[J DIAGNOSTIC TESTS

Test A Algebra

L (@ (—3)* = (—3)(—-3)(—3)(-3) =81 (b) —3* = —(3)(3)(3)(3) = —81
@3i=L_L @ 20— _ 52 _gs
34 81 521
© @) 7= (3 -1 16 = = ——s =5 =5

T 163/4 ( 916 )3
2. (a) Notethat v/200 = /100 - 2 = 10 /2 and v/32 = /16 - 2 = 4 /2. Thus /200 — v/32 = 10 V2 — 42 = 6 /2.
(b) (3a>b)(4ab?)? = 3a®b16a2b* = 484a°b”

3m3/2y3 -2 B x2y71/2 2 3 (x2y71/2)2 3 x4y71 4 z
© 22y —1/2 T\ 323723

(323/2y%)2 — 928 — 9aiyby — 9y7
3. (@) 3(x +6) +4(2z —5) =3z + 18+ 8z — 20 = 11z — 2

() (z +3)(4x — 5) = 42® — 5z + 122 — 15 = 42® + Tz — 15
© (Va+vh) (Va—vB) = (vVa) ~Vavb+vavi— (VB) =a-b
Or: Usetheformulafor the difference of two squaresto see that (\/5+ \/5) (\/_— \/5) = (\/5)2 - (\/5)2 =a—b.

(d) 2z +3)% = (22 +3)(22+3) =42® + 62 + 6z + 9 = 42> + 122 + 9.
Note: A quicker way to expand this binomial isto use the formula (a + b)? = a® + 2ab + b* witha = 2z and b = 3:
(2z 4+ 3)? = (22)% +2(22)(3) + 32 = 42® + 120+ 9

(€) See Reference Page 1 for the binomial formula (a + b)® = a® + 3a®b + 3ab® + b3. Using it, we get
(z+2)% = 2% + 32%(2) + 32(2?) + 2° = 2% + 62° + 122 + 8.

4. (a) Using the difference of two squares formula, a®> — b* = (a + b)(a — b), we have

4a* — 25 = (2x)% — 5% = (22 4+ 5)(2z — 5).

(b) Factoring by trial and error, we get 222 + 52 — 12 = (22 — 3)(z + 4).

(c) Using factoring by grouping and the difference of two squares formula, we have
23 =322 —dx+12=2*(z—3)—4(z —3) = (2> —4)(x — 3) = (z — 2)(z + 2)(z — 3).

(d) z* + 272 = 2(2® + 27) = z(z + 3)(2® — 3z +9)
This last expression was obtained using the sum of two cubes formula, a® + b> = (a + b)(a® — ab + b*) witha =«
and b = 3. [See Reference Page 1 in the textbook.]

(e) The smallest exponent on z is —2, so we will factor out z /2.
2
3232 —9x1/? 4 6x71/2 =327 V2 (2? — 304+ 2) =322 (x — 1)(z — 2)

(f) 2%y — day = 2y(2® — 4) = 2y(z - 2)(z +2)
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2 +3x+2 (z+1)(x+2) x+2

. (@ = =

x2—x—2 (z+D)(x—-2) z=z-—2

202 —2—-1 z+3 (2z+1(@x—-1 z+3 =x-1

O = w1 (x—3)(x+3) 2z+1 z-3
© x? x4+l z? x4+l z? _a:+1.x—2_x2—(x+1)(x—2)
22—4 z+2 (z2-2)(z+2) 2z+2 (z-2)z+2) z+2 z-2  (z-2)(z+2)
2P —(a®—z—-2) x+2 1
z+2(z—-2) (z+2)(z—-2) 2z-2
y y z
- == 2 _ 2
r oy oz oy vy _y -z (y-z)(y+tz) yt+z
OT 1 T 1% oy o 1
y y x

VIO V10 V542 VB0+42V10 _ 5v2+2V10
o2 Vh-3 Vher (- | B4 YRRV

o YATh=2_ Vizh-2 VIzh+2 _4+h-d4 _ h N 1
h B h VA+h+2 h(Vi+h+2) h(VAi+h+2) Vith+2

@ taetl=(Prr+)+1-2=(x+1)7+2

(b) 22% — 120 +11 =2(2® —62) + 11 =2(2*> —62+9—9) + 11 =2(2? — 62 +9) — 18 + 11 =2(x — 3)> - 7

.(a)r+5=14—%$ & x+%x=14—5 & %x=9 & x:§-9 & =6

2

z  2x-—1
z+1

() = 22=02z-D(z+1) & 22°=22+2x-1 & z=1

©2z°-2-12=0 & (z+3)(z—-4)=0 & z+3=00z—-4=0 & z=-30rx=4
(d) By the quadratic formula, 22> + 4z +1 =0 <

4/ A1) —4+v8  —4+2v2  2(—2£V2) 242 L
v 2(2) ~ T 1 T 1~ 4 = = lE3V2

©2*-32°42=0 & (@@ -1DE*-2)=0 & 22-1=0002"-2=0 & 2*=loz’*=2 &

z==4lorz =42

()3lz—4/=10 & [z-4/=8 & z-4=-Dozr-4=2 & z=2o0z=

SN

(9) Multiplying through 2z:(4 — z)™*/2 =34 -z =0by (4 — z)*/? gives2z —3(4 —2) =0 <

20 —-12+3z=0 & 5r—-12=0 & Hxr=12 & m:%.

L@ -4<5-32<17T & -9<-32<12 & 3>z>-4or —4<z<3.

Ininterval notation, the answer is [—4, 3).

) 2><22+8 & 22—-2x—-8<0 & (z+2)(x—4)<0.Now, (z+ 2)(x — 4) will change sign at the critical
valuesz = —2 and z = 4. Thusthe possible intervals of solution are (—oo, —2), (—2,4), and (4, c0). By choosing a

single test value from each interval, we see that (—2, 4) isthe only interval that satisfies the inequality.
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TESTB ANALYTICGEOMETRY O 3

(c) Theinequality z(z — 1)(z + 2) > 0 hascritical valuesof —2, 0, and 1. The corresponding possible intervals of solution
are (—oo, —2), (—2,0), (0,1) and (1, co). By choosing a single test value from each interval, we see that both intervals

(—2,0) and (1, co) satisfy theinequality. Thus, the solution is the union of these two intervals: (—2,0) U (1, c0).

dlz—4<3 & -3<zr—-4<3 & 1<z<7 Ininterva notation, theansweris(1,7).

(e)Qx—3§1 N 21‘—3_130 N 2m—3_x+1§0 N 2a7—3—a:—1§0 N x—4§0'
r+1 z+1 r+1 z+1 z+1 r+1
Now, the expression z _T_le may change signs at the critical valuesz = —1 and « = 4, so the possible intervals of solution
T

are (—oo, —1), (—1,4], and [4, co). By choosing asingle test value from each interval, we see that (—1, 4] isthe only

interval that satisfies the inequality.

