that is, cost < 0. Lot *
©z=c¢'y=e2 = (e") "2 =22 Since ¢’ and e~ ** are both positive, we
x=é,
only get the first quadrant portion of the curve y = 1/z2. y=¢ ¥
0 X
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39.

40.

41

42.

43.

44,

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

The case 5 < 6 <  is illustrated. C' has coordinates (6, r) as in Example 7, Y
and Q has coordinates (r8, r + r cos(m — 0)) = (18, r(1 — cos§)) P rL‘Q
[since cos(m — @) = cos 7 cos a4 sinmsinaw = — cos «], S0 P has ic
0
coordinates (0 — rsin(m — 0),7(1 — cos8)) = (r(f —sin ), r(1 — cos 6))
[since sin(m — a) = sin 7 cos & — cos 7 sin & = sin «r]. Again we have the 0f—rg—] x

parametric equations = = (0 — sin ), y = r(1 — cos ).

The first two diagrams depict the case 7 < 6 < 37’* d < r. As in Example 7, C has coordinates (6, r). Now @ (in the second
diagram) has coordinates (16, r + d cos(6 — w)) = (rf,r — d cos 8), so a typical point P of the trochoid has coordinates
(r0 + dsin(@ — w),r — dcos ). That is, P has coordinates (z,y), where z = r0 — dsinf and y = r — d cos §. When

d = r, these equations agree with those of the cycloid.

y 4
d<r d>r
P
d
o({
-
0 re | X
Itis apparent that z = |OQ)| and y = |QP| = |ST'|. From the diagram, Y
x = |0Q| =acosfandy = |ST| = bsin . Thus, the parametric equations are
S
x = acosf and y = bsin 6. To eliminate 6 we rearrange: sinf = y/b = N b m
0
sin?@ = (y/b)* and cos = z/a = cos® 6 = (z/a)’. Adding the two Qj o x

equations: sin? @ + cos® @ = 1 = 22 /a® + y*/b*. Thus, we have an ellipse.

A has coordinates (a cos 6, asin ). Since OA is perpendicular to AB, AOAB is aright triangle and B has coordinates

(asec,0). It follows that P has coordinates (a sec d, bsin 6). Thus, the parametric equations are = asec, y = bsin 6.

C = (2acot 0, 2a), so the z-coordinate of P is x = 2acot 0. Let B = (0, 2a). -V
2
Then ZOAB isarightangleand ZOBA = 6, s0 |OA| = 2asin 6 and °
A = ((2asinf) cos 0, (2a sin 0) sin 0). Thus, the y-coordinate of P
o X
isy = 2asin® 6. |
(a) Let 0 be the angle of inclination of segment OP. Then |OB| = 2a9. (b) Y
COs
3a
Let C' = (2a,0). Then by use of right triangle O AC' we see that |OA| = 2a cos 6. 2]
Now 1
|OP| = |AB| = |OB| — |OA]| PN X
_ 2 22 —24l x=2a
=2a L—cos@ =2a1 cos 9:2as1n 9:2asin9tan9 7a
cos 0 cos 0 cos 0 3a

So P has coordinates = 2asin @ tan - cos§ = 2asin? @ and y = 2asinf tan g - sin = 2asin® 6 tan 6.
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SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS  [J

45, (a) 4 There are 2 points of intersection:

(—3,0) and approximately (—2.1,1.4).

-4
(b) A collision point occurs when z; = z2 and y1 = y- for the same ¢. So solve the equations:

3sint = —3 4 cost (1)

2cost =1+sint (2)

From (2), sint = 2 cost — 1. Substituting into (1), we get 3(2cost — 1) = —3 +cost = 5cost =0 () =
cost=0 = t=For 37” We check that ¢t = %’r satisfies (1) and (2) but ¢ = 7 does not. So the only collision point

occurs when ¢ = 23X, and this gives the point (—3, 0). [We could check our work by graphing z1 and - together as

11

functions of ¢ and, on another plot, y1 and y2 as functions of ¢. If we do so, we see that the only value of ¢ for which both

pairs of graphs intersect is ¢t = 37”.]

(c) The circle is centered at (3, 1) instead of (—3, 1). There are still 2 intersection points: (3,0) and (2.1, 1.4), but there are

no collision points, since (x) in part (b) becomes 5cost =6 = cost = g > 1.

46. (a) If @ = 30° and vo = 500 m/s, then the equations become = = (500 cos 30°)t = 250 /3t and
y = (500sin30°)¢ — 2(9.8)t> = 250t — 4.9t>. y = 0 when ¢ = 0 (when the gun is fired) and again when
t =20 ~51s. Thena = (2503 ) (22) ~ 22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for y is quadratic in ¢. To find the maximum y-value, we will complete the square:

y=—49(t" = 281) = —49[2 — Ty 4 (32)7] 4 2 = —4.9(¢ — 12)7 4 122 < 122

. . 125 . . . 1252
with equality when ¢ = 37 s, so the maximum height attained is =7~ ~ 3189 m.

14.000 As a (0° < v < 90°) increases up to 45°, the projectile attains a

(b)
greater height and a greater range. As « increases past 45°, the

projectile attains a greater height, but its range decreases.

\ \
a=15° a=30°

(€) z = (vocosa)t = t= .
Vo COS (¢
T g T 2 g
Yy (’UO ané) 59 Yy (UO IIIOé) Vo COS (¢ 2 (1}0 COSQ) ( nOé)x <2’U8 COS2OZ)$

which is the equation of a parabola (quadratic in x).
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12 0 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

47. x =ty = t3 — ct. We use a graphing device to produce the graphs for various values of ¢ with —7 < ¢ < 7. Note that all
the members of the family are symmetric about the z-axis. For ¢ < 0, the graph does not cross itself, but for ¢ = 0 it has a

cusp at (0, 0) and for ¢ > 0 the graph crosses itself at z = ¢, so the loop grows larger as c increases.

3 1

-3 1

48. x = 2ct — 43,y = —ct® + 3t*. We use a graphing device to produce the graphs for various values of ¢ with —7 < ¢ < 7.
Note that all the members of the family are symmetric about the y-axis. When ¢ < 0, the graph resembles that of a polynomial

of even degree, but when ¢ = 0 there is a corner at the origin, and when ¢ > 0, the graph crosses itself at the origin, and has

two cusps below the z-axis. The size of the “swallowtail” increases as ¢ increases.

49. x =t+acost,y =t+ asint,a > 0. From the first figure, we see that
curves roughly follow the line y = «, and they start having loops when a

is between 1.4 and 1.6. The loops increase in size as a increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of a for which there exist parameter values ¢ and « such that ¢ < « and

(t+acost,t+asint) = (u+ acosu,u + asinu).

Y T In the diagram at the left, 7" denotes the point (¢,¢), U the point (u, ),
pl . g and P the point (¢ + acost,t + asint) = (u + acosu,u + asinu).
\a = | JE— R
a ¢ /Y / Since PT = PU = a, the triangle PT'U is isosceles. Therefore its base
T < 1“ e angles, o = ZPTU and 8 = ZPUT are equal. Since o =t — £ and

\ B =2 — 3% —y=3F —y,therelation o = 3 implies that

u+t=3F(1).

ENE]
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SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS [ 13

Since TU = distance((t, ), (u,u)) = v/2(u — )2 = /2 (u — t), we see that P
17U _ !
cosa = 22— = (u t)/ﬂ,souft:\/iacosoz,thatis,
PT a

u—t=+2acos(t— %) (2). Nowcos(t — Z) =sin[F — (t — )] =sin(ZF —t),

S0 we can rewrite (2) asu — t = v/2asin(2E —t) (2'). Subtracting (2") from (1) and T

dividing by 2, we obtain ¢ = 3% — @a sin(3F —t),0or 3 —t = % sin(3F —t) (3). — 20— ) ——
Since a > 0 and ¢ < w, it follows from (2') that sin (2% — ¢) > 0. Thus from (3) we see that ¢ < 2T. [We have

implicitly assumed that 0 < ¢ < 7 by the way we drew our diagram, but we lost no generality by doing so since replacing ¢

by t + 27 merely increases = and y by 27r. The curve’s basic shape repeats every time we change ¢ by 27.] Solving for a in

V3% - 3z

T). Write 2 = 3T —¢. Then a = ~——, where z > 0. Now sinz < z for 2 > 0,50 a > /2.
sm(T—t) sin z

[A3z—>0+, that is, as t — (%)_,aﬁ\/ﬂ.

(3),wegeta =

50. Consider the curves x = sint + sinnt, y = cost + cos nt, where n is a positive integer. For n = 1, we get a circle of
radius 2 centered at the origin. For n > 1, we get a curve lying on or inside that circle that traces out » — 1 loops as ¢
ranges from 0 to 2.
Note: 2?2 4 9* = (sint + sinnt)? + (cost + cosnt)?
=sin?t 4 2sint sinnt + sin® nt + cos? t + 2cost cosnt + cos® nt
= (sin® ¢t 4 cos® t) + (sin® nt 4 cos® nt) + 2(cost cosnt + sint sinnt)
=1+1+2cos(t —nt) =24 2cos((1 —n)t) <4 =22
with equality for n = 1. This shows that each curve lies on or inside the curve for n = 1, which is a circle of radius 2 centered
at the origin.

2 2 2 2

-2 -2 -2 -2

n=1 n=2 n=3 n=5

51. Note that all the Lissajous figures are symmetric about the z-axis. The parameters a and b simply stretch the graph in the

x- and y-directions respectively. For a = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses
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14 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

itself at the origin and there are loops above and below the z-axis. In general, the figures have n — 1 points of intersection,

all of which are on the y-axis, and a total of n closed loops.

2.1 3.1
' ) 1 { Y b _ 2 3
-n=3 <——(a,b)=(§,2) (@, b)=(2,3)
L =2 —(a,0)=(3.,2)
=1 T (ab)=(Q21
—2.1 2.1 —3.1 3.1
. J . J
—2.1 —3.1

52. x = cost,y =sint —sinct. If ¢ =1, theny = 0, and the curve is simply the line segment from (—1,0) to (1,0). The
graphs are shown for ¢ = 2, 3,4 and 5.

-2
It is easy to see that all the curves lie in the rectangle [—1, 1] by [—2, 2]. When c is an integer, z:(t + 27) = z(t) and
y(t + 27) = y(t), so the curve is closed. When c is a positive integer greater than 1, the curve intersects the x-axis ¢ + 1 times
and has ¢ loops (one of which degenerates to a tangency at the origin when c is an odd integer of the form 4k + 1).
As c increases, the curve’s loops become thinner, but stay in the region bounded by the semicircles y = i(l + M)

and the line segments from (—1, —1) to (—1, 1) and from (1, —1) to (1, 1). This is true because

ly| = |sint — sinct| < [sint| + |sinct| < +/1 — 22 4 1. This curve appears to fill the entire region when c is very large, as
shown in the figure for ¢ = 1000.

2.5 ¢ = 1000
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LABORATORY PROJECT ~ RUNNING CIRCLES AROUND CIRCLES LI 15

When ¢ is a fraction, we get a variety of shapes with multiple loops, but always within the same region. For some fractional

values, such as ¢ = 2.359, the curve again appears to fill the region.

=1 o3
2 2 2 4

LABORATORY PROJECT Running Circles Around Circles

1. The center @ of the smaller circle has coordinates ((a — b)cos 8, (a — b)sin 6). 4
Arc PS on circle C has length a0 since it is equal in length to arc AS /o N
(the smaller circle rolls without slipping against the larger.) o~y T
P

Thus, Z PQS = %0 and ZPQT = %9 — 0,50 P has coordinates o @op ~
2= (a—b)cosd + beos(LPQT) = (a — b)cos 6 + bcos(a ; be)
- be) |

2. With b = 1 and « a positive integer greater than 2, we obtain a hypocycloid of a

and  y= (a—0b)sinf — bsin(LPQT) = (a — b)sinf — bsin(a

cusps. Shown in the figure is the graph for a = 4. Let a = 4 and b = 1. Using the

y
sum identities to expand cos 30 and sin 36, we obtain /
J;:3C059+c0539=30089+(4cos39—3cost9):460530 \ a

and  y=3sinf —sin30 = 3sinf — (3sinf — 4sin® 0) = 45sin® 6.

3. The graphs at the right are obtained with b = 1 and
a=3, 3 % and 5 with —27 < 0 < 2. We
conclude that as the denominator d increases, the graph o
gets smaller, but maintains the basic shape shown.
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16 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Lettingd = 2 and n = 3, 5, and 7 with —27 < 0 < 27 gives us the following:

X5k

So if d is held constant and n varies, we get a graph with n. cusps (assuming n/d is in lowest form). Whenn = d + 1, we

obtain a hypocycloid of n cusps. As n increases, we must expand the range of 6 in order to get a closed curve. The following

N2®

y=(a—1)sinf —sin((a — 1))

[
=

=
[=}

graphs have a = £, 2, and

4. 1f b = 1, the equations for the hypocycloid are
z=(a—1)cosf+cos((a—1)0)
which is a hypocycloid of a cusps (from Problem 2). In general, if a > 1, we get a figure with cusps on the “outside ring” and
if a < 1, the cusps are on the “inside ring”. In any case, as the values of 6 get larger, we get a figure that looks more and more

like a washer. 1f we were to graph the hypocycloid for all values of 9, every point on the washer would eventually be arbitrarily

close to a point on the curve.

N

=
o3
O

<>
S

2

s

ly,

X
0
A
5

SN
!
M
ok

==

=

22

=

=
2535

S

49!
KX
s
N

25
=

S

722

=
&

a=e—2, 0<6<446

a=+2 —10r<60<107

5. The center @ of the smaller circle has coordinates ((a + b) cos 6, (a + b) sin6).
Arc PS has length a6 (as in Problem 1), so that Z/PQS = %, /PQR=m— a—:,

y
ab a+b . /
and ZPQT =7 — 5 0=m— b 0 since ZRQT = 6. Qj x

Thus, the coordinates of P are

x= (a+b)cos€+bcos<7r— GTHQ) = (a—l—b)cos@—bcos(azbt?)
and y= (a+b)sin9—bsin<7r - GTH0> = (a—&-b)sin@—bsin(aZbG) .
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6. Let b = 1 and the equations become

x = (a+1)cosf — cos((a+1)0) y = (a+1)sind — sin((a + 1)0)

“a-leafed clover”, with cusps that are a units

from the origin. (Some of the pairs of figures are

If a = 1, we have a cardioid. If a is a positive
integer greater than 1, we get the graph of an /J

N

Dy &
D

not to scale.)
a=3,21<0<2r a=10, 27 <0 <27

If @ = n/d with n = 1, we obtain a figure that
does not increase in size and requires
—dm < 0 < dr to be a closed curve traced

exactly once.

Next, we keep d constant and let n vary. As n
increases, so does the size of the figure. There is

an n-pointed star in the middle.

Now if n = d + 1 we obtain figures similar to the
previous ones, but the size of the figure does not

increase.

If a is irrational, we get washers that increase in

size as a increases.

a=+2,0<6<200 a=e—2,0<0<446
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10.2 Calculus with Parametric Curves

_ dy dx : dy _ dy/dt 2i+1
La=tsint, y=t>+t = —= =2t+1,— =tcost t,and —= = = nt
r =tsint, y + at + 1, g =tcost+sm dr ~ dx/dt ~ tcost+sint

—2t+1 dx 1

Sane @~ g

2 p= %’ y=+iet = % = /2 (—e7t) 4 et (%t71/2) _ %t71/2€7t(_2t+1) _

dy dy/dt  —2t+1 ( t2) (2t — 1)t3/?

dr — dz/dt — 2t172et \ 1 2et
dy dx dy  dy/dt —3¢2
Zx=14+4t—t* y=2-tt=1 — =-3t°, — =4-2t,and — = = .Whent =1
r=1t Y ’ a = G T dejat T 4—2t ’
(z,y) = (4,1) and dy/dx = —3, s0 an equation of the tangent to the curve at the point corresponding to ¢ = 1 is

y—1=-3(@x—-4),ory=—-22+7.

_ dy dx | dy  dy/dt t2 2t°
brx=t—t' y=1+tt=1 = =2 —=14+t72= ,and == = =2t = .
“ y=1+ dt @ 72 dr  dzjdt 211) £+1

Whent =1, (z,y) = (0,2) and dy/dz = 2 = 1, s0 an equation of the tangent to the curve at the point corresponding to

t=1lisy—2=1(zx —0),ory =2z + 2.

. dy ., dx . dy  dy/dt tcost + sint
5 2=1 t, y=tsint, t=m. —/ =1 t t, — = 1t(—sint t,and — = = - .
x =tcost, y=tsin T cost +sint, — (—sint) + cos o = dujdf ~ —tsiniTcost

Whent = 7, (z,y) = (—m,0) and dy/dx = —m/(—1) = m, so an equation of the tangent to the curve at the point

corresponding to t = 7 isy — 0 = 7z — (—)], or y = mx + 72

6. x =sin®0, y = cos® 0, 6 = /6. % = 3cos® § (—sin#), % = 3sin” 6 cos 6, and

dy _ dy/do _ —3cos® 6 sin 6
dx ~ dx/d)  3sin?6 cosh

= —cotd. When 6 = /6, (z,y) = (%, 2v3) and dy/dz = — cot(n/6) = —/3,

s0 an equation of the tangent line to the curve at the point corresponding to § = 7 /6 isy — 2v/3 = —/3(z — 1),

ory = —\/gx—&-%\/g.

dy de 1 dy  dy/dt 2t 5

7. =1+1Int, y=t>+2; (1,3). =2 =2, — == - = = =22 At(1

@@=1+Int, y=1"+2 (1,3). Zr =2 7 =g,and 2 dejdt 1/t (1,3),
dy

r=14Int=1 = Int=0 = t=1and = 2, 50 an equation of the tangentisy — 3 = 2(x — 1),

dx

ory =2x+1.
r=1+Int = Int=x-— = t=¢e" ,80y=t"+2=(" ") +2=e""""+2,andy =" -2
b 1 1 1 1 x—1 2 2 r—1\2 2 2x—2 2 d / 2r—2 2

At (1,3),y = e2~2.2 = 2, 50 an equation of the tangentis y — 3 = 2(z — 1), or y = 2z + 1.

2
dy dy/dt 2te’ 3/2 42
= — = =4 LAt (2
and —= d/d = T/ 2 32" At (2,e),

dy 2 dx 1
. =1 = ¢ 2 . —_— = t U — = —
8. (@) +VE y=¢e"; ( ,€) 7t e t, 7 Wi

z=1+/1=2 = Vi=1 = t:land%:4e,soanequationofthetangentiSy—e:4e(x—2),
ory = 4ex — Te.
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2
The curve is CU when % > 0, thatis,whent < Oort > 1.
X
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Dzr=1+vVt = Vi=z—-1 = t= (a:—l)z,so‘y:e’52 :e(”71)4,andy' = e=—V* 4z —1)3
At (2,e),y = e-4 = 4e, so0 an equation of the tangent is y — e = de(z — 2), or y = dex — Te.
.z =6sint, y =12+t (0,0). 20
dy dy/dt 2t+1 . B
do ~ dujdl ~ Goost’ The point (0, 0) corresponds to ¢ = 0, so the
slope of the tangent at that point is +. An equation of the tangent is therefore
(0,0)
ny:é(:EfO),ory:%x. —107 ) 10
-2
x =cost+cos2t, y=sint+sin2¢; (—1,1). 3
dy dy/dt cost + 2 cos 2t ) . T
—= = = . To find the value of rr ndin —1,1
4o~ dojdl - —smi—2sm2l o find the value of ¢ corresponding to L1 I
the point (—1,1),solvez = —1 = cost+cos2t=—-1 = - Jz
cost+2cos’t —1=—1 = cost (1+2cost)=0 = cost=0o0r
-2
cost = —%. The interval [0, 27| gives the complete curve, so we need only find
the values of ¢ in this interval. Thus, ¢ = % or t = 2% or ¢t = 4F. Checking ¢t = Z, 3%, 2%, and 2T in the equation for y,
we find that ¢ = 7 corresponds to (—1,1). The slope of the tangent at (—1,1) witht = % is f) _720 = 2. An equation
of the tangent is therefore y — 1 = 2(x + 1), or y = 2z + 3.
4 (dy
dy dy/dt 2t+1 1 d*y  dt\dz —1/(2t%) 1
=t*+1, y=t2+t = == = =1l+= = —== = =
r=trly=t+ de  dwjdt | 2t Ty de? T " da/dt 2 443
. d*y .
The curve is CU when 2 > 0, that is, when ¢ < 0.
dy dy/dt 2t—1 2 1
=41, y=1t>—t = = = - L -
r=t+Ly T 4w dejdt 32 3t 32
) d (@) 2 2 2-% )
d°y  dt\dx 32 33 343 2(1—1) . d*y .
— = = = = . The curve is CU when —= > 0, that is, when 0 < ¢ < 1.
a2~ " dw/di 372 302 015 d? = st<
. dy dy/dt  —te'+et e '(1—1t) _
t t 2t
g = —_— = g = = 1 —
z=¢€" y=te = o d /i = = e '1-1t) =
i)
Py dt\dx e (1) + (1 —t)(—2e2) e ?(—1—2+2t) a0 :
— = = = = e~ °*(2t — 3). The curve is CU when
dz? dx/dt et et e 3) urvet W
dzy h H h 3
ﬁ > 0, that is, when ¢ > 5
d (dy 2te’ —e' -2
¢ 2, B\ do EENTTvEE tf— it —
ety o My ¢ Py @\&) TP no1) i)
de  dx/dt 2t dx? dx/dt 2t (2t)3 4¢3
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r = 2sint, y =3cost, 0 <t < 2m.
d(dy
dy dy/dt —3sint 3 Py dt\dz —3sec’t 3 .
— = = = ——tant, S0 — = = = —— t.
dr  dx/dt 2cost g n dx? dz/dt 2cost 15
Thecurveis CUwhensec®t <0 = sect <0 = cost<0 = 3 <t<32
r=-cos2t, y=-cost, 0<t<m.
i)
. . 1
dy _ dy/dt _ —s%nt _ sllnt _ 1 lsect, 0 &Y d2y _ dt \ dzx _ Zse.ct tant isec:)’t.
dex  dx/dt  —2sin2t  2-2sint cost 4cost 4 dx? dx/dt —4sint cost 16
Thecurveis CUwhensec®t <0 = sect <0 = cost<0 = Z<t<m.
dy dy 2
=123t y=1t>-3. =2t,50 — =0 t=0
v Y dt dt < <
d
(@y) =(0,-3). E 32 _3-3¢4+1)¢t-1,0% -0 o
t dt -3 3
t=—lorl & (z,y)=(2,—2)or (=2, —2). The curve has a horizontal 22 272
tangent at (0, —3) and vertical tangents at (2, —2) and (—2, —2). \ 0. -3 /
=0
—4

d dy

_ 43 3 _q2 Y g2 o _ &y _

=t =3t y=1t"=3° —-=31"—6t 3t(t 2)’S°dt 0 =
t=00r2 < (x,y)=(0,0)o0r(2,—4). d—f:3t2—3:3(t+1)(t—1),
soj—fzo & t=-lorl & (x,y) = (2,—4)or(—2,—2). The curve

has horizontal tangents at (0,0) and (2, —4), and vertical tangents at (2, —4)
and (—2, —2).

x = cosf, y = cos36. The whole curve is traced out for 0 < 6 < 7. 2
dy (-3.1) )
i = —3sin 36, so dG_O & sin30=0 & 30=0,m2m, 0r37 < 0=2m/3 0=0
0=0%F o & (xy =(1),(5-1), (-3, 1), 0r(=1,-1). /
-2 2

@:—sine,soﬁzo & sinf=0 & f=00rnm < /
0 0 |

dy -1,-1) (3:-1)
(x,y) = (1,1) or (=1, —1). Both deand 22 equal 0 when @ = 0 and . O=m o=m/3

)
To find the slope when 6 = 0, we find lim dy _ " S 30 1 m 2008 30 _ 9, which is the same slope when 6 = .
6—0dr 6—0 —sin0 6—0 —cosf

Thus, the curve has horizontal tangents at (3, —1) and (—3, 1), and there are no vertical tangents.
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20. z = ¢8™% 4 = ¢°°3% The whole curve is traced out for 0 < 6 < 2.