10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick
p=1andq = 2andobservethat (1 +2)% # 12 + 22. Ingenera, (p + q)? = p* + 2pq + ¢*.
(b) Trueaslong as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents:
\/a_ = (ab)l/2 = (11/2b1/2 = \/E\/I;

(c) False. Toseethis, letp = 1and g = 2,then /12 + 22 #£ 1 + 2.

(d)False.Toseethis,IetT:1andC:2,then1+Tl(2);£1-|—1.
(6) False. Toseethis lete — 2andy — 3, then —— = £ _ 1
' ST Y= Tl 375 7 3
(f) Truesince 1/ Lo ! ,aslongasz Z0anda — b # 0.
a/r—b/x = a-—b>

Test B Analytic Geometry

1. (a) Using the point (2, —5) and m = —3 in the point-slope equation of aline, y — y1 = m(xz — x1), we get

y—(-5)=-3(x—-2) = y+5=-3z+6 = y=-3zv+1.

(b) A line parallel to the z-axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2, —5),
the y-coordinate of every point on thelineis —5, so the equationisy = —5.

(c) A line paralé to the y-axisis vertical with undefined slope. So the x-coordinate of every point on thelineis 2 and so the
equationisx = 2.

(d) Notethat 2z —4y =3 = —4y=—-22+3 = y= sz — 2. Thusthesopeof thegivenlineism = 1. Hence, the
slope of the linewe're looking for is also 3 (since the line we're looking for is required to be parallel to the given line).

So the equation of thelineisy — (—=5) = 2 (z —2) = y+5=32—-1 = y=31z—6.

2. First we'll find the distance between the two given points in order to obtain the radius, r, of the circle:

r=+B— (12 +(-2—-4)2 = /42 + (—6)2 = /52. Next use the standard equation of acircle,
(x —h)? 4 (y — k)® = r?, where (h, k) isthe center, to get (z + 1)% + (y — 4)* = 52.
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U DIAGNOSTIC TESTS

. We must rewrite the equation in standard form in order to identify the center and radius. Note that

2249y -6 +10y+9=0 = 22— 62+ 9+ 14>+ 10y = 0. For the left-hand side of the latter equation, we
factor the first three terms and complete the square on the last two terms asfollows: 22 — 6z + 9+ y*> + 10y =0 =
(=3 +1y*+10y+25=25 = (x—3)%+ (y+5)* = 25. Thus, the center of the circleis (3, —5) and the radiusis 5.

—12-4 16 _ 4

5- (-7 12 3
b y—d4=—-3r—(-7] = y—-4=-32-2 = 3y—12=—-42-28 = 4zr+3y+16=0.Puttingy =0,

— i i iUt i i 16
we get 4z + 16 = 0, so the z-intercept is —4, and substituting 0 for z resultsin a y-intercept of — .

(c) The midpoint is obtained by averaging the corresponding coordinates of both points: (#, #) = (-1,-4).

dd=+[-(-7)2+ (12 —4)2 = /122 + (—16)2 = /144 + 256 = /400 = 20

(e) The perpendicular bisector is the line that intersects the line ssgment AB at aright angle through its midpoint. Thus the
perpendicular bisector passes through (—1, —4) and has slope % [the Slope is obtained by taking the negative reciprocal of
the answer from part (a)]. So the perpendicular bisector isgivenby y + 4 = 3[z — (—1)] or 3z — 4y = 13.

(f) The center of the required circle is the midpoint of AB, and the radiusis half the length of AB, whichis 10. Thus, the

equationis (x + 1)* + (y + 4)* = 100.

. (8) Graph the corresponding horizontal lines (given by the equationsy = —1 and Y
3
y = 3) assolid lines. Theinequality y > —1 describes the points (z, y) that lie
0
on or abovetheliney = —1. Theinequality y < 3 describesthe points (z, y) v
-1
that lie on or below the line y = 3. So the pair of inequalities —1 <y < 3
describes the points that lie on or between thelinesy = —1 and y = 3.

(b) Note that the given inequalitiescan bewrittenas —4 < z <4 and -2 < y < 2, J
respectively. So the region lies between the vertical linesz = —4 and z = 4 and Fmmn 2 \
between the horizontal linesy = —2 and y = 2. As shown in the graph, the —4E 0 E4 x

| P J
region common to both graphsis arectangle (minus its edges) centered at the —2
origin.
(c) Wefirst graphy = 1 — z asadotted line. Sincey < 1 — 1, the pointsin the Y
~ 1
Lo - S~ y=1-3x
region lie below thisline. S 1
g \\/
0] 27>~ X
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TESTC FUNCTIONS O 5

(d) Wefirst graph the parabolay = x? — 1 using asolid curve. Sincey > z? — 1, ¥
the pointsin the region lie on or above the parabola.
ol /\
1 X
a y=x>—1
(e) We graph the circle 2> + y? = 4 using adotted curve. Since\/z2 + 32 < 2, the Y
22
region consists of points whose distance from the origin is lessthan 2, that is, 2 _f ;y 4
the points that lieinside the circle. / :. —

(f) The equation 9 + 16y> = 144 is an ellipse centered at (0, 0). We put it in
2 2
standard form by dividing by 144 and get 016_6 + % = 1. The z-intercepts are

located at adistance of 1/16 = 4 from the center while the y-intercepts are a

distance of /9 = 3 from the center (see the graph).

Test C  Functions

1. (a) Locate —1 on the z-axis and then go down to the point on the graph with an z-coordinate of —1. The corresponding
y-coordinate is the value of the function at = —1, whichis—2. So, f(—1) = —2.

(b) Using the same technique asin part (a), we get f(2) ~ 2.8.
(c) Locate 2 on the y-axis and then go left and right to find al points on the graph with a y-coordinate of 2. The corresponding
x-coordinates are the z-values we are searching for. Soxz = —3 and z = 1.
(d) Using the same technique asin part (c), weget x ~ —2.5 and = ~ 0.3.
(e) Thedomain isall the z-values for which the graph exists, and the rangeis al the y-values for which the graph exists.
Thus, the domain is [—3, 3], and the range is [-2, 3].
2. Notethat f(2 + h) = (24 h)® and £(2) = 2° = 8. So the difference quotient becomes

_ 3 _ 2 3 2 3 2
f(2+h’z f(2):(2+i;3 8:8+12h+6;1h +h 8:12h+(;lh +h :h(12+2h+h):12+6h+h2.

3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: 2> + . —2=0 =

(x—1)(x+2)=0 = z=1o0rz=—2. Thus thedomainisall real numbersexcept 1 or —2 or, ininterval
notation, (—oo, —2) U (—2,1) U (1, 00).

(b) Note that the denominator is aways greater than or equal to 1, and the numerator is defined for al real numbers. Thus, the
domain is (—oo, 00).

(c) Note that the function £ is the sum of two root functions. So h is defined on the intersection of the domains of these two

root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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6 [ DIAGNOSTIC TESTS
4—2>0 = z<4andz*-1>0 = (z—1)(z+1)>0 = z<-1lorz> 1. Thus, thedomain of
his(—o0,—1]U[1,4].
4. (a) Reflect the graph of f about the z-axis.
(b) Stretch the graph of f vertically by afactor of 2, then shift 1 unit downward.

(c) shift the graph of f right 3 units, then up 2 units.

5. (d) Make atable and then connect the points with a smooth curve: Y
x| 2| —-1]0|1]2 14
y| -8 -1]0]1]8 o1 x
(b) sShift the graph from part (a) left 1 unit. Y /
1,
./
-1 |0 X
(c) Shift the graph from part () right 2 units and up 3 units. Y

(d) First plot y = 2. Next, to get the graph of f(z) = 4 — 22, i
reflect f about the x-axis and then shift it upward 4 units. / \
0| 2 X
(e) Make atable and then connect the points with a smooth curve: Y

T 0 1 4 9 1

i)

(f) Stretch the graph from part (€) vertically by afactor of two.
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TESTD TRIGONOMETRY U

(g) First plot y = 2”. Next, get the graph of y = —2% by reflecting the graph of Y
y = 2% about the x-axis.
0
\_1\%}(
(h) Notethat y = 1 + 2~ ! = 14 1/x. Sofirgt plot y = 1/ and then shift it Y \\
upward Lunit. 1| >~——
o
0] 1 X

6. @ f(—2)=1—(-2)* = -3and f(1)=2(1)+1=3

(b) For z < 0 plot f(x) = 1 — 22 and, on the same plane, for z > 0 plot the graph
of f(z) =2z +1.

7.@ (fog)(z)=f(9(z)) = f(2r—3) = (22 —3)> +2(2x —3) -1 =42° — 120+ 9+ 4r — 6 — 1 = 42> — 8z + 2
) (go @) =g(f(z)) =g(z* +22-1)=2(z* +22-1)-3=20"+42-2-3=22"+42 -5

(© (gogog)(z)=g(g9(9(x))) = g(g9(2x — 3)) = g(2(2x — 3) — 3) = g(4z — 9) = 2(4z - 9) — 3
—8r— 18— 3 =8z — 21

TestD Trigonometry

7

1. (8 300° = 3000( u ) _300m 57

o_ qgof_ T \_ 18t _ ™
180°/ — 180 3 (b) —187 = —18 (1800)7 180 10

2 (@ 2T = 5—”<@> — 150° ) 2= 2<@> - (@> ~ 114.6°
6 6 ™ T T
3. Wewill usethe arc length formula, s = r6, where s isarc length, r isthe radius of the circle, and 6 is the measure of the

™

180°

central anglein radians. First, note that 30° = 30°( ) = % Sos = (12) (%) = 2w cm.

4. (a) tan(m/3) = v/3 [You can read the value from aright triangle with sides 1, 2, and v/3.]

(b) Note that 77 /6 can be thought of as an angle in the third quadrant with reference angle 7 /6. Thus, sin(7r/6) = —1,
since the sine function is negative in the third quadrant.

(c) Notethat 57/3 can be thought of as an angle in the fourth quadrant with reference angle 7 /3. Thus,

1 1 . . L L
sec(bm/3) = cosGr3) 12 2, since the cosine function is positive in the fourth quadrant.
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. Wefirst graph y = sin 2 (by compressing the graph of sin x

U DIAGNOSTIC TESTS

.sinf=a/24 = a=24sind and cosf =b/24 = b=24cosl

T _2V2

4

2
: 1 2 2 _1 _ 4 iny — _ 1.6 _3
.sinz = 3z andsin“z +cos"zr =1 = cosz=,/1—5= JAlso,cosy =3 = siny=4/1-5 =3%.

3
So, using the sum identity for the sine, we have

. . . 1 4 ,2V2 3 4+46vV2 1
- =- .4 2X2. = = 4 2
sin(z + y) = sinz cosy + cosz siny 3 5+ 3 F G 15( +6\/_)
. . 2 2
. (@) tand sin @ + cos O = sin 0 sin @ + cosf = sin'6 | cos 6 = = secf
cos 6 cos 0 cos 0 cos 6
(b) 2tan;§ = 2sinz/(cos z) =232 0523 = 2sinw cosz = sin 2
1+ tan?x sec? x cos T

.sin2x =sinz < 2sinz cosz =sinz < 2sinz cosz —sinz =0 <& sinz(2cosz—1)=0 &

sinx =0 or cosx:% = =0

™

57
v 31 T T3 2.

by afactor of 2) and then shift it upward 1 unit.
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1 [0 FUNCTIONS AND SEQUENCES

1.1 Four Ways to Represent a Function

1. Thefunctions f(z) = x + v/2 — z and g(u) = u + /2 — u give exactly the same output values for every input value, so f
and g are equal.
-z x(@-1)

2. f(x) = prome e =zforz—1+#0,%0 f and g [where g(z) = x] are not equal because f(1) is undefined and

g(1) =1.
3. (8 Thepoint (1, 3) isonthegraph of f, so f(1) = 3.
(b) Whenz = —1, y isabout —0.2, so f(—1) ~ —0.2.
(©) f(z) =1lisequivaenttoy = 1. Wheny = 1, wehavex = 0 and x = 3.
(d) A reasonable estimate for  wheny = 0isz = —0.8.

(e) Thedomain of f consistsof al z-values on the graph of f. For thisfunction, the domainis —2 < = < 4, or [—2, 4].
Therange of f consists of al y-values on the graph of f. For thisfunction, therangeis—1 < y < 3, or [-1, 3].

(f) Asz increasesfrom —2 to 1, y increases from —1 to 3. Thus, f isincreasing on the interval [—2, 1].
4. (a) Thepoint (—4, —2) isonthegraph of f, so f(—4) = —2. The point (3,4) ison the graph of g, s0 ¢(3) = 4.

(b) We arelooking for the values of z for which the y-values are equal. The y-valuesfor f and g are equa at the points
(—2,1) and (2, 2), so the desired values of = are —2 and 2.

(©) f(z) = —lisequivalenttoy = —1. Wheny = —1, wehavez = -3 and z = 4.
(d) Asz increasesfrom 0 to 4, y decreases from 3 to —1. Thus, f is decreasing on the interval [0, 4].