%:fsmeem",so%ze & sinf=0 < 6=00r7 <

_ dx _ sin 6 d_l‘i _
(z,y) = (1,e)or(1,1/e). de—cos@e , SO d9_0 & cosf=0 <

§=Zor3 & (x,y)= (e 1)or(1/e 1). The curve has horizontal tangents

at (1,e) and (1, 1/e), and vertical tangents at (e, 1) and (1/e, 1).

21. From the graph, it appears that the rightmost point on the curve z =t — 5, y = e!
is about (0.6, 2). To find the exact coordinates, we find the value of ¢ for which the
graph has a vertical tangent, that is, 0 = da/dt =1 — 6t> < t=1//6.

Hence, the rightmost point is

(1798 -1/ (6 78) e/ ¥%) = (5-67°/°,¢" ") ~ (0.58,2.01),

22. From the graph, it appears that the lowest point and the leftmost point on the curve
r=t*—2t,y=t+t*are (1.5,—0.5) and (—1.2,1.2), respectively. To find the
exact coordinates, we solve dy/dt = 0 (horizontal tangents) and dx/dt = 0

(vertical tangents).

d 1 L
Yoo o 144 =0 & t = ———=, so the lowest point is

dt i

1 2 1 1 9 3
NI S - - ~ (1.42,—0.47).
( V256 Y4 V4 /256 ) ( /256 \3/256) ( )

E:O S 4P -2=0 & t:ai,sotheleftmostpointis

dt 3

1 2 1 1 3 3
_2 1., — (=2 2~ (—1.19,1.19).
(v~ 759 75) = (7 738) = )

23. We graph the curve o = t* — 2¢® — 2t%, y = t> — t in the viewing rectangle [—2, 1.1] by [—0.5,0.5]. This rectangle

corresponds approximately to ¢ € [—1,0.8].

7.5

-2 11

-1

13

We estimate that the curve has horizontal tangents at about (—1, —0.4) and (—0.17,0.39) and vertical tangents at

dy dy/dt 3t2 —1
—0.19,0.37). We calculate == = =
about (0, 0) and (—0.19, 0.37). We calculate do ~ dejdl -~ 1P 67 —4

: The horizontal tangents occur when

21

dy/dt =3t>-1=0 < t= i%, so both horizontal tangents are shown in our graph. The vertical tangents occur when
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de/dt =2t(2t° =3t —2) =0 < 2t(2t+1)(t—2)=0 < t=0,—3 or2. Itseems that we have missed one vertical

tangent, and indeed if we plot the curve on the ¢-interval [—1.2, 2.2] we see that there is another vertical tangent at (—8, 6).

We graph the curve = t* + 4¢* — 8t%, y = 2t> — ¢ in the viewing rectangle [—3.7,0.2] by [-0.2, 1.4]. It appears that there
is a horizontal tangent at about (—0.4, —0.1), and vertical tangents at about (—3, 1) and (0, 0).

1.4 55

-3 {02 /

—130 130
-0.2 0

dy  dy/dt 4t —1 . . "
We calculate == = = , SO there is a horizontal tangent where dy/dt =4t —1=0 < t= =.
dr _ dojdi 47+ 1202 — 161 9 v/ a

This point (the lowest point) is shown in the first graph. There are vertical tangents where dx/dt = 4t> +12t> — 16t =0 &
4t(t> +3t—4) =0 < 4t(t +4)(t — 1) = 0. We have missed one vertical tangent corresponding to ¢ = —4, and if we

plot the graph for ¢ € [—5, 3], we see that the curve has another vertical tangent line at approximately (—128, 36).

y

x =cost,y =sintcost. dx/dt= —sint, dy/dt = —sin®t + cos>t = cos 2t.

(z,y) =(0,0) & cost=0 < tisanodd multipleof Z. Whent = Z,

dz/dt = —1and dy/dt = —1,s0 dy/dz = 1. When ¢ = 2%, dz/dt = 1 and

dy/dt = —1. So dy/dx = —1. Thus, y = z and y = —xz are both tangent to the

curve at (0,0).

w

From the graph, we discover that the graph of the curve = = cost + 2 cos 2t,

y = sint + 2sin 2¢ crosses itself at the point (—2,0). To find ¢ at (-2, 0),

4 solvey =0 < sint+2sin2t=0 < sint+4sintcost=0 <

sint (1+4cost) =0 < sint=0o0rcost = —%. We find that

\

-3 t = Farccos(—7) corresponds to (—2,0).
dy dy/dt cost + 4 cos 2t cost + 8cos® t — 4 1 1. V15
Now —= = = =— . Whent = —3 t=—3 t=——
dx  dx/dt —sint—4sin2¢ sint + 8sint cost arccos(~ ), cos S 4’
dy _ —it+s—4_ - _ _ : dy _
and o i Vi e ; —V/15. By symmetry, t = — arccos(—%) = 2 = V5
2 4

The tangent linesare y — 0 = £v/15 (z + 2), ory = V15 + 215 and y = —/15z — 2/15.
x =10 —dsinf, y=r — dcosb.

dr dy . dy _ dsinf
@) 0 =" dcosb, 20 = dsin6, so T = T —deosd

() If0O<d <7 then|dcosf| <d < r,sor —dcosf > r —d > 0. This shows that dz/df never vanishes,

so the trochoid can have no vertical tangent if d < 7.
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SECTION 10.2  CALCULUS WITH PARAMETRIC CURVES [ 23

28. x = acos’ 0, y = asin® 0.

(@) (cil_z = —3acos® fsin b, Z:Z = 3asin®f cos 6, s0 ji{ 7% = —tané.

(b) The tangent is horizontal < dy/dz =0 < tanf=0 < O=nnm < (z,y)= (+a,0).

The tangent is vertical < cosf =0 < 6@isanoddmultipleof 7 < (z,y) = (0,%a).
() dy/dz==+1 < tanf==+1 < Oisanoddmultipleof L < (z,y) = (:I:‘/_a i‘/_ )
[All sign choices are valid.]

dy dy/dt 4-—2t dy 4 —2t
2. x =2t%, y=1+4t — t* -2 = = . Now solve == =1 — =1
N y=i T AT dejdt T o8 @~ T e <

60°+2t—4=0 & 2(3t—2)(t+1)=0 & t=32ort=—11ft =2 thepointis (3%,2) andift = —1,
the point is (—2, —4).

dx dy dy 6t>
30. 2=3t24+1,y=2t>+ 1, — = 6t, —= = 62,5 =
x Ty L% a % T 6

So at the point corresponding to parameter value ¢, an equation of the tangent line is y — (2t + 1) = t[z — (3> + 1)].

=1t [evenwheret = 0].

If this line is to pass through (4, 3), we must have 3 — (2t3 +1) =t[4 — (3t* +1)] & 2°—2=3t>-3t <«
—3t+2=0 & (t—13(t+2)=0 < t=1o0r—2. Hence, the desired equationsare y — 3 = = — 4, or
y =z — 1, tangent to the curve at (4, 3), and y — (—15) = —2(z — 13), or y = —2z + 11, tangent to the curve at (13, —15).
31. By symmetry of the ellipse about the z- and y-axes,
A=4[lyde=4[° bsin0(—asin0)d = 4dab [;/*sin>0d0 = 4ab [;7/* 1(1 — cos 20) b
= 2ab[9 - % sin 29]3/2 = 2ab(%) = mab
32. Thecurve x = t* — 2t = t(t — 2), y = /1 intersects the y-axis when = = 0, 7

that is, when ¢ = 0 and ¢ = 2. The corresponding values of  are 0 and v/2. =2

The shaded area is given by

/:ﬁ(m —ap)dy = /t: [0 —=2(®)]y' () dt = — /:“2 - (2%/5 dt) * =

4 0 x
_ 02 <%t3/2 _ 231/2) dt = — [%ts/z _ %ts/z}z
=-( 2 -3 27) =22 -y
=—v2 (7%) = 15 V2
33. Thecurvez = 14 €t, y =t — t2 = t(1 — t) intersects the z-axis when y = 0, Y 1
that is, when ¢t = 0 and ¢ = 1. The corresponding values of x are 2 and 1 + e. ‘ z=0\m<
o x

The shaded area is given by 1
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/I:He(yT —yp)da = /t:1 () — 012 (8) dt = [A(t — )" dt

=2 t=0
= [y tetdt— [} et dt = [} te'dt — [t%¢"], +2 [, te'dt  [Formula 97 or parts]
=3[ te'dt —(e—0)=3[(t—1)e'],—e  [Formula 96 or parts]

=3[0—-(-1)]—e=3—¢

34. By symmetry, A =4 [y dz = 4f:/2 asin® 0(—3a cos® 0 sin ) df = 124> foﬂ/z sin? 0 cos® 6 df. Now

[sin® 0 cos® 0df = [ sin® (% sin®260) do = % [(1 — cos 20) sin® 20 df
=2 [ [3(1 —cos46) —sin® 20 cos20] df = £0 — & sin40 — L sin®20 + C

S0 foﬂ/Z sin? 0 cos®> 0 dh = [%69 64 sin46 — ;¢ sin 20]77/2 35- Thus, A = 124> (;—2) = %71’0,2.

35. x =rf —dsinf, y =r — dcos®.
fzw = 0 "(r — dcos0)(r —dcosf)df = 5”(7"2 — 2dr cos 0 4 d* cos® ) df
= [7"20 — 2drsin 6 + %dz (9 + % sin 20)]37T = 2772 + wd?
36. (a) By symmetry, the area of R is twice the area inside % above the z-axis. The top half of the loop is described by
x =12 y=1t>—3t —v/3 <t <0,s0, using the Substitution Rule with y = t* — 3t and da = 2¢ dt, we find that

area=2 [P yde =2 [,V (5 — 30)2edt = 2 [ VP (26F — 66%) dt = 2[ 247 — 23] V°

zg[g(_:}l/z)s 2(—31/2)3 ] 2[2(-9v3) —2(-3v3)] =23
(b) Here we use the formula for disks and use the Substitution Rule as in part (a):

volume = 7rf03 y*dr = ﬂfof‘/g(t‘g — 3t)%2tdt = 27 fof\/g(t6 — 6t + 9t tdt = 2w [5¢° — 0 + %tﬂ;ﬁ

= am[4(=8"/2)° = (=3Y/2)° + §(=3Y/2)"| = 2m[% — 27+ 5] = Fr
(c) By symmetry, the y-coordinate of the centroid is 0. To find the z-coordinate, we note that it is the same as the z-coordinate

of the centroid of the top half of %, the area of which is - 221/3 = 12./3. So, using Formula 8.3.8 with A = 21/3,

we get

T=157Jowyde =525 [ (1 — 3t)2tdt = 2= (17— 26°)
= [ -8y - 43y } o[- EVE+ 23] -
So the coordinates of the centroid of % are (z,y) = (gy o),

ax=t+ey=t—et, 0<t<2 dx/dt=1—c tanddy/dt =1+¢ " s0

(dz/dt)® + (dy/dt)* = (1 —e )2+ (1+e )2 =1—-2et+e 2 142 +e 2 =242 %,

Thus, L = [ \/(dz/dt)? + (dy/dt)? dt = [> /2 + 2~ dt ~ 3.1416.
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r=1t"—t, y=1t" 1<t <4 dx/dt =2t—1anddy/dt = 43, so

(dz/dt)* + (dy/dt)*> = (2t — 1) + (4t%)® = 4¢> — 4t + 1 + 16t°.

Thus, L = [* \/(dx/dt)® + (dy/di)? dt = [;' /1615 + 42 — 4¢ + 1 dt ~ 255.3756.

x=1—2sint, y=1—2cost, 0 <t <4m. dz/dt =1—2costanddy/dt = 2sint, SO
(dx/dt)? 4 (dy/dt)® = (1 — 2cost)® + (2sint)®> = 1 — 4cost + 4cos® t + 4sin®t = 5 — 4 cost.

Thus, L = [ \/(dz/dt)? + (dy/dt)? dt = [™ /5 — dcostdt ~ 26.7298.

dz 1 1
r=t+Vt,y=1t—+t, 0 <t <1. —f1+—and —1——,50
Vit y Vit 0<t< 7 i i

@2+ dy )" _ 1+—2+ 1- 2— TR S DU T .

dt at ) 2.1 2\[ f 4t N T 2t

Thus, L = /\/dm/dt (dy/dt)? dt = /,/2+Edt lim ./2+—dtN20915
t—0+t

r=1+3t% y=4+2t% 0<t<1. da/dt =6tand dy/dt = 6%, so (dz/dt)* + (dy/dt)* = 36t + 36t*

1 1 2
Thus, L:/ \/36t2+36t4dt:/ 6t 1+t2dt:6/ Vu (3du)  [u=1+1t du=2tdt]
0 1

=32 3/2} —2(2%2 —1) =2(2V2 - 1)

r=e +e 't y=5-2t, 0<t<3. dzx/dt =e" —e "anddy/dt = -2, s0
(dz/dt)® + (dy/dt)? = e* —24+ e 2 4= 42+ 2 = (e' + e 1)

Thus, L = fog(et +e)dt=[e" — eit]z = e -(1-1)=¢e*—e3
. dx . dy .
r =tsint, y=tcost, 0 <t < 1. p :tcost—i—smtanda = —tsint 4+ cost, SO

de\*  (dy\
(d_f) + (d_zt/) =t2cos?t + 2tsint cost + sin? t + t? sin® t — 2¢sint cost + cos® t

=t*(cos® t +sin®t) +sin®t 4+ cos® t = t* + 1.

Thus, L= [ V¥ 1dt 2 (LB 1+ (¢ +vET1)], = 2v2+ LIn(1+ V2).

r =3cost —cos3t, y=3sint —sindt, 0 <t < 7. (fi—f :—3sint+3sin3tand% —= 3cost — 3 cos 3t, SO

2 2
(%) + (%) =9sin’t — 18sint sin 3¢ + 9sin?(3t) + 9cos® t — 18 cost cos 3t + 9 cos?(3t)

= 9(cos® t +sin®t) — 18(cost cos 3t + sint sin 3t) + 9[cos?(3t) + sin?(3t)]
=9(1) — 18 cos(t — 3t) +9(1) = 18 — 18 cos(—2t) = 18(1 — cos 2t)

= 18[1 — (1 — 2sin®t)] = 36sin> .

Thus, L = [, V36sin® tdt =6 [ [sint|dt =6 [ sintdt = —6[cost]] = —6(—1—1) =12,
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45, 8 x=e'cost, y=ce'sint, 0 <t <.

(%)2 + (%)2 = [e’(cost — sint)]? + [e’(sint + cost)]?

= (e")?(cos®t — 2cost sint + sin® t)

+ (e")?(sin?t + 2sint cost + cos? ¢

=25 2.5
0 = e*"(2cos? t + 2sin’t) = 2¢*
Thus, L = foﬂ V2e2t dt = foﬁ V2etdt =2 [et]g = \/5(6” —1).

46. v = cost + In(tan 3t), y=sint, /4 <t <3w/4.

dx L sec?(t/2) 1 1 dy
= — _gint4+ 2" "7 _ _gint = —sint+ — and —% = t, so
a T T2 St o Sn(/2) cos(i/2) ot G M T O

@ 2+ @ 2:sin215—2—|— ! +cos?t=1—2+csc?t = cot? . Thus
dt dt sin? ¢ ' ‘

L= [*T*cott| dt =2 [™/? cottdt

/4 /4 1.2

/ .
=2 [ln |sin ¢| ] "/ =92(Inl—=1In 1 (=—0.174,42/2 (=0.174,42)2)
/4 \/5 t:% t=3l

4
=2(0+Inv2) =2(3In2) =In2.

0

47. 14 The figure shows the curve © = sint + sin 1.5¢, y = cost for 0 < ¢ < 4.

dx/dt = cost + 1.5 cos 1.5t and dy/dt = — sin t, SO

-2.1 21 (dx/dt)* + (dy/dt)* = cos® t + 3cost cos 1.5t + 2.25 cos® 1.5t + sin® .

Thus, L = f;ﬂ V1 + 3cost cos 1.5t + 2.25cos? 1.5t dt ~ 16.7102.

-1.4
48. v =3t — 3, y = 31>, dx/dt =3 — 3t* and dy/dt = 6t, SO
N2 2 0,9) t==+3
(L) + (L) = (3-3t%)%+ (6t)2 = (3 + 3t%)*
and the length of the loop is given by
L= ("3 (3+3t)dt =2 [%(3+36%)dt = 2[3¢ + t*]y°
=2(3V3+3V3) =123

..A

e

o2
=

49 x =t—el, y=t+e', -6 <t <6.
(Lo)? 4 ()’ = (1— "2+ (14¢')? = (1 — 2" + ) + (1 + 2¢' + ¢*) =2+ 2e¥ 50 L = [°, V2 F 2% dt.
Set f(t) = v/2 + 2¢¢. Then by Simpson’s Rule with n = 6 and At = =% = 2, we get

L~ 2[f(—6) + 4f (—4) + 2/(=2) + 4F(0) + 2f(2) + 47(4) + £(6)] ~ 612.3053.
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50. x = 2acotf = dx/dt=—2acsc’fandy =2asin’0 = dy/dt=4asind cosf = 2asin 26.

So L = [™/7\/4a? csc 0 + 4a2 sin® 20 df = 2a [/ \/csct 6 + sin® 20 df. Using Simpson’s Rule with

/4 /4

n=4,A0 = T2 — & and f(0) = \/csct 6 + sin® 20, we get

L~2a-Si=(2a) 35 [f(5)+4f(35) +2f(3) +4f(5) + f(5)] = 2.2605a.

51. 2 = sin?t, Yy = cos?t, 0 <t < 3m.

(dz/dt)* + (dy/dt)* = (2sint cost)® + (—2costsint)? = 8sin®tcos® t = 2sin 2t =

/2:73\/5(7171):6\/5.

The full curve is traversed as ¢ goes from 0 to 7, because the curve is the segment of = + y = 1 that lies in the first quadrant

Distance = [ /2[sin2¢| dt = 6+v/2 [[/*sin2t dt [by symmetry] = —3+/2 [Cos 2t]

™
0

/2

o/%sin 2t dt = /2, as above.

(since z, y > 0), and this segment is completely traversed as ¢ goes from 0 to 3. Thus, L =

52. x = cos>t,y = cost, 0 <t < 4. (Cfl—f)Q + (d—f)z = (—2costsint)? + (—sint)? = sin®¢ (4cos® t + 1)

Distance = f04" |sint| v4cos?t +1dt =4 [ sint/4cos®t + 1dt
=4 fl_l Vau2 +1du [u=cost,du= —sintdt] = 4fi1 Vau? + 1du

-1
:8f01 \/4u2+1du:8f0ta" ZSGCG'%SGCZQdQ [2u:tan0,2du:sec26’d0]

tan™ 1
0

2:4\/5+21n(\/5+2)

= 4f0t‘milzsec3 0do 2 [2 secOtan® + 21n|secd + tan0|}

ThUS,szO7r \sint\\/4cos2t+1dt:\/g—l—%ln(\/g—l— 2).
53. x = asinf, y = bcosf, 0 < 0 < 2.

(%)2 + (d—y)z = (acos0)® + (—bsinh)? = a® cos® O + b sin® § = a*(1 — sin® ) + b* sin” 0

t

2
=a®— (a®> = V?) sin? 0 = a® — ?sin? 0 = o® (1 - 0—2 sin? 9) =a®(1—e?sin? )
a
So L = 4f07r/2 a? (1 — e2gin? (9) df  [by symmetry] = 4a fOW/Z V1 — e2sin? 0 db.

54, x = acos® 6, y = asin® 4.

y
(%)2 + (%)2 = (—=3acos® 0 sinh)? + (3asin? @ cos h)? ‘h
= 9a? cos* 0 sin® 0 + 9a? sin* 0 cos® 0 Wr a X

= 9a®sin® 0 cos? O(cos? 0 + sin? ) = 9a® sin® § cos® 6.
The graph has four-fold symmetry and the curve in the first quadrant corresponds
to 0 <6 < /2. Thus,

L=14 f0”/2 3asinf cos 6 db [since a > 0 and sin 6 and cos 6 are positive for 0 < 6 < /2]

/2

=12a[§sin® 0] = 12a(3 — 0) = 6a
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55. (@) @ = 11cost — 4cos(11t/2), y = 11sint — 4sin(11¢/2). 15
Notice that 0 < ¢ < 27 does not give the complete curve because

x(0) # x(27). In fact, we must take ¢ € [0, 4] in order to obtain the

complete curve, since the first term in each of the parametric equations has

period 27 and the second has period j’/’z = 4z and the least common

integer multiple of these two numbers is 4.

(b) We use the CAS to find the derivatives dz/dt and dy/dt, and then use Theorem 6 to find the arc length. Recent versions

of Maple express the integral [;\™ \/(dz/dt)? + (dy/dt)? dt as 88E(2+/21), where E(x) is the elliptic integral

A1 — 1242
/ Sl ————— dt and 7 is the imaginary number /—

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command
evalf(Int(sqrt(diff(x,t) 2+diff(y,t)"2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to llf \/ 4cost cos(Tt) 4sint Sln(lT) + 5dt.

56. (a) Itappears thatas ¢t — oo, (z,y) — (3,%),andast — —oo, (z,y) — (—1,—3) 1
{ A
(b) By the Fundamental Theorem of Calculus, dz/dt = cos(5¢*) and @
dy/dt = sin(Zt*), so by Formula 4, the length of the curve from the origin o

1
to the point with parameter value ¢ is @
L= fy\J(&) + () du = [y \Joos* (3u2) +sin?(Fu?) du L )

= [ildu=t [or —tift<0]

We have used u as the dummy variable so as not to confuse it with the upper limit of integration.

57. x =tsint, y =tcost, 0 <t <m/2. dx/dt =tcost+sintand dy/dt = —tsint + cost, SO

(d/dt)? 4 (dy/dt)? = t* cos® t + 2tsint cost 4 sin®t + t*sin® t — 2t sint cost + cos ¢

= t*(cos® t +sin®t) +sin®t + cos®t = t* + 1

S = [2myds = [[/? 2rt cos t+/T% + 1 dt ~ 4.7394.
58. ¢ =sint, y =sin2t, 0 <t < 7w/2. da/dt = costand dy/dt = 2cos2t,s0 (dx/dt)? + (dy/dt)* = cos® t + 4 cos® 2t.

S = [2ryds = fo"/Z 27 sin 2t+/cos? t + 4 cos? 2t dt ~ 8.0285.
59. z = 1 + tet, y—( +1)et, 0<t <1,

() + (%) = (e + )2 + [(22 + D)e’ + ' (20 = [e" (¢ + 1)) + [ (¢ + 2t + 1)]2

=+ 1)+t + D) =2t + 1)1+ (t+1)%], so

S = [2myds = [} 2m(t* + 1)e' \/e2(t + 1)2(12 + 2t + 2) dt = [ 2m(t* + 1)e® (t + 1) V2 + 2t + 2dt ~ 103.5999.
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60 c =t —¢t3, y=t+t* 0<t<1.

(dx/dt)* + (dy/dt)* = (2t — 3t%)% + (1 + 4%)? = 4¢* — 126> + 9t* + 1 + 8% + 16t5, s0

S = [2ryds = fol 2m(t + t*)V/16t6 + 9t4 — 413 + 412 + 1 dt ~ 12.7176.
6Lz =13 y=1% 0<t<1 (L4 (%) =362+ (20) = 9t* + 4%,
1 1 1
S = / 2myy/ (L) + (L) dt = / 2t /9t + 412 dt = 27r/ 2/ (92 + 4) dt
0 0 0

13
_ u—4 1 uw=9t244,1t> = (u—4)/9, - 3/2 1/2
= QWA ( 9 ) \/a(ﬁ du) [du: 18t dt,sot dt = {5 du 9 18 ( — 4w du

13
x 2,52 _8,3/2]" _
81 [5“ 3 L =

@Jx

& [3u7/? — 20u*2] ”
4

= 25 [(3-132VI3 - 20 13V/13) — (332 — 20 8)] = 25 (247 V13 + 64)

62.x=3t—1% y=31% 0<t < 1. (%)2 + (%)2 = (3 —3t%)% + (61)% = 9(1 + 2% + t*) = [3(1 + t?)]°.