(e) Thedomain of f consists of al z-values on the graph of f. For this function, the domainis —4 < x < 4, or [—4, 4].
Therange of f consists of al y-values on the graph of f. For thisfunction, therangeis—2 < y < 3, or [-2, 3].

(f) Thedomain of g is[—4, 3] and the rangeis [0.5, 4].
5. No, the curve is not the graph of afunction because a vertical line intersects the curve more than once. Hence, the curve fails
the Vertical Line Test.

6. Yes, the curveisthe graph of afunction because it passes the Vertical Line Test. The domainis [—2, 2] and the range
is[—1,2].

7. Yes, the curveisthe graph of afunction because it passes the Vertical Line Test. The domainis [—3, 2] and the range
is [-3,-2)U[-1,3].

8. No, the curveisnot the graph of afunction sincefor x = 0, £1, and £2, there are infinitely many points on the curve.

9. (8) The graph shows that the global average temperature in 1950 was 7°(1950) ~ 13.8 °C.

(b) By drawing the horizontal line 7" = 14.2 to the curve and then drawing the vertical line down to the horizontal axis, we see
that ¢ =~ 1992.

(¢) The temperature was smallest in 1910 and largest in 2006.
(d) Therangeis{7T | 13.5 < T < 14.5} = [13.5,14.5]
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12.

13.

14.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

. (&) Therangeis {Width | 0 < Width < 1.6} = (0, 1.6]

(b) The graph shows an overall declinein global temperatures from 1500 to 1700, followed by an overall rise in temperatures.
The fluctuations in temperature in the mid and late 19th century are reflective of the cooling effects caused by several large
volcanic eruptions.

If we draw the horizontal line pH = 4.0, we can see that the pH curveis less than 4.0 between 12:23aAm and 12:52AM.

Therefore, aclinical acid reflux episode occurred approximately between 12:23aM and 12:52AM at which time the esophageal

pH was less than 4.0.

The graphs indicate that tadpoles raised in densely populated regions take longer to put on weight. Thisis sensible since more
crowding leads to fewer resources available for each tadpole.
(a) At30°Sand 20 °N, we expect approximately 100 and 134 ant species respectively.

(b) By drawing the horizontal line at a species richness of 100, we see there are two points of intersection with the curve, each
having latitude values of roughly 30 °N and 30 °S.

(c) Thefunction is even since its graph is symmetric with respect to the y-axis.

Example 1: A car isdriven at 60 mi/h for 2 hours. The distance d miles

traveled by the car isafunction of the time ¢. The domain of the 120

functionis {t | 0 <t < 2}, where ¢ ismeasured in hours. Therange

of thefunctionis{d | 0 < d < 120}, where d is measured in miles. 0 > timein
hours

Example 2: At acertain university, the number of students NV on
Number

campus at any time on a particular day isafunction of thetime ¢ after of students

midnight. The domain of the functionis{¢ | 0 < ¢ < 24}, wheret is m
measured in hours. The range of thefunctionis{N | 0 < N < k}, | . , ,

. . . 0 6 12 18 24  time
where N isaninteger and & isthe largest number of students on (midnight)

campus at once.

Example 3: A certain employeeispaid $8.00 per hour and works a pay

maximum of 30 hours per week. The number of hours worked is 2407 *
rounded down to the nearest quarter of an hour. This employee's ggg [ ._O.—o

gross weekly pay P isafunction of the number of hours worked h.

The domain of the function is [0, 30] and the range of the function is ‘2‘: -

{0,2.00,4.00, . . ., 238.00, 240.00}. o[ 025 050 075 20502975 30 hours

15. The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person’s weight

dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30 years saw a gradual

increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet, exercise, health problems.

16. Initialy, the person’s forward moving heel contacts the ground resulting in a ground reaction force in the opposite or negative

direction. In moving from heel-strike to toe-off, the foot transitions from aforward push to a backward push. Hence, the

ground reaction force switches from a negative value to a positive value, becoming zero at some point in between.
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The water will cool down almost to freezing as the ice melts. Then, when T

the ice has melted, the water will dlowly warm up to room temperature.

Runner A won the race, reaching the finish line at 100 metersin about 15 seconds, followed by runner B with atime of about
19 seconds, and then by runner C who finished in around 23 seconds. B initidly led the race, followed by C, and then A.

C then passed B to lead for awhile. Then A passed first B, and then passed C to take the lead and finish first. Finally,

B passed C to finish in second place. All three runners completed the race.

Initially, the bacteria population size remains constant during which nutrients are consumed in preparation for reproduction. In
the second phase, the population size increases rapidly as the bacteria replicate. The population size plateaus in phase three at
which point the "carrying capacity" has been reached and the available resources and space cannot support alarger population.

Finally, the bacteria die due to starvation and waste toxicity and the population declines.

The summer solstice (the longest day of the year) is 21. Of course, this graph depends strongly on the
around June 21, and the winter solstice (the shortest day) geographical location!
isaround December 22. (Exchange the dates for the T

southern hemisphere.)

Hours of )
daylight midnight noon !
| Junle 21 Dec.22 ¢t
The temperature of the pie would increase rapidly, level 23. Asthe priceincreases, the amount sold
off to oven temperature, decrease rapidly, and then level decreases,  amount
off to room temperature.
T
| f 0 price

The value of the car decreases fairly rapidly initialy, then somewhat less rapidly.

value

0 5 10 15 20 ¢t
(in years)
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2. (@) g (b) "
120+ 120+
1000 /\_/\‘/ 1(D0 ““““““““
807 80+ |
Count 601 Count 6ol
40+ 40+ :
201 201 i
0 i ; ; } } } > 0 ; . M
1980 1990 2000 2010 x 1980 1990 2000 2010 x
Year Year

We see from the graph that there were approximately
92,000 birdsin 1997.

26. (& ¢ (b) Alcohol concentration increases rapidly within the first

0.4 hour of consumption and then slowly decreases over the

following three hours.
0.2

27, f(z) = 32% —x + 2.
f2)=32?%-2+2=12-2+2=12.
f(=2) =3(=2)2 = (-2)+2=12+2+2 = 16.
f(a)=3a"> —a+2.
f(=a) =3(-a)® = (—a) +2=3a> + a +2.

fla+1)=3(a+1)?>-(a+1)+2=3(a’+2a+1)—a—-1+2=3a>+6a+3—a+1=3d>+5a+4.
2f(a) =2- f(a) = 2(3a* — a +2) = 6a°® — 2a + 4.
f(2a) = 3(2a)® — (2a) + 2 = 3(4a®) — 2a + 2 = 12a* — 2a + 2.
f(@®) =3(a*)? — (a®) + 2 = 3(a*) —a® +2 = 3a* — a® + 2.
[f(a)]? = [3a2—a+2]2 =(3a®>—a+2)(3a®> —a+2)
=9a* — 3a® + 6a® — 3a® + a® — 2a + 6a® — 2a + 4 = 9a* — 6a® + 13a* — 4a + 4.
fla+h)=3(a+h)*>—(a+h)+2=3(*+2ah+h?) —a—h+2=3a>+6ah+3h?—a—h+2.
28. A spherical balloon with radius r + 1 hasvolume V (r + 1) = 47(r + 1)* = 27 (r® + 3r> + 3r + 1). Wewish to find the
amount of air needed to inflate the balloon from aradius of r to  + 1. Hence, we need to find the difference

V(ir+1)=V(r)=3n(r® +3r +3r+1) — 37r® = 37 (3r> + 3r + 1).

2. f(x)=4+3x—2%,0f(3+h)=4+3B8+h)—(B3+h)?=44+9+3h—(9+6h+h?) =4—3h—h

fB+h)—f(3) (4—3h—h’)—4 h(-3—h) _
and b = h = h =-3—h.
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f(z) = 2® 50 f(a+ h) = (a + h)* = a® + 3a®h + 3ah® + h3,
and fla+h) — fla) _ (a®+3a’h +3ah®> + h*) —a® _ h(3a® + 3ah + h?)
- =

= 3a? + 3ah + K2

h N h

1 1 a—
J@)—f@) 3 a_ ma _ a-z _-l@-a _ 1
T —a x—a z—a za(r—a) za(zr—a) azx

43 9 r+3—-2(x+1)

f@)—f@) _z+1 " r+1 _x+3—-2x—2
z—1 = xz-1 z—1 T (z+D(z-1)
—z+1 —(z—1) 1

T @+ )z-1) (@+D)@E-1) z+1
f(z) = (z +4)/(z* — 9) isdefined for all z exceptwhen0 =2> -9 < 0= (z+3)(z—3) & x=-3o0r3 sothe
domainis{z € R |z # —3,3} = (—00,—=3) U (—3,3) U (3,00).
f(z) = (22® — 5)/(z* + = — 6) isdefined for al =z exceptwhen0 =22 +2 -6 < 0= (z+3)(z—2) <
x = —30r2,sothedomanis{z € R |z # —3,2} = (—o0,—3) U (—3,2) U (2, 0).
f(t) = /2t — 1isdefined for al real numbers. Infact {/p(t), where p(t) isapolynomial, is defined for al real numbers.

Thus, thedomain isR, or (—oo, c0).

g(t) =v3—t—+2+tisdefinedwhen3 —¢t>0 <« t<3and2+t>0 < > —2.Thus thedomainis
—2<t<3,0r[-2,3].

h(z) =1 /v/x% — 5z isdefinedwhenz® — 52 >0 <  a(z —5) > 0. Notethat 2> — 5z # 0 since that would result in
division by zero. The expression z(z — 5) is positiveif z < 0 or z > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (—oo, 0) U (5, 00).

flu) = u+:11 isdeﬁnedwhenu+1760[u7é71]and1+i;éO.SincelJrL:O
1+ u—+1 u—+1
u+1
ui1:—1 & 1= —u—1 = u=—2 thedomanis{u|u#—2,u#—1} = (—o00,~2)U (=2, 1)U (~1,00).

F(p) = /2 — /pisdefinedwhenp >0and2 - ,/p > 0. Since2-,p>0 = 2>.p = p<2 =
0 < p < 4,thedomainis|0,4].

hz)=vVEi—2Z Nowy=+vV4—22 = y*=4—-2> & 2°+y*=4,% Y

the graph isthe top half of acircle of radius 2 with center at the origin. The domain

is{z|4—2">0} ={z[4>2"} ={z|2>|z|} = [-2,2]. Fromthe graph, E— T

therangeis0 <y < 2, or [0, 2].
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f(z) =2 — 0.4z isdefined for al real numbers, so thedomainisR,

or (—o0, 00). Thegraph of f isaline with slope —0.4 and y-intercept 2.

F(z) = 2® — 22+ 1 = (z — 1)? isdefined for al real numbers, so the

domainisRR, or (—oo, o). The graph of F isaparabolawith vertex (1,0).

f(t) = 2t +t* isdefined for all real numbers, so the domainisR, or

(=00, 00). The graph of f isaparabola opening upward since the
coefficient of t? is positive. To find the ¢-intercepts, let y = 0 and solve
fort. 0=2t+t*=¢(2+t) = t=0ort= —2. Thet-coordinate of
the vertex is halfway between the t-intercepts, that is, at t = —1. Since
f(=1)=2(-1)+ (-1)> = =2+ 1 = —1, thevertex is (—1, —1).

4—1°  (2+1)(2-1)
2—t 2—t

H(t) = ,sofort # 2, H(t) = 2 + t. Thedomain

is{t | t # 2}. Sothe graph of H isthe same asthe graph of the function

f(t) =t+ 2 (aline) except for thehole at (2,4).

g(x) = vz —5isdefinedwhenz — 5 > 0 or x > 5, so thedomainis[5, o).
Sincey=vr—5 = Y =z-5 = x=y>+5 weseetha gisthe

top half of aparabola
2x + 1 if 2c+1>0
F(z)=1]2z+1| = .
—(2z41) if2z4+1<1
2z +1 if 2>—1
21 ifa< -]

ThedomainisR, or (—oo, c0).

2.4

\‘

=

© 2016 Cengage'LLearning:“All"Rights Reserved. May not, be'scanned; copied, or duplicated; or posted to a publicly accessiblewebsite, in whole'orin part:



SECTION 1.1  FOUR WAYS TO REPRESENT AFUNCTION [0 15

x if x>0
47. G(z) = M Since |z| = . ,wehave y
T -z ifz<0 44
 — )
AT i ps0 (X ife>0 (4 itaeso
G(z) = 3 z = 21’ :{ _ 0 x
T2% te<o |2 ifa<o if o <0
T T
Note that G isnot defined for « = 0. Thedomainis (—oo, 0) U (0, c0).
Tr—x if >0 0 if x>0 !
8. g(z) =lz| -z = , = , : ’
—zx—z ifx<0 =2z ifx<0
. . ‘l,,
ThedomainisR, or (—oo, c0).
y=-—2x
y=0
0 : x

z+2 ifz<0

49, f(x) = y
@) {1 —xz fxz>0
0,2)
ThedomainisR. Q’ N
/2 0 l\x
50, f(z) 3—%1‘ if <2 .
. xTr) = )
20—5 if x>2 \3
ThedomainisR. 2.2)
0 ! X
2,-1)
fa) z+2 ifz< -1 y
51. f(x) =
z? if > -1
Note that for z = —1, both zz + 2 and 22 are equal to 1. Thedomain isR. T
-1 10 X
z+9 if z< -3
52. f(x) =< —2z if |2|<3 Y
6 if z>3 =9
Notethat for z = —3, both = + 9 and —2x are equal to 6; and for x = 3, both —2x /_9 0 >
and —6 are equal to —6. ThedomainisR.
(3,-6)
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Let the length and width of the rectangle be L and 1. Then the perimeter is2L + 2W = 20 and theareais A = LW.