S:fol om - 3t2 - 3(1 4 1) dt = 187l'f01(t2+t4)dt= 187?[%753—&-%155](1) _ %77

63. 2 = acos®f, y =asin®0, 0 <0 < Z. (‘;—5)2 + (Z—Z)Q = (—3acos® 0 sin0)? + (3asin® 0 cos#)* = 9a” sin” § cos? 6.

S:fﬁ/227r asin® 6 - 3asin 6 cos9d0—67ra2fﬁ/ sin® @ cosfdf = $ra ?[sin® 6]"/2 Sra®

64. (d—g)Q + (%)2 = (—2sin 6 + 2sin 20)? + (2 cos § — 2 cos 20)*
= 4[(sin? @ — 2sin 0 sin 20 + sin® 20) + (cos® § — 2 cos @ cos 20 + cos® 26)]

=4[14+1—2(cos26 cos + sin20sinh)] = 8[1 — cos(260 — )] = 8(1 — cos )

We plot the graph with parameter interval [0, 27], and see that we should only 3
integrate between 0 and 7. (If the interval [0, 27] were taken, the surface of
revolution would be generated twice.) Also note that
-35 25
y =2sinf —sin 20 = 2sin (1 — cos #). So
S= [y 2m-2sinf(1 — cosf)2v2y/1— cosfdf
T . 2 =1- 0, —
=827 [T (1 —cos0)*?sin0df = 8v/2r [ Vud du {dz _ Sin;;; } 3

:8\/§7r[(%) 5/2} _ 16\/_7r(25/2) =

65. 2 = 3%, y =25 0<t<5 = (L) 4 (L) = (61)° + (6t°)° = 36£>(1 +1%) =

dt

S = [J2mx\/(dx/dl)2 + (dy/d)2 dt = [ 2m(3t%)6t I+ 12 dt = 187 [} t*V/1 + 2 2t dt

26

du = 2t dt

— 2
= 187rf126 (u—1)y/udu [u Sl ’} = 187rf126(u‘"’/2 —u'?) du = 1877[%u5/2 — %ug/z]
1

= 187[(2676 VIS~ 3 -26V38) — (2 - 2)] = 2 (049 V36 + 1)
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66. 2 — e —t,y=4e/%0<t <1 (L) 4 () = (¢f — 1) + (261/%)2 = ¥ 4 2" +1 = (¢ + 1)%.

dt

zfol 2m(e’ —t)y/(et — 1)2 + (2et/2)2 dt = f 2m(e’ —t)(e' + 1)d
=2r[ie* +e — (t—1)e" — %tZ](l) =m(e* +2e —6)

67. If £’ is continuous and f'(¢) # 0 for a < ¢ < b, then either f'(¢) > 0 for all ¢ in [a, b] or f'(¢t) < 0 forall ¢ in [a, b]. Thus, f
is monotonic (in fact, strictly increasing or strictly decreasing) on [a, b]. It follows that f has an inverse. Set I’ = go f~!,
that is, define F' by F(z) = g(f~*(z)). Thenz = f(t) = [ '(x)=t,s0y=g(t) =g(f ' (z)) = F(z).

68. By Formula 8.2.5 withy = F(z), S = f 2nF(x)\/1+ [F'(x)]? dx. But by Formula 10.2.1,

, dy\* dy/dt\*  (dz/dt)? + (dy/dt)?
LHF @) =1+ (dm) = (dm/dt) =TT (dwate

where a = z(a) and b = z(3), we have [since dx = le—gtc dt]

Using the Substitution Rule with x = x(t),

da/dt)? + (dy/dt)? / dy\* L
= 27 F — dt = 2 —= hich is F la 10.2.6.
S /a 7 F(x( t))\/ (o /dt)? d Y + 7 dt, which is Formula 10.2.6
1 dy dp d 1 (dy 1 d (dy dy dy/dt g
— 1 - - = 1 - _ 00000 | — = -2 — — Z
6. (@) ¢ = tan <dm> RO (dm 1T (dy/do)y |di\de )| B @/~ 7
d(dy\ _d(39\ _ ji—3y dp 1 i — @y i —dy :
o (dm) dt( ) =" = it~ T+ /5 =3 = e Using the Chain Rule, and the
¢ 2 2 1 2
factthats:/O V(LY + () at = L=,/ j d—y (&* +97) /% we have that
do _ de/dt _ (&jj— iy 1 _ Gy —dy So K — do| | dj—dy | _ [2§— @Y
ds ds/dt - iz_,_yz (:532+?.,'12)1/2 - (:532+?.,'l2)3/2' " lds (:b2 +?J2)3/2 - (¢2+Z)2)3/2'
bO)yz=zandy = f(z) = i:—lo'é—Oand'—@"—@
- v T Y= eV T e
S0k — |1-(d®y/dx?) — 0 (dy/dz)| B |d?y/da?|
CT T WA @y T (dy/da) PR
dy d’y |d*y/da?| 2
— 2 _— = = =
70 @y=2" = o 2r = Tz =2.S0kKk = 0T (dy/do) o ~ @ +4$2)3/2,and at (1,1),
2 2
K= = —.
53/2 5\/5

(b) &' = % = —3(1+42%)°2@82) =0 & =0 = y=0.Thisisamaximum since ' > 0 forz < 0 and

&' < 0forz > 0. So the parabola y = = has maximum curvature at the origin.
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N.z=0—sinf = &=1—cosh = Z=sinf,andy=1—cosf@ = ¢=sinf = = cosb. Therefore,

|cos @ — cos® 6 — sin® 6] |cos @ — (cos? 6 + sin® 0)| |cos 6 — 1| The top of the arch is
K= = = .
[(1—cosf)? +sin®0]3/2 (1 —2cosf + cos? 0 +sin? 0)3/2 (2 — 2cosh)3/? P

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when § = (2n — 1),

. . . |cos — 1| |—1—1] 1
so take n = 1 and substitute # = 7 into the expression for k: xk = = ==,
" T P R T B T 2cosm) 2 R-2(-1)P 14

72. (a) Every straight line has parametrizations of the form x = a + vt, y = b + wt, where a, b are arbitrary and v, w # 0.
For example, a straight line passing through distinct points (a, b) and (¢, d) can be described as the parametrized curve
z=a+ (c—a)t,y=">b+ (d— b)t. Starting with z = a + vt, y = b + wt, we compute & = v, y = w, & = §j = 0,

_|v-0—w-0]
andﬁ—m—o.

(b) Parametric equations for a circle of radius r are = r cosf and y = r sin . We can take the center to be the origin.
S0 =—rsinf = &= -rcosfandy =rcosf = ¢ = —rsinf. Therefore,
|r2 sin? 0 + 72 cos? 0{ P

1 . 1
(75?0 + 12 oos2 0)72 pe e And so for any 6 (and thus any point), x = -

73. The coordinates of 7" are (r cos 8, rsin ). Since 7'P was unwound from X
s /
arc T'A, TP has length r0. Also /ZPTQ = /ZPTR— ZQTR = %w -0,
s0 P has coordinates = = 7 cos f + 16 cos(3m — ) = r(cosf + 0 sin6),

y =rsing —r@sin(37 — ) = r(sinf — 6 cos ).

74. 1f the cow walks with the rope taut, it traces out the portion of the
involute in Exercise 73 corresponding to the range 0 < 6 < m, arriving at
the point (—r, 77r) when 6 = 7. With the rope now fully extended, the

cow walks in a semicircle of radius 7rr, arriving at (—r, —7r). Finally, (r— 71,0

the cow traces out another portion of the involute, namely the reflection

about the z-axis of the initial involute path. (This corresponds to the

(=r, —7r)

range —m < 6 < 0.) Referring to the figure, we see that the total grazing

area is 2( A1 + As). As is one-quarter of the area of a circle of radius 77, so Az = %w(m)z

= 27°r®. We will compute
A1 + A, and then subtract A, = 277 to obtain A;.
To find A + Ay, first note that the rightmost point of the involute is (37, r). [To see this, note that dz/d6 = 0 when

6 =0orZ. 6 =0 corresponds to the cusp at (r,0) and § = Z corresponds to (Zr,r).] The leftmost point of the involute is
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(=r,7r). Thus, A1 + Az = el/i ydr — feﬂz/g yde = feO:n yd.

Now y dz = r(sin@ — 0 cos 0) r cos § df = r*(0sin @ cos — 6% cos® 0)dh. Integrate:

(1/r?) [ydz = —60cos®§ — £ (6> — 1) sinf cos§ — £6° + 16 + C. This enables us to compute

O

0 T o 7
A1+ Ay =r*[—0cos® 0 — 1(6° — 1) sinf cosf — é03+%0]7r =r? {0— (—7r— ?—1—5)] :7"2( +F)

Therefore, A1 = (A1 + Az) — Ay = 17°r?, so the grazing area is 2(A; + As) = 2(g7°r? 4+ 17°r?) = 37%2,

LABORATORY PROJECT Bézier Curves

1. The parametric equations for a cubic Bézier curve are

. It seems that if P, were to the right of P, a loop would appear. 3

= x0(1 — )% + 321t(1 — )% + 322t (1 — t) + a3t>
y =yo(1 — 1)+ 3y1t(1 — t)% + 3y2t>(1 — t) + yat®
where 0 < ¢ < 1. We are given the points Po(zo,y0) = (4,1), Pi(z1,y1) = (28,48), P>(z2,y2) = (50, 42), and
Ps(zs3,ys) = (40, 5). The curve is then given by
x(t) =41 — )3 +3-28t(1 — t)% 4+ 3 - 50t3(1 — t) + 4043

50
y(t) = 1(1 — t)® +3 - 48L(1 — )2 + 3 - 426%(1 — ¢) + 5¢° ( P, )
PZ
where 0 < ¢ < 1. The line segments are of the form x = z¢ + (x1 — x0)t,
y=yo+ (y1 —yo)t:
Py Py x =4 + 24¢t, y:1+47t
PP, z=28+22 y=—48—6t Y %
Py Ps x=>50—10t, y=42— 37t
. It suffices to show that the slope of the tangent at Py is the same as that of line segment P, Py, namely Y%
X1 — o
We calculate the slope of the tangent to the Bézier curve:
dy/dt  —3yo(1 —1)* +3ys [—26(1 — t) + (1 — )] + 3ya [t 4 (2t)(1 — t)] + 3yst?
de/dt — —323(1 —t) + 321 [-2t(1 — ) + (1 — )2] + 3z2[—t2 + (2t)(1 — t)] + 3z3t?
At point Py, t = 0, so the slope of the tangent is “3Yo F3Y1 _ Y1790 ghihe tangent to the curve at P passes

—3x0 + 371 xr1 — Xo

through P;. Similarly, the slope of the tangent at point P5 [where ¢ = 1] is —3Y2 #3Ys _ Y3 Y2 \ynich is also the slope

—3x2 + 3x3 T3 — T2

of line P, Ps.

We try setting P1 = (110, 30), and the resulting curve does indeed have a loop.
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4. Based on the behavior of the Bézier curve in Problems 1-3, we suspect that the o )
1
four control points should be in an exaggerated C shape. We try Py (10,12), Bo
P1(4,15), P>(4,5), and P3(10,8), and these produce a decent C. If you are using
Py

a CAS, it may be necessary to instruct it to make the - and y-scales the same so as P,

not to distort the figure (this is called a “constrained projection” in Maple.)

5. We use the same P, and P; as in Problem 4, and use part of our C as the top of

an S. To prevent the center line from slanting up too much, we move P, up to
(4,6) and P5 down and to the left, to (8, 7). In order to have a smooth joint

between the top and bottom halves of the S (and a symmetric S), we determine

points Py, Ps, and Ps by rotating points P, Py, and P, about the center of the
letter (point Ps). The points are therefore P4(12,8), P5(12, —1), and Ps(6, 2).

10.3 Polar Coordinates

33

1 (@) (2,%) (.7) By adding 27 to %, we obtain the point (2, Z¢). The direction
* 3
w opposite % is 4%, so (—2, &) is a point that satisfies the r < 0
3 .
S requirement.
®) (1,-%) r>0: (1, =5 +2m) = (1, °F)
r <0 (-1, -3 +7)=(-1,%)
/7
T
(C) (_17 %) r > 0: (_(_1)7 % +7I') - 17 37‘”)
. r<0:(-1,%+2m) = (—1,%)
0\2
(-1.3)
2. (a) (1,I) r>0: (1, —27m)=(1,-%)
. <0 ((LE—7) = (-15)

(SN
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(b) (-3,%) r>0: (—(=3),%+7) =3I
r <0 (=3,% +2m) = (—3,51)
LA
0
(8-
() (1,-1) f = —1 radian ~ —57.3°
r>0: (1,—1+27)
r <0 (-1,-14+m)
oN/-1
1.-1
3. (a) x=1cosm=1(—1)=—1and
y = 1lsinw = 1(0) = 0 give us
Lm0 the Cartesian coordinates (—1, 0).
0
(b) 93:2008(—%") 22(—%) =—1land
y=2sin(—2) = 2(_73) =3
0
/2 give us (—1,—v/3).
3
(.27
(©) z = —2cos & :—2(—72) =+/2and
37 y:—2sin3—”:—2(—2):—\/§
\4 4 2
0 gives us (v2,—v2).
(25)
4. (a) (-2, 32) = —vZeos F = —v3(—) = 1and
2T y=—V2sinE =2 (‘%) =1

givesus (1,1).
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() i Lﬂ) z = 1cos 2 =1(0) = 0and
> 2
] y=1sin3F =1(1)=1
7/; gives us (0,1).
(©) :1::2005(7%) :2(773) = —+v/3and
(2. 17 y=2sin(-1L) =2(3) =1

&y give us (—v/3,1).

5. @az=2andy=-2 = r=,/22+(-2)2=2+v2and 6 =tan"'(52) = —Z. Since (2, —2) is in the fourth
quadrant, the polar coordinates are (i) (2 /2, Z*) and (ii) (-2 /2, £).
M z=—-landy=+3 = r=1/(-1)>+(v/3)"=2and 6 = tan"’ (@‘) = 22 Since (—1,/3) is in the second
quadrant, the polar coordinates are (i) (2, 2% ) and (i) (-2, 2F).
6. @z=3vV3andy=3 = r= (3\/5)2+32 = 27+9=6and0:tan*1(33—\/§) :tanfl(%) = Z. Since
(3+/3,3) is in the first quadrant, the polar coordinates are (i) (6, Z) and (ii) (—6, Z¥).
b)z=1landy=-2 = r=,/12+(-2)2=+5andf=tan " (52) = —tan" " 2. Since (1, —2) is in the fourth
quadrant, the polar coordinates are (i) (v/5, 2 — tan™" 2) and (i) (—v/5, 7 — tan™" 2).

7. r > 1. Thecurve r = 1 represents a circle with center 8.0<r<2 m<6<3rw/2. Thisisthe region inside the
O and radius 1. So r > 1 represents the region on or circle r = 2 in the third quadrant.

outside the circle. Note that 6 can take on any value.

a w
w

9.7>0, m/4 <6< 3rm/4. 10.1<r <3, /6 <0 <57/6

0 = k represents a line through O.

3

0:7
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36 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1L.2<r<3, Z<o< It 12.r>1, n<<2n

{‘\\,:3
r=2- SO
\
1
T
[}
/
s

o

_ 5w
0="3

13. Converting the polar coordinates (2, /3) and (4, 2/3) to Cartesian coordinates gives us (2 cos %, 2sin %) = (1, \/5) and

(4cos 2=, 4sin 2F) = (—2,2+/3). Now use the distance formula.

d= (22— o) + (2 —m)* = /(-2 1)+ (2v3 - V3)’ = VOT 3= VIZ =23

14. The points (r1,61) and (r2, 82) in Cartesian coordinates are (71 cos 61, r1 sin 1) and (r2 cos 02, T2 sin 62), respectively.
The square of the distance between them is
(r2 cos B2 — 11 cos 91)2 + (r28infz — r1 sin 01)2
= (r% cos? 03 — 21172 cos 01 cos O + r% cos? 01) + (r% sin? @3 — 27172 sin 01 sin 02 + rf sin? 01)
= r% (sin2 01 + cos? 91) + r% (sin2 05 + cos® 92) — 2r172(cos 01 cos B2 + sin 61 sin 67)

=12 —2r1rg cos(01 — 02) + r3,

so the distance between them is /72 — 2172 cos(61 — 02) + 2.
15. 12 =5 <« 2% +y? =5, acircle of radius /5 centered at the origin.

16. r = 4secl <

=4 & rcosh=4 < x =4, avertical line.
sec O

17. r=2cosf = 1>=2rcosf & 2°4+9y*=2r o 22-22+149y>°=1 & (z—1)2+9>=1,acircleof
radius 1 centered at (1,0). The first two equations are actually equivalent since 72 = 2rcos® = r(r —2cosf) =0 =
r=0 or r = 2cosf. But r = 2cos @ gives the point » = 0 (the pole) when 8 = 0. Thus, the equation » = 2 cos 8 is

equivalent to the compound condition (r = 0 or r = 2cos0).
™ ™ Y . .
18. 0 = 3 = tan @ = tan 3 = o= V3 & y=+/3z,aline through the origin.

19. r%cos20 =1 < 7r3(cos’f —sin®0) =1 < (rcosf)® — (rsinf)>’ =1 < 22 —y? =1, ahyperbola centered at

the origin with foci on the x-axis.

sin 6

20. r =tanfsect = = rcos’f =sinf < (rcosf)® =rsinf < a2 =y, aparabolawith vertex at the

cos? 0
origin opening upward. The first implication is reversible since cos § = 0 would imply sin § = r cos® § = 0, contradicting the

fact that cos? 6 + sin? 6 = 1.
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28.

29.

30.

SECTION 10.3 POLAR COORDINATES [ 37

2

- < r=2cscl
sin 6

y=2 & rsinf=2 & r=

¥

y=x = a3:1[95;&()] = tanf=1 = fH=tan *'1 = ezgorez% [either includes the pole]

y=1+3z < rsinf=1+3rcosd < rsind—3rcosd =1 < r(sinf —3cosh) =1 <

. 1

"~ sinf — 3cosf

4 =z < A(rsinf)®> =rcos® < 4r’sin’@—rcosf =0 < r(4rsin®f—cos) =0 < r=0o0r

cos 0
r =
4sin? 0

& r=0o0orr=2cotfcscd. r =0isincludedinr = 1 cotd cscd when § = Z, so the curve is

represented by the single equation r = 1 cot # csc 6.

2 +y =2 & rP=2rcosf & r?—2crcosf=0 < r(r—2ccosf)=0 < r=00rr=2ccosb.

r = O isincluded in r = 2ccos & when 0 = 3 4- n, so the curve is represented by the single equation r = 2ccos 6.
zy=4 < (rcosf)(rsinf) =4 < r?(3-2sinfcosf) =4 < r’sin20=8 = 1’ =8csc20

(a) The description leads immediately to the polar equation = Z, and the Cartesian equation y = tan(%) z = % x is
slightly more difficult to derive.

(b) The easier description here is the Cartesian equation z = 3.

() Because its center is not at the origin, it is more easily described by its Cartesian equation, (z — 2)* + (y — 3)* = 5°

(b) This circle is more easily given in polar coordinates: = 4. The Cartesian equation is also simple: 2% + 3% = 16.

r=—2sin6
,
24
o0
0 T 27 0
27 2,37)2)
r=1-—cosf
,
2
(2, m)
1 @]
0 T iﬁ 0
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38 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

4.
(4,0
o

3L r =2(1+cosh)

7;' 2 0
32.r=1+2cosf
;
3 /
0 2_77W4_77 27 0
3 3
B.r=60, §>0 -
/‘L \(277, 27r)
o
0 6
34. r=1In6, 6>1 -
/_\ (2, In2m)
0 ‘] 0
35. r =4sin 30 r
R 9=
4T 3
5% S 2 o
s | Ay
6 1
0 ' 77'- 9
/3 A
—41
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SECTION 10.3 POLAR COORDINATES [ 39

36. r = cos 50 r
l.
0
_l..
37. r = 2cos 46
38. r = 3cos 66 -
3<
- T
=1
0 T 27 0 3.0
73,,
39. r=1—2sinf ,
3__

40. r =2 +sinf
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43. r = 2 +sin 30

4. 70 =1 & r=+1//0for6 >0

45, r =1+ 2cos 20
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40

41. 7> = 9sin 20

42. 7% = cos 40

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

=)

3‘77'

6

r

o

r<o

(3, 7/6)

r>0

WAV

a
1\-/2_77'4_77 5T
13 3 3 3




46. r =3 +4cosb

-

SECTION 10.3 POLAR COORDINATES U

(=]

L \y 2}71'19

47. For 0 = 0, 7, and 27, r has its minimum value of about 0.5. For § =

We see that the graph has a similar shape for0 < 6 < rand = < 6 < 27.

48.

49. x = rcosf = (44 2sech)cosf = 4cosh + 2. Now,r — co =

(4+2secl) — o0 = 60— (%) orf — (2)" [since we need only

consider 0 < 0 < 2x],s0 lim = = lir? (4cosf 4 2) = 2. Also,

0—m /2~

r——oco0 = (4+2secld) - —c0 = 9—>(£)+0r‘9—’(3_ﬁ)7'30

2 2

Z and 2%, r attains its maximum value of 2.

12,00 \(6.0)

lim z= lim (4cos@+2)=2. Therefore, lim =2 =« = 2isa vertical asymptote.
r— —00 9_,71-/2+ r—+oo
50. y = rsinf = 2sinf — cscfsinf = 2sinf — 1. r

r—oo = (2—cscl) >0 =
csc — —oo = @ — 7wt [since we need
only consider 0 < 6 < 2x] and so

lim y = lim 2sinf —1=—1.

T—00 00—

Alsor - —co = (2—cscl) - —c0 =

Therefore lirf y=—-1 = y = —1isahorizontal asymptote.
T oo

csc) o0 = O —m andso lim z =

(.5)

=

r——00 0—m—

lim 2sinf — 1= —1.
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51.

52.

53.

54.

00 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
To show that z = 1 is an asymptote we must prove 1irj1[n =1

x = (r)cosf = (sinf tan ) cos® = sin® 0. Now, 7 — oo = sinf tanf — oo =

_ 0
9—>(%) ,s0 lim = lim sin?0=1.Also,r > —co = sinftanf — —co0 =
T—00 O—m /27
0 — (g)+ s0 lim = lim sin?60 =1. Therefore, lim z=1 = ax=1Iis
r— —00 9_,71-/2+ r—-+oo

a vertical asymptote. Also notice that 2 = sin? @ > 0 for all §, and « = sin® @ < 1 for all 9. And = # 1, since the curve is not

defined at odd multiples of Z. Therefore, the curve lies entirely within the vertical strip 0 < < 1.

The equation is (2 + y*)® = 4a%y?, but using polar coordinates we know that (1 7/4)

22 +y? =r2andz =rcosfand y = rsinf. Substituting into the given
equation: 7® = 4r?cos? fr?sin’f = r? =4cos’fsin’0 =

r = +2cos@ sinf = £sin20. r = +sin 20 is sketched at right.

(a) We see that the curve » = 1 + csin € crosses itself at the origin, where » = 0 (in fact the inner loop corresponds to
negative r-values,) so we solve the equation of the limaconforr =0 < ¢sinf = -1 < sinf = —1/c. Now if
|c| < 1, then this equation has no solution and hence there is no inner loop. But if ¢ < —1, then on the interval (0, 27)
the equation has the two solutions @ = sin™'(—1/c) and @ = = — sin™*(—1/c¢), and if ¢ > 1, the solutions are

0 =7 +sin"'(1/c) and = 27 —sin~*(1/c). In each case, < 0 for 6 between the two solutions, indicating a loop.