20 — 2L
2

Solving the first equation for W interms of L givesW = =10 — L. Thus, A(L) = L(10 — L) = 10L — L?. Since

lengths are positive, the domain of Ais0 < L < 10. If wefurther restrict L to be larger than W, then 5 < L < 10 would be

the domain.

Let the length and width of the rectangle be L and W. Thenthe areais LW = 16, sothat W = 16/L. The perimeter is
P=2L+2W,s0 P(L) =2L+2(16/L) = 2L + 32/L, and thedomain of P is L > 0, since lengths must be positive
quantities. If we further restrict L to be larger than W, then L > 4 would be the domain.

Let the length of aside of the equilateral triangle be z. Then by the Pythagorean Theorem, the height y of the triangle satisfies
y? + (32)? = 2®, sothat y? = 2% — 122 = 322 and y = 2. Using the formula for the area A of atriangle,

A = 1(base)(height), we obtain A(z) = %(m)(@x) = Y352 with domain = > 0.

Let the volume of the cube be V and the length of an edgebe L. Then V = L? so L = ¢/V, and the surface area is
2
S(V) =6L2 = G(W) — 6V2/3, with domain V > 0.
Let each side of the base of the box have length x, and let the height of the box be h. Since the volumeis 2, we know that

2 = ha?, sothat h = 2/2?, and the surface areais S = 2? + 4xh. Thus, S(z) = 22 + 42(2/2°) = 2% + (8/x), with

domainz > 0.

We can summarize the monthly cost with a piecewise

defined function. 37 -
351

35 if 0<az<400
C(z) = .
354 0.10(z — 400) if = > 400

0 400 600 ¥
We can summarize the total cost with a piecewise defined function.
75x ifo<z<2
T(z) = .
150 4+ 50(z — 2) if x> 2

One exampleisthe amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour.
Another exampleisthe amount paid by a student in tuition fees, if the fees vary according to the number of credits for which
the student has registered.

The period can be estimated by measuring the peak-to-peak distance on the graph. Thisis approximately 77 hours. Note that

the graph shown is for asingle person’s temperature. The period for this species of maariais, on average, 72 hours.

The cycle of increased body temperature followed by a drop in temperature is indicative of arecurrent fever. Thisistypical of
aP. falciparuminfection. The period is approximately 48 hours, but the fever is also subsiding. This might be because the
person is being treated for infection.

f isan odd function because its graph is symmetric about the origin. g isan even function because its graph is symmetric with

respect to the y-axis.
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64. f isnot an even function sinceit is not symmetric with respect to the y-axis. f isnot an odd function sinceit is not symmetric

about the origin. Hence, f is neither even nor odd. ¢ is an even function because its graph is symmetric with respect to the

y-axis.

65. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,

the point (—5, 3) must aso be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (—5, —3) must also be on its graph.
66. (a) If f iseven, we get the rest of the graph by reflecting

about the y-axis.
y
0 X
67. f(x) = 55
fl-a) = — — T = ().

(—z)2+1 Tyl 2241
So f isan odd function.

]

Jz

x —x T
——,0 f(—x) = = .
z+1 f(=a) —zx+1 z-1

Sincethisisneither f(x) nor — f(x), thefunction f is

69. f(x) =

neither even nor odd.

(b) If f isodd, we get the rest of the graph by rotating
180° about the origin.

(o __a?

LA S e S

f(@).

So f isan even function.

—2{ t t JZ
70. f(z) = = |x|.

f(=z) = (—2) |—2| = (—2) |z| = —(z =)
= —f()
So f isan odd function.
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71 f(z) =14 32% — z*. 72. f(z) =14 32® — 25,0

f(=2) = 143(=2)* — (—2)" = 1+32° —a" = f(x). f(=2) =14 3(—2)* — (—2)° = 1 + 3(—2®) — (—2°)

So f isan even function. —1-32%42°

4

Sincethisis neither f(z) nor — f(x), the function f is

Iz
— N
AN

o

73. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(f +9)(—x) = f(=z) + g(—=z) = f(z) + g(x) = (f + g)(x), 0 f + g isan even function.
(i) If f and g are both odd functions, then f(—xz) = — f(x) and g(—x) = —g(z). Now
(f+9)(=2) = f(=2) + g(=2) = = f(z) + [-g(2)] = =[f(2) + 9(2)] = —(f + 9)(z), %0 f + g isan odd function.
(iii) If f isaneven function and g isan odd function, then (f + ¢g)(—z) = f(—z) + g(—z) = f(z) + [-g(z)] = f(z) — g(z),
whichisnot (f + g)(z) nor —(f + g)(z), so f + g isneither even nor odd. (Exception: if f isthe zero function, then
f+ g will beodd. If g isthe zero function, then f + g will be even.)
74. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(f9)(=z) = f(=2)9(=z) = f(x)g(x) = (fg)(x), s0 fg isan even function.
(i) If f and g are both odd functions, then f(—z) = —f(z) and g(—z) = —g(z). Now
(f9)(==) = f(=z)g(—2z) = [-f(2)][-9(2)] = f(z)9(z) = (fg)(z), S0 fg isan even function.
(iii) If f isan even function and g is an odd function, then

(F9)(=z) = f(=2)9(—2) = f(2)[-g(x)] = —[f(z)g(x)] = —(fg)(x), s0 fg isan odd function.

1.2 Mathematical Models: A Catalog of Essential Functions

1. (@) f(z) = log, x isalogarithmic function.

(b) g(z) = ¥z isaroot function withn = 4.

3

1-a2 2j3x2 isarational function because it isaratio of polynomials.

(© h(z) =
(d) u(t) =1 — 1.1t + 2.54t* isapolynomial of degree 2 (also called a quadratic function).
(e) v(t) = 5" isan exponential function.
() w(#) = sin @ cos>0 isatrigonometric function.

2. (@) y = «* isan exponentia function (notice that x isthe exponent).

(b) y = =™ isapower function (notice that = isthe base).
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(© y = 2(2 — 2®) = 22% — 2° isapolynomial of degree 5.

(d) y = tant — cost isatrigonometric function.

() y = s/(1+ s) isarationa function becauseit isaratio of polynomials.

() y = V2% —1/(1 + &z) isan agebraic function because it involves polynomials and roots of polynomials.

3. We notice from the figure that g and h are even functions (symmetric with respect to the y-axis) and that f isan odd function
(symmetric with respect to the origin). So (b) [y = =°] must be f. Since g isflatter than /. near the origin, we must have
(©) [y = 2®] matched with g and (a) [y = 2*] matched with h.
4. (8) Thegraph of y = 3z isaline (choice G).
(b) y = 3% isan exponential function (choice f).
(¢) y = z® isan odd polynomial function or power function (choice F).

(d) y = ¥z = ='/* isaroot function (choice g).

5. (8) An eguation for the family of linear functions with slope 2 Y b=-1

isy = f(z) = 2z + b, where b is the y-intercept.

(b) f(2) = 1 meansthat the point (2, 1) ison the graph of f. We can usethe y
point-slope form of alineto obtain an equation for the family of linear

functions through the point (2,1). y — 1 = m(z — 2), which isequivalent

toy = mz + (1 — 2m) in slope-intercept form.

PN

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = ma + (1 — 2m),
becomesy = 2z — 3. It isthe only function that belongs to both families.

6. All members of the family of linear functions f(z) = 1 + m(x + 3) have

graphs that are lines passing through the point (—3, 1). V
1

3
Il
5 Pt
Il
=

3
Il
=

m=—1

(©) 2016 Cengage L earning. All Rights Reserved: May not:be scanned; copied, or duplicated, or posted to,a publicly accessiblewebsite, inwhole or in/part.



20

7.

10.

11.

12.

13.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

All members of the family of linear functions f(z) = ¢ — « have graphs y

that are lineswith slope —1. The y-intercept is c. \
c=-1

. The vertex of the parabola on the left is (3, 0), so an equation isy = a(x — 3)* 4+ 0. Since the point (4, 2) ison the

parabola, we' |l substitute 4 for z and 2 for y tofinda. 2 =a(4 —3)> = a =2,soanequationis f(z) = 2(x — 3)%.
The y-intercept of the parabola on theright is (0, 1), so an equation isy = ax® + bx + 1. Since the points (—2, 2) and
(1,—2.5) are on the parabola, we'll substitute —2 for x and 2 for y aswell as 1 for « and —2.5 for y to obtain two eguations

with the unknowns a and b.

(=2,2): 2=4a—-2b+1 = 4a—-2b=1 (1)

(1,-25): —25=a+b+1 = a+b=-35 (2
2-(2) + (1) givesusba = —6 = a=-1.From(2),-1+b=-35 = b= —2.5,50anequation
isg(z) = —2% — 2.5z + 1.

. Since f(—1) = f(0) = f(2) =0, f haszerosof —1, 0, and 2, so an equation for f is f(z) = alx — (=1)](z — 0)(z — 2),

or f(z) = ax(zx 4+ 1)(x — 2). Because f(1) = 6, we'll substitute 1 for z and 6 for f(z).

6=a(1)(2)(-1) = —-2a=6 = a=-3,s0anequationfor fisf(z)=—-3z(x+1)(x —2).

(8 For T' = 0.02t + 8.50, the slope is 0.02, which means that the average surface temperature of the world isincreasing at a
rate of 0.02 °C per year. The T-intercept is 8.50, which represents the average surface temperature in °C in the year 1900.

(b) t =2100 — 1900 =200 = 7T =0.02(200) + 8.50 =12.50°C

(@ D = 200,50 c=0.0417D(a + 1) = 0.0417(200)(a + 1) = 8.34a + 8.34. The slopeis 8.34, which represents the
change in mg of the dosage for a child for each change of 1 year in age.

(b) For anewborn, a = 0, so ¢ = 8.34 mg.

(8 Wearegiven 1 Oirg?:ié\:géﬁgth = % = 0.434. Using P for pressure and d for depth with the point

(d, P) = (0, 15), we have the slope-intercept form of theline, P = 0.434d + 15.

(b) When P =100, then 100 = 0.434d + 15 < 0.434d =85 <& d = 5557 ~ 195.85 feet. Thus, the pressureis
100 1b/in® at adepth of approximately 196 feet.

@ F (b) The slope of 2 meansthat F increases £ degrees for each increase
e of 1°C. (Equivaently, F increasesby 9 when C increasesby 5
F=35C+32 and F' decreases by 9 when C' decreases by 5.) The F-intercept of
> 32 isthe Fahrenheit temperature corresponding to a Celsius
(—40,—40) c

temperature of 0.
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14. (8) Assuming A isalinear function of V, we can sketch Ax
the graph of A(V') by plotting the points (150, 0.35) 0.4+
0.3+

15.

16.

17.

18.
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and (50, 0.14) and drawing the straight line that passes

through both these points. 021

0.11 (50, 0.14)

0 50 100 150 Vv

A(150) — A(50)  0.35 —0.14
150 — 50 o 100
rate with respect to volume. The slope of 0.0021 meansthat A increases by 0.0021 mL /min for each 1 mL increasein V.

(b) Thedopeism =

= 0.0021 min~!. This represents the rate of change of absorption

(c) The A-intercept of 0.035 mL /min is the absorption rate corresponding to a cerebrospinal fluid volume of 0 mL.

. . . . T — T 80 — 70 10 1 .
Using N in place of = and T in place of y, we find the Slope to be = = — = =, Soalinear
(8) Using Vi p o P 4 P Na— N, 173—-113 60 6
equationis7 —80 = (N —173) < T —-80=iN-12 & T=1IiN+ 3 [30 =5]116].

6

(b) The slope of % means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket
chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1°F.

(c) When N = 150, the temperature is given approximately by 7" = £(150) + %ﬁ = 76.16 °F ~ 76 °F.

- . , Co—Ci _460—380 80 _ 1
(8 Using d in place of = and C' in place of y, wefind the slope to be 4 —d, —R00—480 320~ 1

So alinear equationis C' — 460 = ; (d —800) < C —460 = 3d—200 & C = 1d+ 260.

(b) Letting d = 1500 we get C' = 1 (1500) + 260 = 635. (©) Y

The cost of driving 1500 milesis $635. 10007

500
(d) The y-intercept represents the fixed cost, $260. /

0 500 1000 X

The slope of the line represents the cost per
mile, $0.25.

(e) A linear function gives a suitable model in this situation because you have fixed monthly costs such as insurance and car
payments, as well as costs that increase as you drive, such as gasoline, ail, and tires, and the cost of these for each
additional mile driven is a constant.

(8) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form
f(z) = acos(bz) + ¢ seems appropriate.

(b) The data appear to be decreasing in alinear fashion. A model of the form f(z) = max + b seems appropriate.