(b) For 0 < ¢ < 1, the dimple (if it exists) is characterized by the fact that y has a local maximum at § = 37” So we

. d?y . . . A - .
determine for what c-values dTO?; is negative at 0 = 37” since by the Second Derivative Test this indicates a maximum:

. . 9 dy . . d’y .
y=rsinf =sinf + csin“ 0 = @:(3059—4—2051110 cosf =cosf+csin20 = Wz—sm@—&—?ccos?@.

At9 = 2 this is equal to —(—1) 4+ 2¢(—1) = 1 — 2¢, which is negative only for ¢ > 3. A similar argument shows that

for —1 < ¢ < 0, y only has a local minimum at = % (indicating a dimple) for ¢ < —1.

(@) r=+0, 0<0<16w. rincreasesas 6 increases and there are eight full revolutions. The graph must be either 11 or V.
When 0 = 27, r = V27 ~ 2.5 and when 6 = 167, r = /167 ~ 7, so the last revolution intersects the polar axis at
approximately 3 times the distance that the first revolution intersects the polar axis, which is depicted in graph V.

(b) r =62 0<6<16m. See part (a). This is graph I1.

(€) r=cos(8/3). 0< % <27 = 0 <6 <6m,so this curve will repeat itself every 6 radians.

cos(%) =0 =

wl>

=Z+mn = 6=3+3mn,so there will be two “pole” values, 2* and 2.
This is graph V1.

(d) » =1+ 2cos@ is alimagon [see Exercise 53(a)] with ¢ = 2. This is graph II1.
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SECTION 10.3 POLAR COORDINATES U

(e) Since —1 <sin30 < 1,1 <2 +sin36 < 3,s0r = 2 + sin 36 is never 0; that is, the curve never intersects the pole.
This is graph I.

(f) =14 2sin360. Solving » = 0 will give us many “pole” values, so this is graph IV.

r=2sinf = x=rcosf=2sinfcosf =sin26,y=rsinf =2sin’f =

dy _ dy/df _ 2-2sinf cosf _ sin20

dr ~ dx/d)  cos20-2  cos20 = tan20

When 6 = E, dy = tan(z . I) = tan— = v/3.  [Another method: Use Equation 3.]
6 dx 6 3

r=2-—sinf = x=rcosf=(2—sinf)cosh,y=rsinf =(2—sinfd)sinfd =
dy _dy/d)  (2—sinf)cosd+sinf(—cosf)  2cosf —2sinf cosd  2cosf —sin20
dr  dz/df (2 —sind)(—sinf) +cosf(—cosf)  —2sinf+sin?f —cos2f  —2sinf — cos 20
T dy 2(1/2) — (V3/2) 1-v3/2 2 2-3
When§ = -, —= = = LA .
3de —2(v3/2) —(-1/2) —v3+1/2 2 1-2V3
r=1/0 = x=rcosf = (cosb)/f,y=rsinf = (sind)/f =

dy dy/d0 sin0(—1/6%)+ (1/0)cos® 6% —sinf+0cosd

de — dx/d) ~ cosO(—1/6%) — (1/0)sinf 6> —cos6 — Osinf

_p 8y 04wzl om
Whene_ﬂ.’dl‘_—(—l)—ﬂ'(())_ =

r=cos(0/3) = x=rcost =cos(0/3)cosh,y=rsinfd =cos(f/3)sinf =

dy dy/d§  cos(0/3)cost +sind (—3sin(6/3))

dr — dx/d§  cos(0/3) (—sin) + cos6 (—1%sin(6/3))

dy

When 6 = 7, - = =D+ ) (=v3/6) —1/2 3 i

(0)+ (=1) (—v3/6)  V3/6 V3

[N E SR

r=-cos20 = x =rcosf =cos20 cosf,y=rsinf =cos26 sinf =

dy dy/df  cos26 cosf + sinf (—2sin 20)

dr ~ dx/df  cos20 (—sin®) + cos® (—2sin 20)

Comody . 0(v2/2)+ (vV2/2)(=2) V2
When 0 = 1 de O(—\/§/2)+(\/§/2)(—2) = —/ =1.

r=1+2cos = xz=rcosf = (1+2cosf)cosf,y=rsinf =(1+2cosh)sinfd =

dy _dy/d)  (1+2cosf)cosf +sinf (—2sind)
dr ~ dx/df (1 +2cosf)(—sinf) + cosd (—2sinh)

dy _ 2(3) + (vV3/2)(-v3) 2-3 -1 B

3'dr  2(—v3/2)+3(—v3) 2 —2v3-v3 —3v3 O

2
When 6 = "3
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61.

62.

63.

64.

65.

66.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

r=3cosf = x=rcost) =3cosl cosl, y=rsinf =3cosf sinf =

%z—?:sm 0+3cos’0 =3cos20=0 = 29-—0!’37" = 9:§0r%’f.

i H 3 s 37 3 P
So the tangent is horizontal at (W’ Z) and (—ﬁ, T) [same as (ﬁ, —Z)].

42 — —6sinfcos = —3sin20 =0 = 20=00rm < 6 =0o0r%. Sothetangentis vertical at (3,0) and (0, % ).

r=1-sinf = x=rcosd =cosf(l—sinh), y=rsinf =sinf (1 —sinf) =
24 = sin 6 (—cos) + (1 —sinf) cosf = cosf (1 —2sinf) =0 = cosf=0o0rsinf =1 =
=%, %, 3, 0or 3 = horizontal tangentat (3, %), (3,3), and (2, 3F).

42 = cosf (—cos ) + (1 — sin)(—sin ) = — cos® § — sin 6 + sin® § = 2sin® § —sin6 — 1

= (2sinf+1)(sinf—-1)=0 =

sinf=—-2o0orl = #=7Ir LT orZ = vertical tangentat (£, Z%)  (

NS

—
(o] Lead
g
N
@
>
o
—
o

3
SN—

Note that the tangent is vertical, not horizontal, when 6 = Z, since

‘m dy/df ‘m cosf (1 —2sinf) soand  lim dy/df
0—(x/2)— dx/df  0—(x/2)- (25in@ + 1)(sinf — 1) 9—(n/2)+ dx/dO

r=1+cos = x=rcosh=cosl(l+cosl), y=rsinfd =sind (1+cosf) =
dy = (1+cosf) cosf —sin® 6 = 2cos® 0 + cos — 1 = (2cosf — 1)(cos@+ 1) =0 = cos@=3or—1 =
6 =%, ,mor3 = horizontal tangentat (2, %), (0,7),and (2, 3F).

42 — —(1+cosf)sinf — cosfsinf = —sinf (1+2cosf) =0 = sinf=00rcosf =—3 =

0 =0, 2%, 0r & = vertical tangent at (2,0), (3,2r),and (3, 5).

27 3 27 3
. . . dy/df
Note that the tangent is horizontal, not vertical when # = 7, since hm dnjdd
r=¢’ = z=rcosb=ccosb, y=rsinf = esing =
% =e’sinf+ e’ cosh =e’(sinf + cosf) =0 = sinf=—cosf = tanh=-1 =
0 = —27 +nm [nanyinteger] = horizontal tangents at (e’*(”*l/“),w(n - %))
dz

92 — ¢?cos —e’sinf = €’ (cosf —sinf) =0 = sinf=cosfd = tanf=1 =

0 = im+nr [nanyinteger] = vertical tangents at (e”("“/“), m(n+ %))

r=asinf+bcosd = r?=oarsinf+brcosd = z?+y>=ay+br =

@? —br+ (207 + 12 —ay + (3a) = (30)° + (3a)° = (2 — 10+ (y— 1a)’ = 1(a® +b?), and this is a circle
with center (b, 2a) and radius 3+/a? + 2.

These curves are circles which intersect at the origin and at (\/_ a, 4) At the origin, the first circle has a horizontal

tangent and the second a vertical one, so the tangents are perpendicular here. For the first circle [r = a sin 6],

dy/df = acosf sinf + asinf cos = asin20 = aat = § and dx/df = acos® —asin?0 = acos20 =0
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SECTION 10.3 POLAR COORDINATES [ 45

at § = Z, so the tangent here is vertical. Similarly, for the second circle [r = a cos 6], dy/df = a cos26 = 0 and

dr/df = —asin20 = —a at @ = 7, so the tangent is horizontal, and again the tangents are perpendicular.

67. r = 1+ 2sin(6/2). The parameter interval is [0, 4]. 68. r = /1 — 0.8sin? §. The parameter interval is [0, 27].

2.6 0.6

D J.
-

-0.6
. J
-26
69. r = e*™% — 2cos(46). 3.5
'd N
The parameter interval is [0, 27].
-3 3
. J
-2

70. r = |tan 6|17,

The parameter interval [0, 7] produces the heart-shaped valentine curve shown in the first window.

The complete curve, including the reflected heart, is produced by the parameter interval [0, 2], but perhaps you’ll agree

that the first curve is more appropriate.

-15 -15
72. r = sin®(46) + cos(46). The parameter interval
is [0, 27].

71. 7 =1 + cos”® 0. The parameter interval is [0, 27].

1.1
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73.

74.

75.

76. Consider the polar curves r = 1 4 cos™ 8, where n is a positive integer. First, let

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

It appears that the graph of r = 1 + sin(@ - %) is the same shape as

the graph of » = 1 + sin 6, but rotated counterclockwise about the (7= 1+sinf

.. .. . —r:l+sin(9*%)
origin by %. Similarly, the graph of r = 1 + sin(9 - %) is rotated by x
3

Fr=1+ sin(ﬁ— )
%. Ingeneral, the graph of r = (6 — «) is the same shape as that of

1.4
r = f(0), but rotated counterclockwise through « about the origin.
That is, for any point (ro, 80) on the curve r = f(6), the point ) -0.9
(ro, 00 + ) ison the curve r = f(6 — «), since ro = f(60) = f((6o + a) — ).
0.8 From the graph, the highest points seem to have y ~ 0.77. To find the exact

N\
J

value, we solve dy/df = 0. y = rsinf =sinf sin20 =

dy/df = 2sin 6 cos 260 + cos 6 sin 26

—0. 0.8
08 =2sinf (2cos> 0 — 1) 4 cos O (2sin § cos 0)
=2sin6 (3cos” 0 — 1)
N 0% g In the first quadrant, this is 0 when cos § = 7 & sinf= 2 &

1
3
y=2sin29C059=2~§'%=%\/§z 7.

Consider curves with polar equation » = 1 + ccos 6, where c is a real number. If ¢ = 0, we get a circle of radius 1 centered at
the pole. For 0 < ¢ < 0.5, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 0.5 < ¢ < 1,
the left side has a dimple shape. For ¢ = 1, the dimple becomes a cusp. For ¢ > 1, there is an internal loop. For ¢ > 0, the
rightmost point on the curve is (1 + ¢, 0). For ¢ < 0, the curves are reflections through the vertical axis of the curves

with ¢ > 0.

1.5 1.5 1.5

[\S}

N 3
NI

-1.5 -1.5 -1.5 -2

c=0.25 c=0.75 c=1 c=2

n be an even positive integer. The first figure shows that the curve has a peanut
shape for n = 2, but as n increases, the ends are squeezed. As n becomes large,

the curves look more and more like the unit circle, but with spikes to the points

(2,0) and (2, ).
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SECTION 10.3 POLAR COORDINATES [ 47

The second figure shows r as a function of # in Cartesian coordinates for the same 2
values of n. We can see that for large n, the graph is similar to the graph of y = 1,
but with spikes to y = 2 for x = 0, 7, and 2x. (Note that when 0 < cos < 1, 1= 1000

051090 9 is very small.)

Next, let n be an odd positive integer. The third figure shows that the curve is a

cardioid for n = 1, but as n increases, the heart shape becomes more pronounced. =599

As n becomes large, the curves again look more like the unit circle, but with an -1.7

outward spike to (2, 0) and an inward spike to (0, ).

The fourth figure shows r as a function of ¢ in Cartesian coordinates for the same 2

values of n. We can see that for large n, the graph is similar to the graph of y = 1,

but spikestoy = 2 forz = 0 and =, and toy = 0 for z = .

dy dy/d9
- W ang L —tand
77. tan) = tan(¢p — 0) = ltj—nt(zn ;:;1:0 _ dz 7 /c;l;/de
1+ =t 9
+d$ an 1+d$/d9tan9
dy _dz tan 6 (d—51n9+7’0086)7tan9(—C05977’Sln9) rcos&+r-Sin29
_do_ do db db _ cos 6
d d in2
z-l-d—zt and (j;cose—rsm@)—|—tan9<d—esm9+rc059) 39(‘,0594—% Scl(?sg
B rcos? f + rsin® g T
T dr dr T dr/df
ar L os? 2
70 cos?2 0+ — 20 sin® 6
78. (@) r=¢" = dr/df=e’ sobyExercise 77, tanyy =7/’ =1 = )
Y =arctanl = 7 ;dj ™)
(b) The Cartesian equation of the tangent line at (1,0) isy = « — 1, and that of
the tangent line at (0, e™/?) isy = ™2 — . ol
(1,
(c) Let a be the tangent of the angle between the tangent and radial lines, that > 4
dr 1 N

is, a = tan1). Then, by Exercise 77, a = =-=r =

T
drjdé ~ do
r = Ce”* (by Theorem 9.4.2).
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LABORATORY PROJECT Families of Polar Curves

1. (@) r = sinnd.

08

From the graphs, it seems that when n is even, the number of loops in the curve (called a rose) is 2n, and when n is odd,
the number of loops is simply n. This is because in the case of n odd, every point on the graph is traversed twice, due to
the fact that

sinnd if niseven
r(0 + ) = sin[n(f + 7)] = sinnd cosnw + cosnf sinnw = o
—sinnf if nisodd

(b) The graph of r = |sin nd| has 2n loops whether n is odd or even, since (6 + w) = r(0).

KER A

2. r =1+ csinnf. We vary n while keeping ¢ constant at 2. As n changes, the curves change in the same way as those in

Exercise 1: the number of loops increases. Note that if n is even, the smaller loops are outside the larger ones; if n is odd, they

are inside.

2

P X
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Now we vary ¢ while keeping n = 3. As ¢ increases toward 0, the entire graph gets smaller (the graphs below are not to scale)
and the smaller loops shrink in relation to the large ones. At ¢ = —1, the small loops disappear entirely, and for —1 < ¢ < 1,
the graph is a simple, closed curve (at ¢ = 0 it is a circle). As ¢ continues to increase, the same changes are seen, but in reverse
order, since 1 4+ (—c¢) sinnf = 1 4 c¢sinn(0 + 7), so the graph for ¢ = ¢y is the same as that for ¢ = —co, with a rotation
through 7. As ¢ — oo, the smaller loops get relatively closer in size to the large ones. Note that the distance between the
outermost points of corresponding inner and outer loops is always 2. Maple’s animate command (or Mathematica’s

Animate) is very useful for seeing the changes that occur as ¢ varies.

n=3
c=—4 c=—-14 c=—1 c=—0.8
c=—-0.2 c=0 c=0.5 c=38

_1—acosf

"= 1+ acosf

. We start with a = 0, since in this case the curve is simply the circle » = 1.

As a increases, the graph moves to the left, and its right side becomes flattened. As a increases through about 0.4, the right
side seems to grow a dimple, which upon closer investigation (with narrower 6-ranges) seems to appear at @ ~ 0.42 [the
actual value is v/2 — 1]. As a — 1, this dimple becomes more pronounced, and the curve begins to stretch out horizontally,
until at ¢ = 1 the denominator vanishes at # = 7, and the dimple becomes an actual cusp. For ¢ > 1 we must choose our
parameter interval carefully, since r — coas 1 +acos — 0 <« 6 — Fcos™'(—1/a). As a increases from 1, the curve
splits into two parts. The left part has a loop, which grows larger as a increases, and the right part grows broader vertically,
and its left tip develops a dimple when a ~ 2.42 [actually, v/2 + 1]. As « increases, the dimple grows more and more
pronounced. If a < 0, we get the same graph as we do for the corresponding positive a-value, but with a rotation through =
about the pole, as happened when ¢ was replaced with —c in Exercise 2.

[continued]
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1.1 15
) 025
1.1 \ ., vy + > 1 0.413 D }0419
L /1 L 025
—11 -15
a=0 a=03 a=0.41,10 < 0.5
0.2 0.05 0.00025
0.405 { D 10.409 0.05 { ; ' w o1 —0.00025 % o
02 ~0.05 ~0.00025
a=0.420] < 0.5 a=09,0] <05 a=1,10<0.1

a=241,10 — 7| <0.2

0.5

2.4084

2.4086

i

a=242,10 — 7| <0.2

4. Most graphing devices cannot plot implicit polar equations, so we must first find an explicit expression (or expressions) for r
in terms of 0, a, and c. We note that the given equation, 7* — 2¢%r2 cos 20 + ¢* — a* = 0, is a quadratic in 72, so we use the

quadratic formula and find that

= ?cos20 + Va* — ¢* sin? 20

2 2¢% cos 20 £ /4c* cos? 20 — 4(c* — a?)
2

sor = :t\/c2 cos 20 + \/m. So for each graph, we must plot four curves to be sure of plotting all the points
which satisfy the given equation. Note that all four functions have period .

We start with the case ¢ = ¢ = 1, and the resulting curve resembles the symbol for infinity. If we let a decrease, the curve
splits into two symmetric parts, and as a decreases further, the parts become smaller, further apart, and rounder. If instead we

let a increase from 1, the two lobes of the curve join together, and as a increases further they continue to merge, until at
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES [ 51

a ~ 1.4, the graph no longer has dimples, and has an oval shape. As a — oo, the oval becomes larger and rounder, since the

c? and ¢* terms lose their significance. Note that the shape of the graph seems to depend only on the ratio c/a, while the size

of the graph varies as ¢ and a jointly increase.

0.75

0.75

0.75

—=0.75 —=0.75 —0.75
(a,¢) =(1,1) (a,c) = (0.99,1) (a,c) =(0.9,1)
0.75 0.75 3
-151 O O |15 15 15 -6 6
—=0.75 —=0.75 -3
(a,c¢) = (0.6,1) (a,c) = (1.01,1) (a,c) = (4.04,4)
3 3 5
1 N - N
-2 2 -3 O 3 -3 3 5
-1
(a,c) = (1.3,1) -3 -3 —
(a7 C) = (1'57 1) (aa C) = (27 1) (a7 C) = (47 1)

10.4 Areas and Lengths in Polar Coordinates

1 r=e 0% m/2 <0 <.

™

A:/ %ﬁd@:/ %(6*9/4)2(10:/ Le /29 = §[~2e7"""] / — _1(e ™2 =
b T /2 /2

/2 /2

2. r=cosf, 0 <6< 7/6.

/6

/6 /6 /6
A:O %erG:/O %cosQGdH:%/O 3(1+cos20)df = %[0 + §sin26]]

SEICRR R YGRS BV
3. 72 =9sin20, r >0, 0<0 < 7/2.

/2 /2
A:/O %erG:/O 1(9sin20) df = $[~1 cos20]7/% = ~2(~1 1) = 2

67‘"/4) _ ef‘rr/él _ 677r/2
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4. r =tanf, 7/6 <0 < /3.

/3 /3 /3
A:/ %ﬂd@:/ %tan29d0:/ 1(sec’0 —1)do = %[tand — 0]

/6 /6

/6

(V-8 - (V- D] - 43VE-F - -5

27 2m 2 27
5. 7=+, 0<6<2m. A:/ %rde:/ %(\/5) d9:/ %
0 0 0

6. r=14+cosf, 0 <0 <.

A:/ %(1+cos9)2d9:%/ (14 2cosf + cos® 0) df =
0 0

= %/0 (2 +2cosf + 5 cos20) df = %[%0+2sin9+isin20]g =:(3r+0+0)-3(0) =

7.r=4+43sin0, -5 <0< 3.

/3
/6

/2 /2
A:/ %((4+351n0)2d9:%/ (16 4 24 sin 6 + 9sin” 6) df

/2
:%/ (16 + 9sin” ) do

—7/2

/2
:/ (4~ % cos26) df = [419 -
0

8. r=sin20, 0 <0<

ol

/2 /2
A:/O %sin220d9:%/0 1(1 —cos46)do = 1[0 — 1 sin 46]

—m/2

% sin 29] 0

0

9. The area is bounded by » = 2sin 6 for6 = 0to 0 = .

A:/ ;ﬁw:%/ (2sin0)*df = %
0 0

/ 4sin® 0 do
0

:2/ %(1—cos26)d6:[9—%sin29} =
0

™
0

Also, note that this is a circle with radius 1, so its area is 7r(1)2 =T.

27 2w
10. A:/ %r2d9:/ 1(1—sin6)*do
0 0

27

1
2
0

27
/ (%—2sin9—%00529)d0=
0

%[%9—1—2(:059— isinZG}gﬁ

/2

/2

[by Theorem 4.5.6(b) [ET 5.5.7(b)]]

/ [1+2cosf+ 5(1+ cos26)]| df
0

/2
1. 2/ [16 +9-1(1 —cos26)] df  [by Theorem 4.5.6(a) [ET 5.5.7(a)]]
0

27
(1—2sin0+sin29)d9:%/0 [1—2sinf + (1 — cos26)] df

3
4
4E-0)—(0-0) =4
1/m\ _ m
Z(E) -3
(2, m/2)
r=2sin 6
1, m) (1,0)
N0, 7/2)
(2,37/2)
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27 27 27
11. A:/ %TQdG:/ %(3+2cos€)2d0:%/ (9 +12cos 6 + 4 cos® 0) d
0 0 0 (3, 72

)
27
:%/ [9+12cosf 44 3(1+ cos26)] db (1,7)( (5,0)
0 0
27 9 <
= %/O (114 12cos 0 4 2cos 20) df = 5[116 + 12sin 6 + sin 20] " (3,37)2)
= 3(227) = 117
27 27 27
12. A:/ ir? d@:/ 1(4+3sin0)*do = %/ (16 + 24sin 6 + 9sin® 0) df (7. 7/2)
0 0 0
27
2%/ [16 +24sinf +9 - £(1 — cos 20)] db
0
27 4 4 9 0
1 1 : 9 1 1 9 o3 ™
_5/0 (7+24sm€—§cos29) d0—§[79—24c089—zsm29]0 ) o
) i (1,37/2)
= 5[(41r —24) — (=24)] = S~
27 27 27T
13. A:/ %ﬁd@:/ §(2+sin49)2d9:§/ (4 + 4sin 46 + sin” 40) df 3
0 0 0
" O
1 : 1
:5/0 [4+4sin46 + (1 — cos 86)] db L .
27 2 C/\
= % /0 (% + 4sin460 — %COSS@) do = %[%0 — cos 46 — 1—16 sin89]07r
-3
= On—1)— (-] = 3n
27 27 27
14. A:/ %erG:/ %(3—2cos49)2d9:%/ (9 — 12 cos 46 4 4 cos” 46) df >
0 0 0

[9—12cos40 +4- 3(1 + cos80)] df

(11— 12cos 46 + 2 cos 8¢) df = £ [110 — 35in 46 + 1 sin80]>"

1(22m) =11x

27 27 2
15, A:/O %erQ:/O L (Vi+cos50) do 1.4

27 27
/O (1 + cos®50) d = %/O [14 $(1 4 cos100)] o

I
=

—2.1

1120+ & sin100]2" = £(37) = &
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27 27
16. A:/ %r2d0:/ 1(1+5sin60)° df 6
0 0

27
=1 (14 10sin 66 + 25sin” 66) do

0

1
2

27
/ [1+10sin60 + 25 - (1 — cos 1260)] df
0

27
0

27
/ [% + 10sin 66 — % cos 129} df = %[2779 — %COS 660 — % sin 129]
0

N[

=3[@m=3) - (=3)] =%
17. The curve passes through the pole when» =0 = 4cos30 =0 = cos30=0 = 30=5+mn =

0 = % + Zn. The part of the shaded loop above the polar axis is traced out for

0 =0to6 = /6, s0we’ll use —m/6 and 7 /6 as our limits of integration. r=4cos 36

1
2

/6 /6
A= / (4cos36)* df = 2/ 3(16 cos” 36) df
—7/6 0

/6
= 16/ 1(1+cos66)df =8 [0+ tsin66]/° =8 (%) = i
0

18. For § = 0to @ = 7 /2, the shaded loop is traced out by » = /sin 26 and the

unshaded loop is traced out by » = —+/sin 26.

2 =sin 26

/2 /2
A:/ %ﬂd@:/ 1 sin20d9
0 0

n/
~ [hoos20; =4~ (-3) = %

N

19.7r=0 = sindd=0 = 40=7mn = 0=73n

/4 /4 /4
A:/ %(sin49)2d9:%/ sin240d9:%/ 1(1 — cos 89) do
0 0 0

20.r=0 = 2sinb0=0 = sinbd=0 = 50=mn = 0=ZIn

/5 /5 r=2sin 560

A:/ %(25in59)2d9:%/ 4sin® 50 df
0 0

/5
:2/0 1(1 —cos106) df = [0 — 5 sin106]7/° = =
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21. r This is a limagon, with inner loop traced

r=1+2sin 6 (rect.) r=1+2sin 0

out between § = == and 1= [found by

solving r = 0].

ks
“/

- o Il

0=1Z o="12

3m/2 37/2 37/2
A= 2/ 1(1+2sin0)*do = / (1+4sinf + 4sin”0) df = / [1+4sinf+4-1(1— cos26)] do

7m/6 7 /6 7m/6

:[9—40059+29—sin29]i:g=(9”)—(7“—1—2\/_ ):71—%
22. To determine when the strophoid » = 2 cos # — sec 6 passes through the pole, we solve g
r=0 = QCOSQ—LZO = 2cos?’l—1=0 = c052t9:1 = '
cosf 2
(1,0)

cosO=+— = fH=Zorf=3Tfor0<h<mwithd £ I,

V2

72f”/41 (2cos 0 —sech)? df = 7r/4(4cos 0 — 4+ sec® 0) df

= 077/4[ - 3(1 4 cos20) — 4+ sec’ 0] df = 7r/4( 2 4 2cos 20 + sec? 0) df

= [-20+sin20 + tand])/ = (-2 +1+1) —0=2-3

23. 2cosf =1 = cos@z% = ngor%”.

_2f"/31 (2cos6)? —12]dO = 7r/3(4cos 0—1)do

T/ L4 [E(1 4 cos20)] —1}df = [T/(1+ 2cos20) df

[9+51n29]ﬁ/3 =3 +73

24.1—sinf=1 = sinf=0 = 6H#=0o0rm = r=1

A= [?"1[(1—sinf)? — 1] do = L [*"(sin® 0 — 25in0) df (1, m) (1,0)=(1,2m)

:ifjﬂ(l —cos20 —4sinf)do = i[@— %sin20—|—4cos0]72:r

:%77—1—2 r=1—sin6

25. To find the area inside the leminiscate > = 8 cos 20 and outside the circle r = 2,

we first note that the two curves intersect when 2 = 8 cos 26 and r = 2,

. 2=8cos26
that is, when cos 20 = 3. For —m < 6 < m,cos20 = 3+ < 20 =+mn/3 roRee

or+5m/3 <& 0 = 4w/6 or £57/6. The figure shows that the desired area is

4 times the area between the curves from 0 to /6. Thus,

A= 4fﬁ/6 [$(8cos20) — 1(2)%] dO 8fﬂ/6 (2cos20 — 1) df

-8 [sin26’ - 9] 2/6 —8(V3/2—7/6) = 4/3 — 47 /3
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26. To find the shaded area A, we’ll find the area A; inside the curve r = 2 + sin 6 (3 z)

and subtract 7 (2)? since ~ = 3sin ¢ is a circle with radius 2.
27 1 1 27 . )
A= [T 2(2+sin6)’df = [;7 (4 + 4sinf + sin® 0) df ot r=13sin8

=3 0 "[4+4sin6+ 1 - (1 —cos26)] do

=1 ( +4sm9——C0529)d9 w_/

2 0

=[50 —4cosf — %sin249](2)7T =29 —4) - (-4 =%

— _ 9% _ 9w _ 97 _ 97
SOA—Al 7 — 2 7 = -

27. 3cos =1+ cosf <« cosé’:% = O=%or—%. =%

72fﬁ/3% (3cos )% — (1 + cos 0)?] do r=1+cos 6

:f”/S(Scos 0 —2cosf —1) 0—foﬂ/3[4(1+cos20)72c03971]d6’ m
:f"/3(3+4cos29720059)d0f [39+251n297251n9]g/3 w
r=3cos

=r+vV3-V3=nm

28. 3sinf =2 —sinf = 4sinf=2 = sinf=1 = 0=gor
= 2fﬁ/62 1[(3sin6)* — (2 — sin6)*] d
f"/2 (9sin® @ — 4 + 4sin O — sin® 0] d
:f”/z(Bsm 6+ 4sinf —4) do

—4fﬁ/2[ - 3(1 —cos20) +sinf — 1] df

/2
/6

= 4[77/2 sin @ — cos 20) df = 4[—COS‘9 - % sin29]

=4[0-0)— (—£ - F)] =4(2£) =33

|y

29. v/3cosf =sinf = \/—_sme tanf = V3 = 0=7%. 0=

cos 0 r=siné,

A= [7* Lsin0)2do + [7/7 L (V3cosO) do

= J"* 5§~ cos20)d0 + [T/} -3 §(1+ cos20) df

=3[0~ $sin20]7"" + 3[04 3sin20]7

:%[(g,%),o}+%[(g+o)—(§+@)] r=+/3cos 0
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7,/21 /204 2
3. A=4[] —cosf)?>df =2 [ (1 — 2cos b + cos® ) db r=1—cosf F= 1+ cosf
:2[0”/2 [1—2cosf+ 3(1+ cos26)| df
_2f7r/2( _2C059+§cos29)d9— ”/2(3 4 cos 6 + cos 20) df 0

= [30 —4sinf + sin29]7* = & —4

sin 26

31 sin26 = 20 =
sin cos o5 20

=1 = tan20=1 = 20=%4 =
0=3 =

A=8-2 [ Lsin?20d0 =8 [7/° L(1 — cos40) b

—4[0 - 1sinag]7* =4(z - 1. 1) =2 -1

N

32. 3+2cosf =3+2sinf = cosh =sinf = 92%0!’%. r=3+2sinf
—2f57r/413+20050 dé’ffsﬂ/zl9+12c056’+400326’)d9

f74/4 [9 +12cosf +4 - %(1 + cos 20)] dh (

= (%2 —6v2+1) — (HE+6v2+1) =11r — 122 T 3+2c0s0

f5ﬁ/4 11+ 12cos 6 + 2cos260) df = [116 + 12sin6 + s1n29]577/4

33 sin20 =cos20 = tan20=1 = 20=57 = 0=3%
A= 4fﬂ/8lsm29d0 [since 2 = sin 26]
= foﬂ/s 2sin 20 df = [— cos 29]3/8
=1iV2-(-1)=1-32

34. Leta = tan™* (b/a). Then s
A= [ 1(asing)*df + f:/Q 1 (bcos6) do 9: tan” (b/a)
= icﬁ [0 — 3 sin 29} o4l b2 [6 + 3 sin 29] /2 <
= Za(a® = b*) + §7b* — 1 (a® + b*)(sin v cos )
= 1(a® —b?) tan"'(b/a) + imb® — Lab 7= beos 6
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35.

36.

37.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

The darker shaded region (from # = 0 to 8 = 27 /3) represents % of the desired area plus % of the area of the inner loop.
From this area, we’ll subtract % of the area of the inner loop (the lighter shaded region from § = 2= /3 to 6 = ), and then

double that difference to obtain the desired area.

A=2[ [ 3 (4 +cos8) b — [}, o § (4 +cos0)” do]

= 027r/3 (i + cos 0 + cos? 9) do — f27;/3 (% + cos § + cos? 9) de

= Jo™* [4 + cos 0+ 3(1 + cos 20)] df

_ sz;/B [§ + cosf+ 3(1 + cos26)] df

Z+Sin9+§+ 1

0 sinzer’*“[e 0 smzer
27 /3

0

2+

wly

Il
/~ —
SE]

+
ok

+
wly

|
G
~—

I
N

+
NE]

+
=

+
ot

,%)

r=0 = 1+2cos30=0 = cos30=—

1 = 39=2 4 [for ?=4—

0<30<2r] = 6=2, 4% The darker shaded region (from 6 = 0 to

0 = 27 /9) represents % of the desired area plus % of the area of the inner

loop. From this area, we’ll subtract % of the area of the inner loop (the lighter

shaded region from 6 = 27 /9 to 8 = x/3), and then double that difference to (. %) r=1+2cos30
obtain the desired area.
A= 2[ /9 L(1+2c0s30)2d0 — [}/ 4(1+ 2cos30)? de}
Now r? = (1+2co0s30)®> =1+4cos30 +4cos’30 =1+ 4cos30 + 4 - (1 + cos60)
=144cos30+ 2+ 2cos60 = 3 + 4 cos 30 + 2 cos 60
and [rdf = 360 + 3 sin 36 + 3 sin66 + C, s0
A= [39 + 3 sin 360 —|— < sin 69] 2m/9 [39 + 25in30 4 % sin 60]7T/3
3 3 27 /9
=|(F+3 Fri ) o] [@roro - (FriF+if)
=4 +3V3-3VB-1=3+3
The pole is a point of intersection.
r=3sin 6
1+sinf =3sinff = 1=2sinf = sinf= % =
6=2or3x,
The other two points of intersection are (£, Z) and (£, 2£).
r=1+sin @
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39.

40.

41.

42.

SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES U

The pole is a point of intersection.
r=1+sin6

1—cosf@=1+sinff = —cosf=sinf = —1=tanf =

0 =2 or It

The other two points of intersection are (1 + 2 3—”) and (1 — ¥2 7”).

-

r=1—cos @

2sin20 =1 = sin20=3 = 20=2%, 3£ L% or 1L,

By symmetry, the eight points of intersection are given by
r=2sin26

_ m 5w 137w 177
(1,6), where 0 = %5, 27, =%, and 1, and

(—1,0), where § = Iz, Lx 197 ang 287,
[There are many ways to describe these points.]

Clearly the pole lies on both curves. sin30 = cos360 = tan3f=1 = 20
' =81n 2
30 =4 +nm [nanyinteger] = O0=FH+3n =
0 12 25, or 3” , 50 the three remaining intersection points are ?@—’
r=cos 36
T 1 3
(35 8%) (-9 %) and (5 %)

r=sin 6

The pole is a point of intersection. sin § = sin 26 = 2sinf cosf <

sinf (1—2cosf) =0 <« sinf=00rcosf =3 =

el

0 =0, %,0r—% = the other intersection points are (

)

and ( g ’?) [by symmetry]. F=sin26

Clearly the pole is a point of intersection. sin 20 = cos26 = 2 = sin 20

tan20 =1 = 20 = 7 + 2nm [since sin 20 and cos 26 must be

positive in the equations] = 6 =Z+4+nr = 60=Zor . C><>

So the curves also intersect at ( L %) and (%, %) % = cos 20

|>—‘

S
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43 34 3 y= 2x
" )

\/ y=1+sinx

3

k-r =1+ sin @

14— 1.4
N [ J \ y,

-03 -3

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the #-values
of the intersection points to be o &~ 0.88786 ~ 0.89 and m — v & 2.25. (The first of these values may be more easily
estimated by plotting y = 1 + sinx and y = 2z in rectangular coordinates; see the second graph.) By symmetry, the total
area contained is twice the area contained in the first quadrant, that is,

/2

a /2 «a
A:Q/O 1(20)? d0+2/ 1(1+sin6)? de:/ 492d0+/ [14 2sin6 + £(1 — cos26)] df

0 e

= [%03}3 + [972cos9+ (%97%81]?129)]2/2 = %a3+ [(% + %) — (a72cosa+ %af %sin2a)} ~ 3.4645

44, We need to find the shaded area A in the figure. The horizontal line
stage
representing the front of the stage has equationy =4 <
12m B rsind =4 = r =4/sin#. This line intersects the curve
\ am{l - \\"zsiio r:8+831n9when8+851n0:w
microphone r= 8+8sinf 8sinf 4 8sin*0 =4 = 2sin’0+2sinfh—-1=0 =
audience
—2++4 —24+2 -1 . —1
sinf = £ 1 +8 = i4 V3 = —; V3 [the other value is less than —1] = 6 =sin"* <\/§2 )

This angle is about 21.5° and is denoted by « in the figure.
A=2["?1(8+8sin0)2do —2 [7/? L(4csch)?df = 64 [7/*(1 + 2sin 6 + sin® 0) dd — 16 [/ csc? 6 df
= 64[5/2 (1+2sinf + 3 — 5 cos 20) df + 16[(:/2(—CSC2 0) df = 64[260 — 2 cos b — isinZ@}Z/z + 16[00‘59}2/2

=16 [60—8cos9—sin29+cott9]z/a =16[(31 — 0 — 0+ 0) — (6a — 8 cos @ — sin 2cx + cot )]

=487 — 96 + 128 cos a + 16 sin 2 — 16 cot a

Fromthefigure,mQ—s—(\/5—1)2:22 = 2’=4-(3-2V3+1) = )
J3-1
z? =23 =1/12,50 z = v/2+/3 = v/12. Using the trigonometric relationships @

P [ —4/19
for a right triangle and the identity sin 2c = 2 sin « cos «v, We continue: TENANI =NV
4 o 4 4
A= 487 — 960+ 128 VA2 L 16.0. Y31 V12 o V12 V341
2 2 2 V3—1 V3+1
=481 — 960 + 64 V12 + 8 V12 (V3 —1) =8 V12 (V3 + 1) = 487 + 48 V/12 — 96sin~ (ﬁ; 1)

~ 204.16 m?
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b T
45, L:/ \/r2+(dr/d0)2d9:/ V/(2cos )2 + (—2sin 6)2 df
a 0
:/ ./4(cos29+sin20)d9:/ Vade = [20]) =
0 0

As a check, note that the curve is a circle of radius 1, so its circumference is 2 (1) = 2.

4. L= /b V72 + (dr/dB)? db = /0% VN2 (571n5)2 do = /027r V521 + (In5)2] do
59 :|27r

:w/1+(1n5)2/277\/5%d9:\/1+(ln5)2/2ﬂ59d9: + (In5)2 L -

5271 >: 1+(1n5)2(52w_1)

— 2 - _—
= v1+(Inb) <In5 Inb In5
b 27 2
a L :/ T T (drd0)2 b =/ J02)2 + (202 do :/ NI
a 0 0
27 27
:/ ,/92(92+4)d9:/ 0V 6> +4do
0 0

Now letu = 6 + 4, so that du = 260 d6 [0 df = 5 du] and

27 4244 4(x24+1)
/ 9\/92+4d0:/ Wadu=14-2[u*] — L4 (r 4 1)%% - 4% = 8% 4 122 — 1
4

0 4

27

b 27
48. L:/ \/r2+(dr/d9)2d0:/ VI[2(1 + cos0)]2 + (—2sin6)2 df = V4 + 8cos B + 4cos? 6 + 4sin® 0 df

0

= \/8+8cos d@—\/_/ V1+cosf d@—\/_/ \/2 %1—&—0089

0

—f/ \/2cos? = d9—\/_\/_/277

—8|:281n2:|0 =38(2) =16

cos —‘ =4- 2/ cos g o [by symmetry]
0

49. The curve r = cos*(6/4) is completely traced with 0 < 6 < 4. !
P2 4 (dr/d0)” = [eos*(0/4))” + [4cos*(9/4) - (~sin(0/4)) - 3] ”_\\\\\
= cos®(60/4) + cos®(8/4) sin?(6/4) 075 125
= cos®(0/4)[cos®(0/4) + sin?(0/4)] = cos®(0/4) \/

[ oS0 = [ eos?(0)4)] do

=2 2 cos?(0/4) d [since cos®(0/4) > 0for0 <6 < 27] = 8f"/2 cos’udu  [u= 0]

= Sf"/2 1 —sin®u) cosudu =8 [, (1 - a?) dzx { @ = sinu, ]

dx = cos udu

vl

— sl o] =801 - 4) =
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50. The curve r = cos®(6/2) is completely traced with 0 < § < 2. el
r? 4 (dr/df)* = [cos®(6/2)]* + [2cos(0/2) - (—sin(6/2)) - %}2
= cos®(0/2) + cos® (0/2) sin*(0/2) —015 1.02
= cos?(6/2)[cos®(0/2) + sin?(0/2)]
= cos(6/2) .

L= [27\/cos?(0/2) df = [7™ |cos(0/2)| df =2 [ cos(/2)d0  [since cos(6/2) > 0for 0 < 0 < n]

:4fo7r/2cosudu [u=30] :4[sinu}g/2 =4(1-0)=4

51. One loop of the curve » = cos 26 is traced with —7/4 < 6 < 7/4.

/4

2
r? 4 (%) = cos?20 + (—2sin20)? = cos? 20 + 4sin® 20 = 1+ 3sin?20 = L V1 + 3sin? 20 df ~ 2.4221.
—7/4

df

2 /3
52. 1% + <ﬁ> =tan? 6 + (sec’0)®> = L/ v/tan2 0 + sect 6 df ~ 1.2789
/6

53. The curve r = sin(6sin 0) is completely traced with0 < 0 < 7. r =sin(6sinf) = dr_ cos(6sinf) - 6 cos B, S0

db
2 dr 2 .2 . 2 2 . T ) . .
e+ ) =sin (6sin@) + 36 cos” O cos®(6sinf) = L \/sm (6sin @) + 36 cos? 6 cos?(6sin ) df ~ 8.0091.
0
54. The curve r = sin(6/4) is completely traced with 0 < 6 < 87. r =sin(0/4) = % = 1 cos(0/4), so

dr\? . 8m
r? 4 <@> =sin®*(0/4) + & cos®(0/4) = L/O \/s1n2(9/4) + 15 cos?(6/4) d ~ 17.1568.

55. (a) From (10.2.6),

S = [ 2myy/(dx/d0O)? + (dy/d0)? do

= fab 2my+/r? + (dr/df)? do [from the derivation of Equation 10.4.5]

= fab 2rrsin 04/ 72 + (dr/d)? do

(b) The curve 12 = cos 26 goes through the pole when cos 20 =0 =

20 =% = 0= Z.We’ll rotate the curve from § = 0 to ¢ = & and double

this value to obtain the total surface area generated.
dr dr\® sin®20 sin®26
2 .
= cos 20 2r — = —25sin 20 =) = - _
T COs = T a0 S = (d&) 2 cos 20

/4 /4 2 s 2
S:2/ ZWVCOSQGSinG\/cos%—l—(sin229)/cos29d0:47r/ VCOSQGSinG\/WdQ
0 0

/4 1 /4
=A4r Vv cos 20 sin 0 d0:47r/ sinfdf = 4r[—cosf]™* = —4n (L2 — 1) =2r 22
/0 v/cos 20 0 [ ]0 (2 ) ( )
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56. (a) Rotation around § = 7 is the same as rotation around the y-axis, that is, S = fab 2mx ds where

ds = \/(dz/dt)? + (dy/dt)? dt for a parametric equation, and for the special case of a polar equation, z =  cos 6 and

ds = \/(dz/d)? + (dy/df)? df = \/r? + (dr/df)? db [see the derivation of Equation 10.4.5]. Therefore, for a polar

equation rotated around § = %, S = fab 27r cos 6+/12 + (dr/dB)? dé.

(b) As in the solution for Exercise 55(b), we can double the surface area generated by rotating the curve from =0to 6 = %

to obtain the total surface area.

/4 /4 2 s 2
522/ 27r\/cos2<9cos9\/cos2<9+(sin220)/cos29d9:47r/ \/COS2000S0\/W¢ZQ
0 0

/4 /4
=47T/ v cos 20 cos 0 ! d0:47r/ cos9d0:47r[sin9r/4:47r<§—0> =227
0 0

cos 2 0

10.5 Conic Sections

La?=6yandz’ =4py = 4p=6 = p:%. 2.2y =bx = yQng. 4p:% = ng.
The vertex is (0,0), the focus is (0, 2), and the directrix The vertex is (0, 0), the focus is (2, 0), and the directrix
iSyz—%. inz—%.

y y
61 5
=3
3
(O’ 2) (5/8,0) .
| 10 x
6 X

3.20=—y* = yP=-22 dp=-2 = p:f%. 4.32° +8y =0 = 32°=-8 = m2:f§y.
The vertex is (0, 0), the focus is (—3, 0), and the 4p=—-8 = p=—2 Thevertexis (0,0), the focus
directrix is z = 1. is (0, —2), and the directrix is y = 2.

' y
: 1
P x=3 R
1 0 )
i =
i N
> i > (O”3)
i
1
i
]
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5.

7.

10.

11.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(x+2)>=8(y—3). 4p = 8,50 p = 2. The vertex is 6.2 —1=(y+5)°. 4p=1,50p = 1. The vertex is
(—2,3), the focus is (—2, 5), and the directrix is y = 1. (1,—5), the focus is (2, —5), and the directrix is = = 3.
y y 3
=3
(~2.5)e ¢
\// X
______ y=l
X
42y +1224+25=0 = 8.y+12r—22° =16 = 22°—122=y—16 =
P42y +1l=—-120-24 = 22 —6r+9) =y —16+18 =
(y+1)* = ~12(z +2). 4p= —12,50p = 3. 20z -3 =y+2 = (z-3)°=3@y+2)
The vertex is (—2, —1), the focus is (—5, —1), and the dp = % s0p = é The vertex is (3, —2), the focus is
directrixis » = 1. (3,—12), and the directrix is y = — 1.
y
y
0 X
(=5,=1) e
s
(=2,-1)
0 X
x=1 y:—% (37_%)

. The equation has the form y? = 4pa, where p < 0. Since the parabola passes through (—1, 1), we have 1% = 4p(—1), so

2

4p = —1land anequationis y> = —z orz = —y>. 4p = —1,50 p = — 1 and the focus is (—3, 0) while the directrix

sy — 1
isx=1.

The vertex is (2, —2), so the equation is of the form (z — 2)® = 4p(y + 2), where p > 0. The point (0, 0) is on the parabola,
504 = 4p(2) and 4p = 2. Thus, an equation is (z — 2)> = 2(y +2). 4p = 2,50 p = & and the focus is (2, —2) while the
directrix is y = — 2.

2

2
Tl 1 o oo VI—nb—VEe— VT T = JTTI = V3 The

ellipse is centered at (0, 0), with vertices at (0, +2). The foci are (0, +v/2).

_\/E 0 \/5 X
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12.

13.

2

x y2
G tg=1 = a=V=6b=1§

c=+/a% — b2 = /36 — 8 = /28 = 21/7. The ellipse is centered at (0, 0), with

vertices at (46, 0). The foci are (+2+/7, 0).

xz yz
2+t =9 < s+tT=1= a=+9=3,

b=Vi=1lc=Va2 -2 =,9-1=+/8=2/2
The ellipse is centered at (0, 0), with vertices (£3,0).

The foci are (£2v/2,0).

15. 92% — 18z + 49> =27 <

17. The center is (0,0), a = 3, and b = 2, S0 an equation is

9(2® —20+1)+4y> =27+9 &

(z—1)°
1

a=3b=2c=+5 = center(1,0),

2
Iz —1)2+4y° =36 < +%:1 =
vertices (1, £3), foci (1,£v/5)
)

(1,-3)

.1’2

4

14.

16.

2
v
+ 9

SECTION 105 CONIC SECTIONS LI 65

_2\/5
2 2
2 2 z
1002" +36y° =225 & FHtm =1 ©
100 36
2 2
T y o — /25 _ 5 p_ J9_3
?-i—g_l = a= 7—§vb— 1 2
4 4

c=+a?—p? = /2 — 2 =2 Theellipse is centered

:

at (0,0), with vertices (0, +3). The foci are (0, +2).

y
5
7\
2
I R
2 2
-2
5/
2

224+ 3+22 - 12y+10=0 <
P +2r+14+3(01° —4dy+4)=-10+1+12 &
(x+1)°+3@y—-2%=3 <

(z+1)?  (y=2)°
3 + 1

c=+v2 = center (—1,2), vertices (—1 £ /3,2),
foci (—1+v/2,2)

=1 = a=+3b=1,

—1-3,2)¢ « o }(—1+4/3,2)

=1.c¢=+a? — b2 = /5, so the foci are (0, £1/5).
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2 2
18. The ellipse is centered at (2, 1), with « = 3 and b = 2. An equation is (z 92) + w—1) =1.c=+a2 -2 =+/5,50

the foci are (2 ++/5,1).

2 2
19.3—5—%:1 = a=5b=3c=v25+9=1341 =

center (0,0), vertices (0, £5), foci (0,4+/34 ), asymptotes y = +2x.

Note: It is helpful to draw a 2a-by-2b rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

20, —-——L =1 = a=6b=8,¢c=/36+64=10 =

center (0,0), vertices (+6, 0), foci (£10, 0), asymptotes y = + 3z = +-3z

1:2 y2
m—l—oo—l = a—b—lO,

c=+/100 + 100 = 10/2 = center (0,0), vertices (410, 0),
foci (£10+/2,0), asymptotes y = £12z = +x

21 2 — 2 =100 <

2
2421622 =16 < ?1’—6
c=V16+1=V17T =

foci (0,2+/17), asymptotes y = +2z = +4a

2
—%:1 = a=4b=1,

center (0, 0), vertices (0, +4),

4

<

s
%)
B

0.,5)

(=10,0)

—6,0) N/

(10,0)

=10V 2} (10, O\)\\ L

N 7 S
NG /S
P (L4
0, 4)7
) R
il x
0, -4/
N
©0,-17) y=—4x
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23.

24.

25.

26.

21.

28.

29.

30.
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4z — > — 242 —4y+28=0 < y
42 —6r+9) — (2 +4y+4)=-28+36—-4 < ‘ ,
_3)2 2)2 0 x
4(1: _ 3)2 _ <y+2)2 -4 & (33 13) _ (y_z ) -1 = \\ ,/' (3,-2)
(2,-2) 4,-2)
N e e o
a=Vi=lb=vi=2c=Viti=v5 = B-Vs2T R (3++/5.-2)
center (3, —2), vertices (4, —2) and (2, —2), foci (3 £ /5, —2), S
asymptotes y + 2 = +2(x — 3). (4»—4)“\‘
v —4a? —2y+ 162 =31 < R (2,1++/20)
(*—2y+1) —4(z? —4x+4)=31+1-16 < \ //
(y—1)2-4(x-2°=16 & N, AR
-1 (z-2)? \ S
_ -1 =V16=4,b=4=2
16 4 - ' va ' X2
c=+16+4=+20 = center(2,1), vertices (2,1 + 4), UV x
foci (2,14 1/20), asymptotes y — 1 = £2(x — 2). /(2:3)\‘
2,1-420)

2> =y+1 < 2°=1(y+1). Thisisan equation of a parabola with 4p = 1, so p = 1. The vertex is (0, —1) and the

focus is (0, —2).

2®=y*+1 < 2?—y® = 1. Thisis an equation of a hyperbola with vertices (41, 0). The foci are at

(£VI+T1,0) = (£v2,0).

=4y -2 & 2242 —4y=0 & 22+2 -2+ 1) =2 & 224+2y—172=2 <

2 2
% + Q = 1. This is an equation of an ellipse with vertices at (++/2,1). The foci are at (£v/2 —1,1) = (1, 1).

¥ —8y=6r—-16 < y> -8y +16=062z < (y—4)*> = 6x. Thisisan equation of a parabola with 4p = 6,

sop = 2. The vertex is (0,4) and the focus is (2,4).

2
Y H2y=42"4+3 & P+Uy+l=42+4 & (Y+1)P2-42’=4 & @f:ﬁ:lﬁhisisanequaﬁon

of a hyperbola with vertices (0, —1 + 2) = (0,1) and (0, —3). The fociare at (0, —1 + /4 +1) = (0,—1 £ +/5).

(4 3)"

2 .
1/4 +y“ = 1. Thisisan

4 vz +42 =0 < 4(m2+x+i)+y2:1 & 4(:5—1—%)24—3/2:1

equation of an ellipse with vertices (—3,0 + 1) = (—3,+1). The foci are at (—%, 0+ ,/1— %) = (-1,+V3/2).
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
The parabola with vertex (0, 0) and focus (1, 0) opens to the right and has p = 1, so its equation is 4> = 4px, or 4> = 4x.

The parabola with focus (0, 0) and directrix y = 6 has vertex (0, 3) and opens downward, so p = —3 and its equation is

(x —0)? =4p(y — 3),0r 2 = —12(y — 3).
The distance from the focus (—4, 0) to the directrix z = 2 is 2 — (—4) = 6, so the distance from the focus to the vertex is
1(6) = 3 and the vertex is (—1, 0). Since the focus is to the left of the vertex, p = —3. An equation is y* = 4p(z + 1) =

y? = —12(x +1).

The distance from the focus (3, 6) to the vertex (3, 2) is 6 — 2 = 4. Since the focus is above the vertex, p = 4.

Anequationis (x — 3)? =4p(y —2) = (z—3)% =16(y — 2).

A parabola with vertical axis and vertex (2, 3) has equation y — 3 = a(z — 2)2. Since it passes through (1, 5), we have

5—3=a(1-2)> = a=2so0anequationisy —3 = 2(z —2)%

A parabola with horizontal axis has equation = = ay? + by + c. Since the parabola passes through the point (—1, 0),
substitute —1 for z and 0 for y: —1 = 0 + 0 + ¢. Now with ¢ = —1, substitute 1 forx and —1fory: 1 =a—b—1 (1);
andthen3forzand1fory: 3=a+b—1 (2). Add (1)and (2)toget4d =2a —2 = a=3andthenb = 1.

Thus, the equation is 2 = 3y +y — 1.

The ellipse with foci (2, 0) and vertices (+5, 0) has center (0, 0) and a horizontal major axis, with « = 5 and ¢ = 2,

s0b? =a® —c? =25 -4 =21. Anequationisgg—2 +y—2 =1.
25 21

The ellipse with foci (0, +5) and vertices (0, +-13) has center (0, 0) and a vertical major axis, with ¢ = 5 and a = 13,
2 2

N s R ionis — + 4 —
S0b=+a?—c 12.Anequat|0n|sl44+169 1

Since the vertices are (0,0) and (0, 8), the ellipse has center (0,4) with a vertical axis and a = 4. The foci at (0, 2) and (0, 6)

M2 A2
are 2 units from the center, so ¢ = 2 and b = /a2 — c2 = /42 — 22 = 1/12. An equation is (@ b20) + U a24) =1 =

2 2
= (y—4)7°
12+ 16 =1L

Since the foci are (0, —1) and (8, —1), the ellipse has center (4, —1) with a horizontal axis and ¢ = 4.

The vertex (9, —1) is 5 units from the center, so a = 5and b = v/a2 — 2 = /52 — 42 = V/9. An equation is

(z—4?2  @W+1)?> _ (z—4)?  @w+1)?* _
P S B

(e 1)? , (y— 47

b? 42
2 _A)2
(+1° -9 _

12 16

An equation of an ellipse with center (—1, 4) and vertex (—1,0) is = 1. The focus (—1, 6) is 2 units

from the center, so ¢ = 2. Thus, b + 22 = 42> = b2 = 12, and the equation is

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



42.

43.

44,

45.

46.

47.

48.

49.
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2 2

Foci F1(—4,0) and F»(4,0) = ¢ = 4and an equation is % + y—2 = 1. The ellipse passes through P(—4,1.8), so

b
2a = |PFi|+ |PFy| = 20=18+/+ (1.8 = 20=18+82 = a=5

2 2

b2 = a2 — ¢ = 25 — 16 = 9 and the equation is —— + ¥ = 1.
25 9
. . . Ve .
An equation of a hyperbola with vertices (43, 0) is T E = 1. Foci (£5,0) = c=5and3*>+b* =5 =
b2 h ionis & _ ¥
=25-9=1 jonis — — = =1.
5—9 = 16, 50 the equation is - — 7=
y2 IZ
An equation of a hyperbola with vertices (0, £2) is Crimi i 1. Foci (0,4£5) = c=5and2’>+b* =5 =
2 . . y2 :L‘2
b* = 25 — 4 = 21, so the equation is T3 1.

The center of a hyperbola with vertices (—3, —4) and (—3,6) is (—3,1), so a = 5 and an equation is

y-1* (z+3)°
52 b

(y-1° (@+3)° _
25 39

=1.Foci (—3,-7)and (—3,9) = c=8,505°+b* =8> = b®>=064—25=39andthe

equation is 1.

The center of a hyperbola with vertices (—1, 2) and (7, 2) is (3, 2), so a = 4 and an equation is = =

Foci (—2,2)and (8,2) = c=5,504>+b%=5% = b* =25—16 = 9 and the equation is

@-3)° -2°_,

16 9
) ) ) g2 y2
The center of a hyperbola with vertices (£3, 0) is (0,0), so a = 3 and an equation is T 1.
b ) . $2 y2
Asymptotes y = +22 = o= 2 = b=2(3) = 6and the equation is 9 36 1

-4 (@-27°

o B =1

The center of a hyperbola with foci (2, 0) and (2, 8) is (2, 4), so ¢ = 4 and an equation is

1
The asymptote y = 3 + 1z hasslope%,so%: 5 = b=2aanda® +0* = = a*+(20)*=4> =
4  (z—2)?

(y—4)°"
16/5 64/5

50> =16 = o’ =22andsob” =16 — L& = & Thus, an equation is

In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance
a — ¢ from it) while the farthest point is the other vertex (at a distance of a + ¢). So for this lunar orbit,

(a—c)+ (a+c¢) =2a = (1728 + 110) + (1728 + 314), or a = 1940; and (a + ¢) — (a — ¢) = 2¢ = 314 — 110,

2 2

_ 2 _ 2 2 _ PR L Y _
orc=102. Thus, b* = a C 3,753,196, and the equation is 3763.600 + 3753196 1
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50.

51.

52.

53.

54.

55.

O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(a) Choose V' to be the origin, with z-axis through V" and F. Then F'is (p,0), A is (p,5), so substituting A into the
equation y* = 4pz gives 25 = 4p® so p = £ and y* = 10z.

Mz=11 = y=+110 = |CD|=2V110

(a) Set up the coordinate system so that A is (—200,0) and B is (200, 0).

|PA| — |PB| = (1200)(980) = 1,176,000 ft = 220 mi = 2a = a = 122 and ¢ = 200 s0

11’

3,339,375 12122 12192
=g =2 = - =1
c-a 121 1,500,625 3,339,375
121)(200)2 121y? 133,575 .
b) Due north of B =2 ( — =1 = ~ 248 mi
() = 2=20 = 0625 3.339.375 = Y= 539 8

|PFi| — |PF|=%2a & /(z+c)2+y2—/(z—c)2+y>?==42a &

Va+te)2+y2=/(z—c)2+12+2c & (z+)’+y’=(x—c)’+y°+4a’tda\/(z—c)2+y? &
dex —4a® = +da/(x — )2 +y2 & F2® —2acx +at = d*(2® - 2cx + P+ P &

(A —a®)a® —d®y? = d*( — d®) & b2z —d®y® =d®? [whereb> =2 —d?] & = — L

The function whose graph is the upper branch of this hyperbola is concave upward. The function is

a4/l \/b2—|—x2 soy = bx(bz—&—xz)*l/z and

[(b2 +22)72 — 2 + :1:2)’3/2] = ab(b? +x?)~*/% > 0 forall z, and so f is concave upward.

1

O"IQ

We can follow exactly the same sequence of steps as in the derivation of Formula 4, except we use the points (1,1) and

(—1,—1) in the distance formula (first equation of that derivation) so /(z — 1)2 + (y — 1)2+ /(z + 1)2+ (y + 1)2 =4

will lead (after moving the second term to the right, squaring, and simplifying) to 2 \/(z + 1)2 + (y + 1)2 = + y + 4,

which, after squaring and simplifying again, leads to 322 — 2zy + 3y* = 8.

2

2
(@) If £ > 16, then £ — 16 > 0, and % + = lisan ellipse since it is the sum of two squares on the left side.

k—16
2 2
(b) If 0 < k < 16,then k — 16 < 0, and ‘% + ﬁ = 1is a hyperbola since it is the difference of two squares on the

left side.

(c) If k < 0, then k — 16 < 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) Incase (a), a® = k, b* = k — 16, and ¢* = a® — b® = 16, so the foci are at (+4,0). Incase (b), k — 16 < 0,50 a® = k,

b? =16 — k, and ¢* = a® + b® = 16, and so again the foci are at (44, 0).
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57.

58.

SECTION 105 CONIC SECTIONS (I
2 L ,
@y>=4dpz = 2y =4p = ¢ = gp’ so the tangent line is y

y—vo="L(x—z0) = yyo—vi=2p(x—10) &

Yo
Yyyo — 4dpxro = 2px — 2px0

—x, 0

= yyo = 2p(z + o).

(b) The z-intercept is —xo.

@ =dpy = 2w =4dpy = y =— sothetangentline at (zo,yo) is
2p x*=4py

m% o T .
= 2 (z — xo). This line passes through the point (a, —p) on the

2
: . T To
directrix, so —p — =2 = == (g —
p 4p 2p “ xo)

= —4p® — 2 =2ax9 — 212 &

% v
2 2 2 2 2 2 (@.=p) =
o —2axo —4p° =0 & x5 —2ax0+a” =a”+4p° &

(xo —a)® = a® +4p*> & x0 = a =+ /a? + 4p2. The slopes of the tangent lines at x = a & /a2 + 4p2

ea:l: a? + 4p?

ar
2p

, 50 the product of the two slopes is

a—i—\/m'a—\/m_az—(az—&—élﬁ)
2p 2p a

4p?

42
e -1,
4p?

showing that the tangent lines are perpendicular.

Without a loss of generality, let the ellipse, hyperbola, and foci be as shown in the figure.

The curves intersect (eliminate y?) =

2 2 2 2
B2<l’ Y >+b2(x—+y—>:B2+b2 -

__B_
V=R

A2 B2 PERMN

322 2,2 B2 2
x ba;;’ — B2 = a:2<—+b—>

A2

=B*+b =

AZ - g2

s BQ+b2

T a®B? 40247
A2q2

_ A2a3(B? 4 b?)
a2 B2 + b242

B2 (a? — A?)

Similarly, y2 = m

x2 y2_1 2x _
¥+b_2_ = a? b2 b2 a2

vy’ x B? x

=0 mETm T VT,

Next we find the slopes of the tangent lines of the curves:

2yy’

B2

b2B2 A2a2(32 +b2)

at (zo,v0) is ¥k vy = _YBag _ @B oA | B

0, Yo YeYH = GQAng = o szz(az 7A2) T a2 — A2
b2A42 + 2 B2

WL Y S 2z
£ a’y A2 B?

A2

we have a® — b2 = A% 4+ B2

each point of intersection are perpendicular.
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59.

60.

61.

62.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

2 2
92° + 4y =36 < % + % = 1. We use the parametrization x = 2 cost, y = 3sint, 0 < ¢t < 27. The circumference
is given by
f V(dz/dt)? + (dy/dt)? dt = Ozﬁ V/(—2sint)2 + (3cost)2 dt = 4sin®t + 9cos? t dt
= OW V4 +5cos? tdt

Now use Simpson’s Rule with n = 8, At = 2”; 0_ % and f(t) = v/4 + 5cos? t to get
L Ss = S [£(0) +45(5) +2(5) + 47 (3F) +20(m) + 41 () + 27 () + 47 (5F) + f(2m)] ~ 15.9.

The length of the major axis is 2a, S0 a = 1(1.18 x 10'%) = 5.9 x 10°. The length of the minor axis is 2b, so

2 2

b= 2(1.14 x 10'°) = 5.7 x 10°. An equation of the ellipse i s — + 75 L

i = 1, or converting into parametric equations,

x =acosfandy = bsinf. So

=4 [7?\/(dx]dB)? + (dy/d)? df = 4[0”/2 Va?sin? 6 + b2 cos? 6 df

Using Simpson’s Rule with n = 10, A§ = Z2=0 — = ‘and f(6) = \/a2sin® 6 + b2 cos? 6, we get

10 20’

Lr~4-So=4-52=[f0)+4f(F) +2f (&) + +2f( Z) +4f (%) + f(5)] =~ 3.64 x 10" km

2 2 2 2 _ 2
x z“—a
;71;—2:1 = zb/—2: e = y—i V2 —a?.

‘b 39 2b|x a ©
A=2 - Va2 —a?dx = — 5\/x27a2771n‘x+ x? —a?

. a a "

:2[0\/027&fa21n|c+\/c2fa2f+a21n\a\]
a

Sincea? +b%> =%, — a2 =b% and V2 — a2 =b.

_br, o 2 _b 2 _
= a[cb a’In(c+b) +a’lnal = a[cb—&—a (Ina —1In(b + ¢))]

=b’c/a + ablnfa/(b + c)], where ¢® = a® + b>.

2P 2 2 _ 2
(a)—+——1 = L _2-% o y_ib\/ 2 —z2.
b2 b2 a?
a b 2 b2 a )
V= w E\/aQ—xQ dwz?wE (a® —2%)dz
—a 0

2rb® [ 5, a1e  2@b? (243 4
= -] =T () =3

2 2 2 2 2
x ¥y = b -y
OFtE=t = &=

a 2 a2 b
V= / 3\/ —y2) dy=27rb—2/0(b2—y2)dy

_27ra2 9 13b_27ra2 203 4,
=T [P =T (F) =3
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1’2

4
top half of the ellipse is %( ab) = 3. Solve 922 4 49> = 36 for y to get an equation for the top half of the ellipse:

2
63. 927 +4y* =36 <« + % =1 = a=3,b=2 Bysymmetry, T = 0. By Example 2 in Section 7.3, the area of the

922 +4y° =36 & 4y°=36—-92" & y’=34d-2") = y=32/4—22 Now

1 (b1 ) 1 [21/3 ? 3 [ ) ,
Y= — —_ = —_— - = 4 — 2 g 4 — Y
=5 | sUere =g [ 3(3vime) a2 [ a-aw 3
3 2 ) 3 131> 3 /16\ 4
== 2 4-aVde="|dx—=2*| ==(2)=2
8 /0( @) de 47r[x 37 |, T aw\3) " x
so the centroid is (0,4/7). =2 0 2 X

2 2
64. (a) Consider the ellipse % + Z—z = 1 with a > b, so that the major axis is the xz-axis. Let the ellipse be parametrized by

xr =acost,y =bsint,0 <t < 27w Then
dz\’ dy ’ 2 02 2 2 2 2 2 2 2 2 2 2 2 _ 2. .2
) Tlg) =@ sin®t + b cos” t = a(1 — cos” t) + b cos” t = a” + (b° — a®) cos® t = a® — ¢* cos” ¢,

where ¢2 = a? — b2. Using symmetry and rotating the ellipse about the major axis gives us surface area

/2 0 — 8
S:/27ryds:2/0 27r(bsint)\/a2fc2c032tdt:47rb/c va? —u? (f%du) {d:j;c—cf:iitdt]
2 c
S a2 7 Lo ()] =22 e+ e (2]
2 2 a’l, c a
27Tb [bc+ a?sin™* (E)}
c a
(b) As in part (a),
dz\* | (dy\’
<—> + (_y) =a?sin®t + b cos’ t = a®sin® ¢t + b*(1 — sin®t) = b* + (a® — b?)sin®t = b + *sin’ ¢,

dt dt

Rotating about the minor axis gives us

/2 c 1 .
_ 2 2 i 2 _ by 2 (L u = csint
/27rxds—2/0 27 (acost)V b2 + 2 sin tdt—47ra/0 Vb2 +u (Cdu> |:du:ccostdt:|

S

IIS

4”“{ VB F?+ = ln(u+\/b2+u2)] _2”“[ VEFE+ VP I(c+ VIE+ &) — b Inb]

(1)

2 2 / 2
. T Y 2r  2yy , b x
65. Differentiating implicitly, — + == =1 = = = . Thus, the slope of the tangent
g implicitly, —5 + 4 = St =0 =y a2y [y # 0] , p g
2
lineat Pis — 223; . The slope of F1 P is - + and of F5 P |s . By the formula from Problems Plus, we have
1
Y1 + b2a,
ton o — %1 +c  a?yr a?y? + ble(xl +c) a?b? + b%cxrn using b2z2 + a?y? = a?b2,
h b2z1y: T a?yi(zy +c) —b2xiyr cAxiyr +aleys and a2 — b2 = ¢2
a?y1(z1 +¢)
B b2(ca:1 +a2) B b2
" ceyi(exr +a2) T o [continued]
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0O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
and b2y "
a2y wi—c  —a*y —bai(z —c¢) | —d®b? 4+ bl b (cwr —a?) b
tan 8 = 3 =— 3 = 5 = = —
 bmy a?y1 (r1 —¢) — V?xiyr Az —a?eyr eya(ers —a?)  an
a?y1(z1 —c)
Thus, a = 3.
The slopes of the line segments F; P and F> P are y—i and —4 , where P is (x1,y1). Differentiating implicitly,
X1 C xr1 —C
20 2yy b2 b2 )
2 g = y = 2T the slope of the tangent at P is 1 , 50 by the formula in Problem 19 on text
a? b2 a?y a?yy
page 271,
b2xy W
tan o — a?y; xi+c  bai(zi4c)—aPyl  b*(cxr +ad?) using 23 /a® — 3 /b2 =1,] _ b
o b21‘1y1 T a?y (z1 4+ ¢) + b2z1y1 T an (cx1 + a?) and a? + b2 = ¢? T an
a*yi(z1 +¢)
b2$1 Y1
T a? — —b%z1 (21 — ¢) + a®y? b (cx1 — a? b?
and tan 8 = ay12x1 c:2 1(1 )2y1: ( 1 2):_
b z1y a?yi(z1 —c) + b2xiyr eyi(cxrr —a?) e
a?y1(z1 —c)
Soa=p.

10.6 Conic Sections in Polar Coordinates

1.

The directrix = 4 is to the right of the focus at the origin, so we use the form with “+ e cos 6” in the denominator.

ed -4 _ 4

T+ecosf 1—|—%cos0 © 24-cosf’

| =

(See Theorem 6 and Figure 2.) An equation is r =

. The directrix x = —3 is to the left of the focus at the origin, so we use the form with “— e cos #” in the denominator.

ed 1-3 3

= 1 for a parabola, so an equation is r = = = .
¢ P g " 1 —ecost 1—1cosf 1 —cosf

. The directrix y = 2 is above the focus at the origin, so we use the form with “+ e sin 6" in the denominator. An equation is

ed 1.5(2) 6

" T 1T esnd 1+15sn6 2+ 3sm6

. The directrix = = 3 is to the right of the focus at the origin, so we use the form with “+ e cos6” in the denominator. An
equationisr = — ¢4 — 33 9
q "~ 1+4+ecos® 1+4+3cosf 1+3cosh
. The vertex (4, 37/2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus (d = 8), and we

use the form with “— esin#” in the denominator. e = 1 for a parabola, so an equation is

ed 1(8) 8

T 1 " csnd 1—1sinf 1—smn6

. The vertex P(1,7/2) is 1 unit above the focus £ at the origin, so | PF'| = 1 and we use the form with “+ esin 6™ in the

denominator. The distance from the focus to the directrix [ is d, so
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|PF| 1
P L g8=-—" = 08{-08=1 = 08{=18 = d=225
TP d—1
An equation is r = ed _ _08@25) 5 _ 9

g “TTesnf 1408sm0 5 5+dsnd

. The directrix » = 4 sec 6 (equivalent to r cos § = 4 or x = 4) is to the right of the focus at the origin, so we will use the form
with “+ e cos 6” in the denominator. The distance from the focus to the directrix is d = 4, so an equation is

. ed _ %(4)
" 14+ecosf 1—|—%c0s0

_ 4
2+ cosf’

2_
- =

. The directrix r = —6 csc @ (equivalent to r sin = —6 or y = —6) is below the focus at the origin, so we will use the form
with “— esin #” in the denominator. The distance from the focus to the directrix is d = 6, so an equation is

ed 3(6) 18

"= 1" ¢sin0 1—3sinf 1—3smn6

4 1/5  4/5

r=—— = — 1~ wheree=2anded=%2 = d=1.
"5 —4sm6 15 1- Zsng cTsINTs s
ity o 4 (4, m/2)
(a) Eccentricity=e = ¢
. 4 - .
(b) Since e = ¢ < 1, the conic is an ellipse.
(c) Since “— esin 0" appears in the denominator, the directrix is below the focus (3. 7) (4.0
AN 5
at the origin, d = | Fl| = 1, so an equation of the directrix isy = —1. N X
. Iy T
(d) The vertices are (4, %) and (5, 3F).
= 12 1/3 _ 4 ,wheree = Landed =4 = d=4(3) =2

3—10cosf 1/3  1- Wcoso
(a) Eccentricity = ¢ = 1_??

(b) Since e = 1—3? > 1, the conic is a hyperbola.

(c) Since “— e cos 0" appears in the denominator, the directrix is to the left of the

focus at the origin. d = |F'I| = £, so an equation of the directrix is z = — 2.

(d) The vertices are (—<2,0) and (12, 7), so the center is midway between them,

that is, (322, ).

2 1/3 2/3 , .
=2 5 20 wheree=1anded = 2 Q-2
373sm0 1/3 14 lsmg ' oceTraded=5 = 3 )
(a) Eccentricity=e=1 e yZ23

(b) Since e = 1, the conic is a parabola. G ﬁ)/-\@ 0)

(c) Since “+ esin 0 appears in the denominator, the directrix is above the focus 0 ¥

at the origin. d = |FI| = £, so an equation of the directrix is y = 2.

(d) The vertex is at (%, g) midway between the focus and directrix.
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3 12 32

2r=-—"2 .2 _ 9%
" T 9 2cos0 1/2 1+ lcosf

wheree=landed =3 = d=

nlw

(a) Eccentricity=e =1

(b) Since e = 1, the conic is a parabola. \

(c) Since “+e cos 0 appears in the denominator, the directrix is to the right of \ (2 o)
T
/

the focus at the origin. d = |Fl| = % S0 an equation of the directrix is 0 /

€Tr =

N
=
Il
(S8

(d) The vertex is at (2, 0), midway between the focus and directrix.

9 1/6 3/2 1 3
Br=———-7—."-=_—""" _ wheree=1anded =3 d=
" T 6+ 2cos0 1/6 14 icosd €T3 ¢ 2 7

(V] e}

(a) Eccentricity = ¢ = +

(b) Since e = 3 < 1, the conic is an ellipse.

_9
(c) Since “+e cos 6" appears in the denominator, the directrix is to the right of (3 ) T2
the focus at the origin. d = |FI| = £, so an equation of the directrix is o U o
, () (50)
:E - El kz
. 9 9 H ; s
(d) The vertices are (%,0) and (%, ), so the center is midway between them, (2,32)

thatis, (3%, 7).

8 1/4 2
U r=—— . L-=—__ =  wheree=32anded=2 = d=2(2)=28.
" T 4{5sin6 1/4 1+ Zsing €= e (5)=¢% 3

. \ (-8.3) ,
(a) Eccentricity = e = 2 \//
(b) Since e = 2 > 1, the conic is a hyperbola.

(c) Since “+esin 6 ” appears in the denominator, the directrix is above the

focus at the origin. d = |Fl| = % S0 an equation of the directrix is y = % b=t
S
(d) The vertices are (3, Z) and (—8, 2), so the center is midway between them, P
that is, (42, 7). 3
1/4 4
15. r 3 4 _ 3/ ,wheree = 2anded = 2 = d=2.

T 1-8cosb 1/4 1—2cosd
(a) Eccentricity=¢ = 2

(b) Since e = 2 > 1, the conic is a hyperbola.

(c) Since “—e cos 6 appears in the denominator, the directrix is to the left of

N
;.r— ‘sx\
2

the focus at the origin. d = |FI| = £, so an equation of the directrix is

ol

r = —

(d) The vertices are (—2,0) and (3, ), so the center is midway between them,

that is, (%, 7). ' =2
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10 37

10 1/5 2 N (%)
6. r=—— .22 2  wheree=S%anded=2 = d=2(2)=232. \

"T5_6sin0 1/5 1-Csind ¢~ ande (8) N o

J
/
K
J

(a) Eccentricity = ¢ =

ullo

(b) Since e = g > 1, the conic is a hyperbola.

(c) Since “—esin 6 ” appears in the denominator, the directrix is below the focus
at the origin. d = |FI| = 2, so an equation of the directrix isy = —2.

(d) The vertices are (—10, 5 ) and (12, 2% ), so the center is midway between them,

thatis, (9, 21).

117 2

1 .
17. (@) r = ——————,wheree=2anded =1 = d= % The eccentricity

\ J 7
\ /
\ /

\, /
\ /
\ 7
\ /

/

1—2siné

e = 2 > 1, so the conic is a hyperbola. Since “—esin 6 ” appears in the

denominator, the directrix is below the focus at the origin. d = |FI| = 1,

so an equation of the directrix is y = —1. The vertices are (—1, %) and
(3,28), so the center is midway between them, that is, (2, 2).

(b) By the discussion that precedes Example 4, the equation

1

1—2sin(9— ?jf)

isr =

4 4/5

" 5+ 6cosb 1—|—gc039

_6 _ 4 _2
,S0e=zanded=3 = d=3.

. L g g -
An equation of the directrixisz = § = rcost =35 = "= s’

If the hyperbola is rotated about its focus (the origin) through an angle /3,

its equation is the same as that of the original, with 6 replaced by 6 — %

4

(see Example 4),so r =

5+6cos(9— %)

19. For e < 1 the curve is an ellipse. It is nearly circular when e is close to 0. As e

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At e = 1, the curve becomes a parabola with focus at the origin.
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20. (a) The value of d does not seem to affect the shape of the conic (a parabola) at
all, just its size, position, and orientation (for d < 0 it opens upward, for

d > 0 it opens downward).

(b) We consider only positive values of e. When 0 < e < 1, the conic is an
ellipse. As e — 0T, the graph approaches perfect roundness and zero size.
As e increases, the ellipse becomes more elongated, until at e = 1 it turns
into a parabola. For e > 1, the conic is a hyperbola, which moves

downward and gets broader as e continues to increase.

0.5 1
-25 25
-08 08
T2 -10
e=0.5 e=0.9
20 15
: EQ IO 10% 10
—10 —10
e=1.1 e=1.5
21 |PF|=¢l|Pl] = r=e[ld—rcos(mr—0)]=e(d+rcosl) =
ed
1- )=ed = r=-——"H—
r(l —ecosf) =e L P

22. |PF|=¢|Pl] = r=e[ld—rsinf] = r(l+esinf)=ed =
. ed
~ 1+esinf

-10

e=10

y=d
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26.

2

28.

29.

30.

SECTION 10.6  CONIC SECTIONS IN POLAR COORDINATES U

23. |[PF|=¢l|Pl] = r=eld—rsin(@ —7)] =e(d+rsinf) =

y
0
r(l —esinf) =ed = r:eid, K\
1—esinf ~|F x
P
[ y=—d
. . c d c—d c+d
24. The parabolas intersect at the two points where = 0= = .
P ! poInts W 1+cosf) 1—cosb - oos c+d - 2
For the first parabola, dr_ &92 SO
df  (1+cosf)
dy _ (dr/df)sinf +rcost csin®0 + ccosf(1+cosf) 1+ cosd
dr ~ (dr/df)cos —rsinf  csinfcos — csinf(1 +cosf)  —sinf
L dy 1—cosf sin 6 . . .
and similarly for the second, == = - = . Since the product of these slopes is —1, the parabolas intersect
dx sin 6 1+ cosf
at right angles.
25. We are given e = 0.093 and a = 2.28 x 108. By (7), we have
_a(l—¢€*) 228 x10°[1—(0.093)%]  2.26 x 10°
" 1+4ecos 1+ 0.093 cos @ ~1+0.093cos 6

We are given e = 0.048 and 2¢ = 1.56 x 10° = a = 7.8 x 10%. By (7), we have

. a(l—e?) 7.8 x 10%[1 — (0.048)7]

178 x 10°
" 14ecosf 1+ 0.048 cos 0 ~ 1+ 0.048 cos 6
7. Here 2a = length of major axis = 36.18 AU = a = 18.09 AU and e = 0.97. By (7), the equation of the orbit is
_ 18.09[1 — (0.97)’] ~ 1.07 By (8), the maximum distance from the comet to the sun is
T T171097cos0 - 11007cosf )
18.09(1 + 0.97) ~ 35.64 AU or about 3.314 billion miles.

Here 2a = length of major axis = 356.5 AU = a = 178.25 AU and e = 0.9951. By (7), the equation of the orbit
. 178.25[1 — (0.9951)%] 1.7426
© 140.9951cosé

N 1709951 058" By (8), the minimum distance from the comet to the sun is
178.25(1 — 0.9951) ~ 0.8734 AU or about 81 million miles.

The minimum distance is at perihelion, where 4.6 x 10" = 7 = a(1 — e) = a(1 — 0.206) = a(0.794)

=
a = 4.6 x 107/0.794. So the maximum distance, which is at aphelion, is

r=a(l+e) = (4.6 x 107/0.794) (1.206) ~ 7.0 x 107 km.

At perihelion, » = a(1 — ¢) = 4.43 x 10°, and at aphelion, r = a(1 + ¢) = 7.37 x 10°. Adding, we get 2a = 11.80 x 10°,
soa = 5.90 x 10° km. Therefore 1 + ¢ = a(l +¢)/a = =27

L7 ~ 1.249 and e ~ 0.249.
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80 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
31. From Exercise 29, we have e = 0.206 and a(1 — ¢) = 4.6 x 107 km. Thus, a = 4.6 x 107/0.794. From (7), we can write the
. ) . 1—e? .
equation of Mercury’s orbit as » = a————. So since
1+ ecosf
dr _a(l— e?)esind
d9 (1 +ecosh)?
9 dr\? a*(1 —¢*)? a*(1—e*)?e?sin® 6 a*(1—e*)? 9
S R = 1+2 0
" Jr(d9 (14 ecosf)? (1+ecosh)* (1+ec059)4( +2ecosf+e7)
the length of the orbit is
2 ™ J1+e2+ 2ecosh
L= 2 2df = a(l—¢” ~ 3.6 x 10° k
| \/r2+ (dr/df)?df = a(1 —e) | (T coos0)? df ~ 3.6 x 10° km
This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius a
is 27a = 3.6 x 10® km.
10 Review
CONCEPT CHECK
1. (a) A parametric curve is a set of points of the form (z,y) = (f(¢), g(¢)), where f and g are continuous functions of a
variable ¢.
(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the
curve by finding f(¢) and g(t) for various values of ¢, either by hand or with a calculator or computer. Sometimes, when
f and g are given by formulas, we can eliminate ¢ from the equations = = f(¢) and y = g(¢) to get a Cartesian equation
relating z and y. It may be easier to graph that equation than to work with the original formulas for = and y in terms of ¢.
. dy . Ldy  dy/dt
2. (a) You can find . as a function of ¢ by calculating —= Te = /dt [if dz/dt # 0].
(b) Calculate the area as fabydac = ff g(t) f'(t)at Tor [ g(t) f'(t)dt if the leftmost point is (f(8), g(8)) rather
than (f(a), g(e))]-
3. (@) L= [0 \/(da/dt)? + (dy/dt)2dt = [ \/Tf 2t
) S = [7 2my/(de/dt)? + (dy/dt)? dt = f‘* 2mg(t)\/[F g (D)2 dt
4. (a) See Figure 5 in Section 10.3.
(b) z = rcosf, y=rsind
(c) To find a polar representation (r, 0) with > 0 and 0 < 6 < 2, first calculate »r = \/x2 + y2. Then @ is specified by
cosf =x/randsinf = y/r.
d d . dr .
dy d_z @(y) (rsin ) <d€>sm9+rcos€
5. (a) Calculate == = 4% — = = . Where r = f(0).
T

o2 L
a0 o\’

SE SIE

(rcosf) (%)cos@—rsin&

(b) Calculate A = [” 112 do = [* 1[£(0)]* do

© L= ["\/(dx]d0)® + (dy/dO)2 d6 = [* /2 + (dr]dB)Zdo = [* /IO + [J'(0)]% db

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



CHAPTER 10 REVIEW [ 81

. (a) A parabola is a set of points in a plane whose distances from a fixed point F' (the focus) and a fixed line [ (the directrix)

are equal.

(b) 22 =

dpy; y® = dpa

. (a) Anellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

2

(b) = +

y2

=1
a2 — 2

. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.

This difference should be interpreted as the larger distance minus the smaller distance.

(b) = —

@©y=+

=1

2 — q?

2 — q?

. (a) If a conic section has focus £ and corresponding directrix I, then the eccentricity e is the fixed ratio | PF’| / | Pl| for points

P of the conic section.

(b) e < 1 foranellipse; e > 1 for a hyperbola; e = 1 for a parabola.

CQr=dr=———ax=—dr

ed ed dr— ed —dr ed

1+ecosf’ T 1—ccost ! 1+esin9'y: T 1 Zesing

TRUE-FALSE QuIZ

. False.

. False.

. False.

. False.

. True.

. True.

Consider the curve defined by « = f(t) = (t — 1)® and y = g(t) = (t — 1)®. Then ¢’ (¢t) = 2(t — 1),s0 ¢’ (1) = 0,
but its graph has a vertical tangent when ¢ = 1. Note: The statement is true if f'(1) # 0 when ¢'(1) = 0.

If x = f(t) and y = g(t) are twice differentiable, then —=

d (dy

d*y d (dy dt(d;t)

da? %(%) dr
dt

For example, if f(t) = cost and g(t) = sint for 0 < ¢ < 4, then the curve is a circle of radius 1, hence its length

is 2, but [ \/[f 2dt = ['" \/(=sint)? + (cost)2dt = [ 1dt = 4, since as ¢ increases

from 0 to 4, the circle is traversed twice.

If (r,0) = (1,7), then (x,y) = (—1,0),s0 tan"'(y/z) = tan~* 0 = 0 # 0. The statement is true for points in
quadrants | and IV.

The curve r = 1 — sin 26 is unchanged if we rotate it through 180° about O because
1—sin2(0 +7) = 1 —sin(20 4 27) = 1 — sin 26. So it’s unchanged if we replace r by —r. (See the discussion

after Example 8 in Section 10.3.) In other words, it’s the same curve as r = —(1 — sin 20) = sin 26 — 1.

The polar equation r = 2, the Cartesian equation z* + y* = 4, and the parametric equations = = 2 sin 3t,

y =2cos 3t [0 <t < 2r] all describe the circle of radius 2 centered at the origin.
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7. False.

8. True.

9. True.

10. True.

The first pair of equations gives the portion of the parabola y = =2 with = > 0, whereas the second pair of equations

traces out the whole parabola y = z2.

Y =2y+3z & (y—1°>=3z+1=3(z+%)=4(3)(z+ %), which is the equation of a parabola with

vertex (—%,1) and focus (—% + 2,1), opening to the right.

By rotating and translating the parabola, we can assume it has an equation of the form y = cz2, where ¢ > 0.
The tangent at the point (a, ca®) is the line y — ca® = 2ca(z — a); i.e., y = 2cax — ca®. This tangent meets
the parabola at the points (z, cz®) where ca® = 2cax — ca®. This equation is equivalent to z* = 2az — a®
[sincec>0]. Butz? =24z —a®> & 2> —2ax+ad*°=0 & (z—a)’=0 & z=a &

(z,cx?) = (a, ca®). This shows that each tangent meets the parabola at exactly one point.
ed

Consider a hyperbola with focus at the origin, oriented so that its polar equation is » = T ecosd’ where e > 1.
€ COS

The directrix is x = d, but along the hyperbola we have x = r cos§ = cd cos = —£&5 4 #d.
1+ ecosf 1+ ecosf

EXERCISES

La=t44t,y=2—t,-4<t<1t=2-—y,50 y
r=02-y) +42-y) =4 —dy+y* +8—dy=9y>-8y+12 &

x 44 =y? -8y + 16 = (y — 4)°. This is part of a parabola with vertex

5,
(—4,4), opening to the right. —

2. x=1+¢€*y=¢ Y

r=1+e =1+ () =1+9%y>0.

2,1),t=0

X
1 1 y
3. y=sech = =—.Since0<O<7/2,0<zx<landy > 1.
cos «x
This is part of the hyperbolay = 1/z.
1,1), 6=0
0 X
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4.x:2cos(9,y=1+sin9,cos29+sin20:1 = y
x\ 2 2 1:2 2 - .
(—) +(y—-1)°"=1 = — 4 (y—1)" =1. Thisisan ellipse,
2 4 11 2.1
centered at (0, 1), with semimajor axis of length 2 and semiminor axis of 6=0
length 1. _‘2 2 x

5. Three different sets of parametric equations for the curve y = Vi are
e=t y=vi
(i) z =1t y=1°
(iii) = tan®t, y =tant, 0 <t < /2

There are many other sets of equations that also give this curve.

6. Fort < —1,x > 0and y < 0 with x decreasing and y increasing. When
t=—1, (z,y) = (0,0). When —1 < ¢ < 0, we have —1 < = < 0 and
0<y<1/2.Whent =0, (z,y) = (—1,0). When0 < ¢t < 1,

—l<z<Oand -1 <y <0 Whent=1,(z,y) = (0,0) again.

When ¢t > 1, both  and y are positive and increasing.

7. (a) (.27) The Cartesian coordinates are z = 4 cos &= = 4(—3) = —2and
K\Lﬂ y=4sin 3 = 4(@) = 2+/3, that is, the point (—2,2+/3).
3
0

(b) Given z = —3 and y = 3, we have 7 = /(—3)2 + 32 = /18 = 31/2. Also, tan = Y = tang= % and since

- —
(—3,3) is in the second quadrant, & = 2Z. Thus, one set of polar coordinates for (—3, 3) is (3 /2, 2}, and two others are
(32, 142) and (=313, 7).

8.1<r<2 Z<g<im

6

=IE
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9. r = 1 — cos#. This cardioid is

10. » = sin46. Thisisan
eight-leaved rose.

11.

12.

13.

14.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

symmetric about the polar axis.

r = cos 30. Thisisa

three-leaved rose. The curve is

traced twice.

r = 3+ cos 30. The curve is
symmetric about the horizontal

axis.

r =1+ cos26. The curve is
symmetric about the pole and

both the horizontal and vertical

axes.

r = 2cos(0/2). The curve is
symmetric about the pole and
both the horizontal and vertical

axes.

2-.
(2, m)
; ; o
0 T 27 0
37
(1L5)
r
1,
0
_1,,
,
1 ™
GZE
m
6 (1,0)
0 T 27 0
1
r ks
47 (.3)

Of 7 21 7 47 57 27 0
3 3 3 3

.

2_

0 7 x  3m 27 0
2 2

,

2,

Y (V

0 20 37 477'6
@ ®

72,,

(2, m)

(2, )
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3 ..
15. r = T 25m0 = e =2>1,s0theconicisahyperbola. de =3 = . <_3 i)

> 2

W

d= % and the form “+2 sin #” imply that the directrix is above the focus at

(S8

the origin and has equation y = 3. The vertices are (1, ) and (-3, 3F).

3 1/2 3/2 .
6, r=——— .= _ 9= =1, so the conic is a
" 2 " 2cos0 1/2  1—1cosf - e

parabola. de = 2 = d = 2 and the form “—2 cos §” imply that the

—

e
3

e

directrix is to the left of the focus at the origin and has equation z = —3.

IO

The vertex is (3, 7).

2

7 24+y=2 < rcosf+rsind=2 < r(cosd+sinh)=2 & r=——
cos@ + sin

1822+ =2 = =2 = r=+/2 [r=—+/2gives the same curve.]

19. r = (sind)/6. Asf — too,r — 0.

As 6§ — 0, r — 1. In the first figure,

there are an infinite number of
z-intercepts at z = 7n, n a nonzero

integer. These correspond to pole

-15
points in the second figure.
-0.25
2 1/2 .
20. 7 = = = 3 and d = 2. The equation of 2.1
" T 4 " 3cos 1—%c059 €T 3 q 1 )
N
the directrixisz = —2 = r = —2/(3cos#). To obtain the equation

of the rotated ellipse, we replace ¢ in the original equation with 6 — 2%,

2 -1.75 / 2.1

4—3(:05( —%’r)

and getr =

dy de 1 dy  dy/dt 2t 9
2. z=Int,y=1+t*t=1—= =2tand — = =, 50 —= = = =
=it y=1+4 dt dt ¢t dr  dejdt | 1)t

Whent =1, (z,y) = (0,2) and dy/dx = 2.

_ — (=6 — dy _ 4
Whent = —1, (z,y) = (—6,—3) and =9

dy  dy/dt 2 —2t
2 x=t34+6t+1, y=2t—1* t=-1 -2% = = .
r=ttbitly dv _ dw/dt  32+6
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B.r=e? = y=rsinf=esinfandz =rcosd =e coshd =

dy dy/d9 sinf+rcosd  —esinf+e cosfd —e’  sinf —cosf

dr — dx/df Zg cosf —rsingd —e%cos—eOsinf —e® cosh+sinh
__dy _0-(=1) 1 _
Whene_rr,dx_ 110 -1 1.

d’r . 0 6 _ . .
2 r—34cos30 = @7dy/d0 gsinf +rcosf  —3sin30sin6 + (3 + cos 36) cos o

dr ~ dz/df 32 cos® —rsind —3sin30cosf — (3 +cos36)sinf’

dy (-3)(-1)(1)+B+0)-0 3
When 6 = /2, == = == = 1.
"2 G T (D0~ (3101 -3
. dy dy/dt 1-+sint

5. x=t t,y==t— t = = -

T=ttsint y G /dt 1+ cost

d (dy (1+ cost) cost — (1 + sint)(—sint)
dzy dt \ dzx _ (1 4+ cost)? _ cost+cos’t+sint+sin®t 14 cost +sint
de? — dx/dt 1+ cost N (1 + cost)? "~ (1 +cost)3
dy dy dy/dt 13t _

6o x =1+ y=t— 5 Y1 32ad % — 250 =—— =12t 3¢

=1ttty dt 3 dt dr ~ dzjdt 2 2 2

2 7lt72 _ 3 2

dy _ d(dy/dz)/dt _ —3 R VAL Ve (1+3t2)— 3" +1

dz? dx/dt 2t 43 413
27. Wegraph thecurve z = > — 3t, y = t> +t + 1 for —2.2 <t < 1.2. 4

By zooming in or using a cursor, we find that the lowest point is about

(1.4,0.75). To find the exact values, we find the ¢-value at which 5

dy/dt=2t+1=0 & t=—3 & (z,9)= (%, 3).

—4 2.2

0

28. We estimate the coordinates of the point of intersection to be (—2, 3). In fact this is exact, since both t = —2 and ¢t = 1 give

the point (—2, 3). So the area enclosed by the loop is
Tl yde= [N, (Pt 1) (32— 3)dt = [T, (3t + 3t — 3t — 3) dt
=gt -3 s, = (g3 -8 - [F¥ 120 (6] = 3

29. x = 2acost —acos2t = @:—2asint+2asin2t=2asint(2cost—l):O &

3 — 1 _ 57
sint=00rcost=35 = t=0,3,m0r 3.
. . d 2
y=2asint —asin2t = T =2acost — 2acos2t = 2a(1 + cost — 2cos’t) = 2a(1 — cost)(1+2cost) =0 =
2m 47r
t=0, 5, 0r=F

Thus the graph has vertical tangents where ¢ = %, 7 and 2%, and horizontal tangents where ¢ = 2% and 4*. To determine
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t . .
what the slope is where ¢ = 0, we use I’Hospital’s Rule to evaluate hn% y?dt = 0, so there is a horizontal tangent there.
X
t T Y y
0 a 0 B
s 3 V3
3 24 2 4 (—3a, 0) (a, 0)
2r 1 33 ’ ’
5| 20| e N
T —3a 0
4 | ~ta | -2 g
57 3 V3
3| 22 | T3 @

30. From Exercise 29, x = 2a cost — acos2t,y = 2asint — asin 2t =
A=2 ff (2asint — asin2t)(—2asint + 2asin 2t) dt = 4a® [ (2sin® ¢ + sin® 2t — 3sint sin 2t) dt
= 4a? Jo [(1 = cos2t) + (1 — cos4t) — 6sin’t cost| dt = 4a’ [t — sin2t + 1t — Lsin4t — 2sin® t]g

_4a( )7T—67ra

31. The curve r* = 9 cos 560 has 10 “petals.” For instance, for —15 < 0 < {5, there are two petals, one with > 0 and one
with r» < 0.
=10 [0, 4r2do =5 [/} 9cos50df =592 [;7/* cos50.df = 18 sin56] ;1 = 18

32. r=1—3sinf. The inner loop is traced out as 6 goes from o = sin~* (%) to ™ — , 50
A= [T 3r°do = fw/z(l — 3sin ) fw/z [1—6sin0 + 21— cos 26)| df

:[119+600597—sm29]w/2 %ﬂf%sin_l(%)fiiﬂ

33. The curves intersect when4cos =2 = cosf =1 = 6O=+43% =4
F=2 r=4cos 0

for —m < 6 < 7. The points of intersection are (2, ) and (2, —3). /m
Qw

34. The two curves clearly both contain the pole. For other points of intersection, cot 8 = 2 cos(6 + 2n) or

—2cos(f + m + 2n), both of which reduce to cot 0 = 2cos <« cosf = 2sinfcosf < cosf(l—2sinf) =0 =
cosf =0orsind =% = 0=2 % 2 or3f = intersection pointsare (0,%), (v/3,%),and (V3, 12).
35. The curves intersect where 2sinf = sinf + cos =

sinf =cos = 6= Z, andalso at the origin (at which § = 3¢

ISR

on the second curve). 0=

fﬂ/‘l 1(2sin0)? d0+f3ﬂ/4 L (sin @ 4 cos 0)* d6

= [/ (1 = cos20) dO + & [*7/* (1 + sin 20) o

r=2sin6 r=sin 6+ cos 6

:[6’7—5m29]w/4 +[30 -3 00529]377/4:%@71)
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3. A= 2[’;/2 2[(2+ cos26)® — (2 +sin6)?] df (1L7) r=2+sind
fﬂ/G [4cos20 + cos® 20 — 4sin 6 — sin® 0] df E
2
= [2sin20 + 360 + 1sin46 +4cosf — 30 + 1 sin29]7:/f/2

=51./3

16

=2+ cos20
37. & =3t y =265
L= [2/(da/dt)? + (dy/dt)? dt = [} 21 (662)2dt = [2 /3612 + 3617 dt = [2 /3612 /I + 2 dt
= [J6[t|VI+i2dt=6 [ t\/1+_t2dt:6fl5u1/2(§du) [w=1+1¢ du = 2tdt]

=6-4-2[u?] =27 ~1) =2(5v5 - 1)

38 x=2+3t y=cosh3t = (dx/dt)*+ (dy/dt)* =3+ (3sinh3t)® = 9(1 + sinh® 3t) = 9 cosh? 3¢, s0

f V9 cosh? 3t dt = fo |3 cosh 3t| dt = fo 3cosh3tdt = [sinh 3t](1) = sinh 3 — sinh 0 = sinh 3.

27 /n2
39. L= 2" \/rZ+ (dr/d0)2d0 = [*" \/(1/0)2 + (—1/6)2 dO = %d@
\/7r24r1_\/47r2+1+l 21 + V4r2 +
™ 2m T2+

N
=

0

_[w2 H@+ﬁer

_2\/7T2+1—\/47T2+1+1 (277—!—\/471'2 )
27 T+ /72

4. L = [ \/r7+ (@ [dB) d6 = [\ [sin® (36) + sin® (30) cos? (§6) db

41.m=4\/i,y—%+— 1<t<4 =

§ = [} 2y TP a0 dh = [ 2 (60 + 3172) [ (IVE) + (2 — e0)p

=or [ (A + 1t72) B T L 0)2dt = 2m [} (3% + 3 4+ 2t75) dt = 2n[51® + 3t — 1¢Y]} = 402,

4.2 =2+3t, y=cosh3t = (dv/dt)®+ (dy/dt)® = 3%+ (3sinh3t)? = 9(1 + sinh? 3t) = 9 cosh? 3¢, s0
S = fol 2y ds = fol 27 cosh 3tV/9 cosh? 3t dt = fol 27 cosh 3t |3 cosh 3t| dt = fol 27 cosh 3t - 3cosh 3t dt

— 6 [ cosh®3tdt = 6 [ 4 1+cosh6t)dt—37r[t+-smhﬁt] — 37 (1+ Lsinh6) = 37 + Z sinh 6
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w

43. For all c except —1, the curve is asymptotic to the line z = 1. For ) .
¢ < —1, the curve bulges to the right near y = 0. As c increases, the ,.:"' -3
bulge becomes smaller, until at ¢ = —1 the curve is the straight line z = 1. p— . ' -5
As c continues to increase, the curve bulges to the left, until at ¢ = 0 there 71 s,\\%{ -1
is a cusp at the origin. For ¢ > 0, there is a loop to the left of the origin, - .. ‘\—‘7" ~« -0.5 ’
whose size and roundness increase as ¢ increases. Note that the x-intercept e “* 0

ud ]

of the curve is always —c.
L ALl

44. For a close to 0, the graph consists of four thin petals. As a increases, the petals get wider, until as a — oo, each petal

occupies almost its entire quarter-circle.

a=0.01 a=0.1 a=1
a =10 a=25

a=2>5
2y _ ) ) 2 2 .

45, 9 + = = lisan ellipse with center (0, 0). 46. 4% — 9> =16 < T 16 1 is a hyperbola
a=3b=22,c=1 = with center (0, 0), vertices (£2,0), a =2, b = 4,
foci (&1, 0), vertices (+3,0). c=+/16+4 = 2+/5, foci (+2+/5,0) and

y asymptotes y = +2x.
2.2
/>(1,0)
_3!J3 X /
-2y2 Z1N\ 2.0
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47,

49.

50.

51

52.

53.

54.

Ll CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6y +2—36y+55=0 < 48. 2522 + 4y + 50z — 16y =59 <
6(y* —6y+9)=—(z+1) & 25(z +1)* +4(y — 2)> =100 <=
(y — 3)® = —%(x + 1), a parabola with vertex (—1,3), 1(z+1)*+ %= (y — 2)> = Lisanellipse centered at
opening to the left, p = —5; = focus (—23,3) and (—1,2) with foci on the line x = —1, vertices (—1,7)
directrix z = —23. and (-1,-3);a=5b=2 = c=+21 =
y foci (—1,2 +/21).
y

The ellipse with foci (44, 0) and vertices (+5, 0) has center (0, 0) and a horizontal major axis, with a = 5 and ¢ = 4,
g2 y2
sob®=a® -2 =5%-4*=09. Anequatlonls%+§ =1

The distance from the focus (2, 1) to the directrix x = —4 is 2 — (—4) = 6, so the distance from the focus to the vertex
is 1(6) = 3 and the vertex is (—1, 1). Since the focus is to the right of the vertex, p = 3. An equation is
(y—1)*=4-3[z— (=1)],0r (y — 1)* = 12(x + 1).

2 .272

The center of a hyperbola with foci (0, +4) is (0, 0), so ¢ = 4 and an equation is % —E = 1.

The asymptote 3 = 3z has slope 3, so % = % = a=3banda’ +0* = = (Bb)*+p* =4 =

2 2 2 2
Lo 5y 5z
1002 =16 = > =2andsoa®=16— & = 22, Thus, an equation is —— — —— = 1,0or = — 22 _ 1,
5 ¢ 57 q 7275 8/5 28
Centeris (3,0),anda =5 =4,c=2 & b=V42-22=/12 =
. o @=3?
an equation of the ellipse is B + 6= 1

x? = —(y — 100) has its vertex at (0, 100), so one of the vertices of the ellipse is (0, 100). Another form of the equation of a
parabola is z* = 4p(y — 100) s0 4p(y — 100) = —(y — 100) = 4p=—1 = p= —1. Therefore the shared focus is
found at (0,252) s02c =32 —0 = ¢ = 232 and the center of the ellipse is (0, 222). So a = 100 — 232 = 3% and
4012 — 3992 . g2 (yfﬂ)z 22 @7@)2
2 _ 2 2 _ X 8 _ L 8 _
b*=a"—c" = — = 25. So the equation of the ellipse is B + — Qs = 1 = 55 + (ﬂ)Q =1,
8
2% (8y — 399)?
or=— + —— - =
25 + 160,801
2 2r 2y dy dy bz dy b? L .
—+5=1 - +—=-—-—=0 —Z = —— —. Therefore —= = = —— —. Combining this
a? * b2 T 2 R dx a’y dr =" < v a?m g
gition with = + find th %™\ other words, th [ he ellipse where th
condition with — + = = 1, we find that - = +——————=—=. In other words, the two points on the ellipse where the
a2 + b2 ) x R ) p p
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a’m b2

+ )
\/a2m2 + b2 + \/a2m2 + b2

tangent has slope m are ( ) . The tangent lines at these points have the equations

(==

2 2 2 2 2
b =m xZF—am ory =mxF am F b = mx F vVa*m? + b?
VaZm?z + 02 vazm? + b? v= VaZmZ + 02 Ja@mZ + 02 '

ed 4

55. Directrix ¢ = 4 d=4,s0e=1 = = .
v = D€ =T 1+ecosf 3-+cosb

3

272
56. See the end of the proof of Theorem 10.6.1. If e > 1, then 1 — ¢* < 0 and Equations 10.6.4 become a? = ﬁ and

b? = oy S0 == e? — 1. The asymptotes y = igm have slopes ig = ++v/e2 — 1, so the angles they make with the

polar axis are & tan™" [v/e> — 1] = cos™ " (£1/e).

2
30 ang 20

57. (a) If (a, b) lies on the curve, then there is some parameter value ¢; such that 3 3
1+t 143

=b.1ft1 =0,

the point is (0, 0), which lies on the line y = =. If t1 # 0, then the point corresponding to ¢ = tl is given by
1

3(1/tr) _ 3tF by

B 3(1/t1)? 3t
T+ (/)2 341

TI+(/h)E B+l

= a. So (b, a) also lies on the curve. [Another way to see

2
this is to do part (e) first; the result is immediate.] The curve intersects the line y = 2 when st _ 3t

146 1413

t=t> = t=0o0r1,sothepointsare (0,0)and (3, 2).

3 _ as2(942 a4
(b) % _(a+t 256_?153):2% (37 _ gt+ if)z =0when6t —3t* =3t(2—-t) =0 = t=0o0rt= {/2, sothereare

horizontal tangents at (0, 0) and ({”ﬁ, V4 ) Using the symmetry from part (a), we see that there are vertical tangents at

(0,0) and (V/4, V/2).

(c) Notice thatast — —17, we have x — —oco and y — co. Ast — —1~, we have z — oo and y — —oo. Also

St+32 4+ (1 +%  (t+1)2  (t+1)? .
—(—z—-1)= 1= = = ast— —1.Soy=—x—1isa
y—(—z—1)=y+z+ e e t2—t+1_)0 — y x i

slant asymptote.

de  (1+t*)(3)—3t3t*)  3—6t° dy 6t —3t* dy  dy/dt  t(2—17)
d) — = = df t (b have = = ———. S0 —= = =
@ % (I+ )2 (1 o)z 2 Trom part (D) we have 5 = —3ys- 50 Gy = Gyt ~ 1288
d <dy)
d>y  dt \ dzx 2(1 + %)* 1 , -
Also —2 = = >0 & < ——=. y RA
dx? dx/dt 3(1—2t3)3 2 NEEL e
So the curve is concave upward there and has a minimum point at (0, 0) ._ =1

and a maximum point at (+/2, ¥/4). Using this together with the

information from parts (a), (b), and (c), we sketch the curve.
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3 2 3 3 6 3 3 3
© 231 y3 _ 3t I 3t _ 27t° + 27t _ 27t (1 +t ) _ 27t and
1+¢3 1+¢3 (1—|—t3)3 (1—|—t3)3 (1—|—t3)2

3t 32 2783
3y =3 = ,50 2% 4+ 4 = 3ay.
*y <1+t3><1+t3) @z or Ty =5

() We start with the equation from part (e) and substitute = = 7 cos @, y = rsinf. Thenz® +¢* = 3zy =

o 0 sin 0
r? cos® 0 + r? sin® @ = 3r? cos 0 sin . For r # 0, this gives r = 3cos 0 sin

———— Dividing numerator and denominator
cos3 0 + sin® 0 g

3( 1 ) sin 0
by cos® 6, we obtain r = cosf ) cosl _ 3sec 0 tan 9.
' sin® 0 1+ tan30
cos® 0

(9) The loop corresponds to 6 € (0, %), so its area is

/2 .2 /2 2 /2 2 2 oo 2
A:/ T—dezl/ 3sech t&;n@ d@:g/ sec Gtagn 0 d@:g/ u” du [iet u = tan 6]
o 2 2 Jo 1+ tan® @ 2 /o (1+tan®0)? 2 /o (1+4+wu?)?

: 9 1 3y—11b 3
= lim $[-4(1+u) ;=3

(h) By symmetry, the area between the folium and the line y = —xz — 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is % andsincey =—zr—1 =

1
" sinf + cosd’

Lo 1 : 3sech tan 6\’ cas 1 )
2 —————) — (5035 ) | 40 = 3 Therefore, the total areais 3 + 2(3) = 3.
2/—#/2 |:( sin 6 + cos 0) ( 1+ tan30 ) B , 2+ (2)

rsinf = —rcosf —1 = r = the area in the fourth quadrant is
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t t . .

d t d t . .

1. z= / cosu du,y = / smu du, s0 by FTC1, we have @ _ o8t and 9 ﬂ. Vertical tangent lines occur when
;. u 1 u dt t dt t

dx

i 0 < cost=0. The parameter value corresponding to (z,y) = (0, 0) is ¢t = 1, so the nearest vertical tangent

occurs when t = Z. Therefore, the arc length between these points is

dz\? dy\? /2 Jeost  sin?t ™2 dt /2 x

2. (a) The curve z* + y* = 2 + y? is symmetric about both axes and about the line y = 2 (since interchanging x

and y does not change the equation) so we need only consider y > x > 0 to begin with. Implicit differentiation gives
z(1 — 227)
y(2y* — 1)

yv'=9> = y*(y*—1) =0 = y=0o0r=£l Thepoint (0,0) can’t be a highest or lowest point because it is

4 + 4ty =20+ 2y = o = y" = 0when z = 0 and when z = :I:%. If z =0, then

isolated. [If -1 < z < 1and -1 <y < 1,thenz* < 2% and y* < 3> = z* +y* < 2? + ¢, except for (0,0).]

=lat=lsolpyt=1442 = 44 42 1=0 = y?=4EVIFI0 _ 12432

Buty* > 0,50 3% = 1 *;ﬁ = y==£4/%(1++/2). Near the point (0, 1), the denominator of ' is positive and the

numerator changes from negative to positive as « increases through 0, so (0, 1) is a local minimum point. At

(%, 1 +2‘/§ ) , ¥’ changes from positive to negative, so that point gives a maximum. By symmetry, the highest points

1 1+2 i 1 1+2
on the curve are (iﬁ, 5 ) and the lowest points are <iﬁ, —/ 5= )

(b) We use the information from part (a), together with symmetry with respect to the

axes and the lines y = +x, to sketch the curve.

(c) In polar coordinates, z* + y* = 22 + y* becomes r* cos* 0 + r* sin* 6 = r? or
5 1

r* = ———————. By the symmetry shown in part (b), the area enclosed by
cos* 0 + sin* 0
/4 /4 df CAS
the curveis A = 8 = 2d0:4/ ——— ='\2m. ’
/0 2" o costf +sin 6 Vam

3. Interms of z and y, we have z = 7 cos = (1 + c¢sinf) cos§ = cos + csin 6 cos § = cos§ + 3csin 26 and
y=rsinf = (1 +csinf)sind = sin + csin®0. Now -1 <sinf <1 = —1<sinf+csin?0<1+c<2,50

—1 <y < 2. Furthermore, y = 2whenc = land 6 = 7, whiley = —1forc =0and 6 = 37” Therefore, we need a viewing

rectangle with —1 <y < 2.
To find the z-values, look at the equation = = cos 6 + %c sin 260 and use the fact that sin 26 > 0 for 0 < ¢ < 7 and

sin260 < 0 for —% < 6 < 0. [Because r = 1 + csin 6 is symmetric about the y-axis, we only need to consider
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-5 <0< 5]Sofor —% <60 <0, 2 has a maximum value when ¢ = 0 and then = = cos 6 has a maximum value
of 1at § = 0. Thus, the maximum value of - must occur on [0, 3] with ¢ = 1. Then z = cosf + 3sin20 =
92 — —sinf +cos20 = —sinf+1—2sin*0 = % = —(2sinf—1)(sinf + 1) = 0whensing = —1or 1

[butsing # —1for0 <0 < Z]. If sinf = 5, then § = Z and

z =cosZ + $sinZ = 2/3. Thus, the maximum value of z is 21/3, and,

by symmetry, the minimum value is —% /3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

r=1+csinf,where0 < c<1,is [-2v3,2/3] x [-1,2].

4. (a) Let us find the polar equation of the path of the bug that starts in the upper
right corner of the square. If the polar coordinates of this bug, at a
particular moment, are (r, 6), then the polar coordinates of the bug that it is
crawling toward must be (r, 0+ g) (The next bug must be the same 0

distance from the origin and the angle between the lines joining the bugs to

the pole must be 7.) The Cartesian coordinates of the first bug are

(r cos @, rsin 0) and for the second bug we have
x=rcos(0+ %) =—rsinf, y = rsin (0 + F) = rcos . So the slope of the line joining the bugs is

reos b—rsinf _ =1 b —cos 9. This must be equal to the slope of the tangent line at (r, #), so by
—rsinf —rcosf  sinf + cosf

(dr/df)sin +rcos  sinf — cosd
(dr/df)cos® —rsin® ~— sinf +cosf’

dr
do

Equation 10.3.3 we have Solving for —, we get

dr . , dr . . 2,  dr . dr . 2 .

20 sin“ 0 + 70 sinf cos® + rsinfcosf + rcos” 0 = 70 sin 6 cos 6 70 cos“ 0 — rsin“ 0 + rsinf cos ) =

% (sin® 6 + cos® ) + r(cos® 6 +sin®0) =0 = % = —r. Solving this differential equation as a separable
equation (as in Section 9.3), or using Theorem 9.4.2 with k = —1, we get » = C'e~?. To determine C' we use the fact that,

at its starting position, ¢ = Z and r = %a, S0 %a =Ce ™t = C= %ae”/‘l. Therefore, a polar equation of the

bug’s path is r = %ae“/‘*e*" orr = %ae(“/“)"’.

(b) The distance traveled by this bug is L = f7‘:;’4 /12 + (dr/df)2do, where % = % e™/*(—e"%) and so

r? 4 (dr/df)? = %a2e”/26720 + %aze“/zefze =a%e™?%e7% Thus
4 _—0 /4 1: t —0 4 9. —97t
L= f:74 ae™ e dh = ae™/ tlirgo fﬁ/4e d0 = ae™* lim [—e ]

t—o00 /4

= ae™* lim [e‘”/‘l — e_t} =qe™te Tt = ¢

t—oo
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2 2

5. Without loss of generality, assume the hyperbola has equation % — Z_Q = 1. Use implicit differentiation to get
2 2yy , bz b2e
=0,50y = et The tangent line at the point (¢, d) on the hyperbola has equation y — d = Td(m —c).

a? b2

A b b b?
The tangent line intersects the asymptote iy = P when —r—d= 22( —¢) = abdr —ad*d® =blcx — b’ =

a?d? — b2c? ad + be

b ad + bc ad + be

bdx — b2 cx = a’d® — b2 = = and the y-value i is — .
abdx cr=a c = x b(ad — bo) b Y- b P
Similarly, the tangent line intersects y = féx at (bc _b ad, ad - bc). The midpoint of these intersection points is

a a

1/ad+bc bc—ad 1/ad+bc ad—bc 12bc 12ad .

= = = | =—,==— ) = (¢, d), the point of tangency.
(2(b+b)’2(a+a)) (2b’2a)(c’)' pot gency
Note: If y = 0, then at (+a, 0), the tangent line is z = +a, and the points of intersection are clearly equidistant from the point
of tangency.

6. (&) Since the smaller circle rolls without slipping around C, the amount of arc y
traversed on C (270 in the figure) must equal the amount of arc of the smaller r ;
b 0

circle that has been in contact with C. Since the smaller circle has radius r, r

it must have turned through an angle of 2r6/r = 26. In addition to turning
through an angle 26, the little circle has rolled through an angle 6 against C. )
Thus, P has turned through an angle of 36 as shown in the figure. (If the little C

circle had turned through an angle of 20 with its center pinned to the z-axis,

then P would have turned only 26 instead of 30. The movement of the little circle around C' adds 0 to the angle.) From the
figure, we see that the center of the small circle has coordinates (3r cos 6, 3rsin §). Thus, P has coordinates (z, y), where
x = bcos 30 + 3rcosf and y = bsin 30 + 3rsin .

e e
o 4

(c) The diagram gives an alternate description of y
point P on the epitrochoid. ¢Q moves around
Q <%
a circle of radius b, and P rotates one-third as / b
fast with respect to () at a distance of 3r-.
Place an equilateral triangle with sides of \/

length 3+/3r so that its centroid is at @ and

[9%]
5

one vertex is at P. (The distance from the centroid to a vertex is % times the length of a side of the equilateral triangle.)
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As 6 increases by 2—3“ the point @ travels once around the circle of radius b, returning to its original position. At the
same time, P (and the rest of the triangle) rotate through an angle of %” about @, so P’s position is occupied by another
vertex. In this way, we see that the epitrochoid traced out by P is simultaneously traced out by the other two vertices as

well. The whole equilateral triangle sits inside the epitrochoid (touching it only with its vertices) and each vertex traces out

the curve once while the centroid moves around the circle three times.

(d) We view the epitrochoid as being traced out in the same way as in part (c), by a rotor for which the distance from its center

to each vertex is 3r, so it has radius 6. To show that the rotor fits inside the epitrochoid, it suffices to show that for any

position of the tracing point P, there are no points on the opposite side of the rotor which are outside the epitrochoid. But
the most likely case of intersection is when P is on the y-axis, so as long as the diameter of the rotor (Which is3 \/§r) is
less than the distance between the y-intercepts, the rotor will fit. The y-intercepts occur when 6 =  or 6 = 37" =

y = —b+ 3r ory = b— 3r, so the distance between the intercepts is (—b + 3r) — (b — 3r) = 6r — 2b, and the rotor will

fitif3v3r <6r—2b < 20<6r—3v3r < b<2(2-V3)r

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