(8) The data appear to be increasing exponentially. A model of theform f(z) = a - b” or f(z) = a - b” + ¢ Seems appropriate.

(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of theform f(z) = a/x seems
appropriate.
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19. & 5 (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain
' 8.2 —-14.1 .
Yy — 14.1 = m (.’E — 4000) or, equlvalently,

y ~ —0.000105357x + 14.521429.

15

— 61,000

A linear model does seem appropriate.

— 61,000

(c) Using acomputing device, we obtain the least squares regression line y = —0.0000997855x + 13.950764.
The following commands and screensiillustrate how to find the least squares regression line on a T1-84 Plus.

Enter the datainto list one (L1) and list two (L2). Press|STAT||1] to enter the editor.

L] Lz Lz 1 L1 Lz Lz z
yooo  [141 [ ooooe- 1zo00 [1z.5
ooy |1z ig0oo0 |12
ooy | iEy o000 |12y
izo00 |1ZE 000 | 108
1000 |12 jeogn | @y
zooon |12y BOO0D
o0 |16 | | | ool
L1 ={4B883, SREE, 3. Lziim =

Find the regession line and storeitin Y. Press [2nd] [QUIT] [STAT] [»][4] [VARS] [»] ENTER].

LinEegiax+b) Y1H0| |LinEeg Flotz Flok:
u=ax+h B -9, 9FE545E18
2=-9,97854E8E-D FE9IE -DE+13,. 9587
b=13.93075483 63@??@85
e
wNa=
“Ny=
[ | Ne=

Note from the last figure that the regression line has been stored in Y and that Plot1 has been turned on (Plotlis
highlighted). You can turn on Plot1 from the Y= menu by placing the cursor on Plotl and pressing [ ENTER| or by
pressing [2nd|[STAT PLOT|[1][ENTER] .

Flakz  Flots

EHEHDE;HH off

L~ Lz o« gpel B8 L Jdm
2:Plot2 0ff Bt

L~ LE = wlistili
3iPlotI.0Ff Ylistilez

Lo LA Lz = Mark: B +
4lP1ots04F

Now press[ZOOM][9] to produce a graph of the data and the regression
line. Note that choice 9 of the ZOOM menu automatically selects awindow
that displays all of the data.

(d) When 2 = 25,000, y ~ 11.456; or about 11.5 per 100 population.
(e) When z = 80,000, y ~ 5.968; or about a 6% chance.
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(f) When 2 = 200,000, y is negative, so the model does not apply.

20. (a) 230 (chirps/min) (b) 270 (chirps/min)
45 . . X ) 95 ¢R) 45 105 (°F)
Using a computing device, we obtain the least squares
(c) Whenz = 100°F, y = 264.7 ~ 265 chirps/min. regression liney = 4.856x — 220.96.
2. (@ g5 (b) Using a calculator to perform alinear regression gives
1 H = 1.8807L + 82.6497 where H isthe height in centimeters and
[ ]
. L isthe femur length in centimeters. Thisline, having slope 1.88 and
y N '.. H-intercept 82.65, is plotted below.
i 185
L )
35 I I | J 55
140 L

(c) The height of apersonwith L = 53 is
H(53) = (1.8807)(53) + 82.6497 ~ 182.3 cm. 35 1 s 1 55

22. (a) Using acalculator to perform alinear regression gives y = 0.0188z + 0.3048.
(b) The plot shows that the data is approximately linear. A higher degree polynomial fit, such as a cubic, may better model the

data.
60

3000

0
(c) The y-intercept represents the percentage of mice that developed tumors without any asbestos exposure.

23. If z isthe original distance from the source, then the illumination is f(z) = kx~2 = k/2>. Moving halfway to the lamp gives

usanillumination of f(1z) = k(1z) % = k(2/2)? = 4(k/2?), so the light is 4 times as bright.

(20)1/0392  15.331b

24. (a) Set L = 90in and solve for W: 90 = 30.6W %32 «— 0 — 0392 0 1 = (2%

b) Set W = 3001b and calculate: L = 30.6 (300)*°%? ~ 291.5in

(

(c) According to the model, a 300 1b ostrich needs awingspan of 292 in to fly. Therefore, an ostrich with a 72 in wingspan
cannot generate enough lift for flight.

(©) 2016 Cengage L earning. All Rights Reserved: May not:be scanned; copied, or duplicated, or posted to,a publicly accessiblewebsite, inwhole or in/part.



24 00 CHAPTER1 FUNCTIONS AND SEQUENCES

25. (a) Using acomputing device, we obtain a power function N = cA®, where ¢ ~ 3.1046 and b = 0.308.
(b) If A =291,then N = cA® ~ 17.8, so you would expect to find 18 species of reptiles and amphibians on Dominica.
26. (8) T = 1.000431 2274 499528750

(b) The power model in part () is approximately 7' = d*->. Squaring both sides gives us 7% = d®, so the model matches
Kepler'sThird Law, T2 = kd 3.

27. (&) Using acalculator to perform a 3rd-degree polynomial regression

gives L = 0.0155A4% — 0.3725A4% + 3.9461 A4 + 1.2108 where A is
age and L islength. This polynomial is plotted along with a
scatterplot of the data.

15

(b) A 5-year old rock bass hasalength of L(5) = (0.0155)(5)® — (0.3725)(5)* + (3.9461)(5) + 1.2108 ~ 13.6in

(€) Using computer agebra software to solve for A in the equation 20 = 0.0155A43 — 0.3725A2 + 3.9461 A + 1.2108 gives
A =~ 10.88 years. Alternatively, the graph from part (8) can be used to estimate the age when L = 20 by drawing a
horizontal line at L = 20 to the curve and observing the age at this point.

1.3 New Functions from Old Functions

1. (a) If thegraph of f isshifted 3 units upward, its equation becomesy = f(x) + 3.
(b) If the graph of f isshifted 3 units downward, its equation becomesy = f(z) — 3.
(c) If thegraph of f isshifted 3 unitsto theright, its equation becomesy = f(z — 3).
(d) If the graph of f isshifted 3 unitsto theleft, its equation becomesy = f(z + 3).
(e) If the graph of f isreflected about the z-axis, its equation becomesy = — f(x).
(f) If the graph of f isreflected about the y-axis, its equation becomesy = f(—xz).
(9) If thegraph of f is stretched vertically by afactor of 3, its equation becomesy = 3 f(z).
(h) If thegraph of f isshrunk vertically by afactor of 3, its equation becomesy = %f(x).
2. (8) Toobtain the graph of y = f(x) + 8 fromthe graph of y = f(z), shift the graph 8 units upward.
(b) To obtain the graph of y = f(x + 8) from the graph of y = f(x), shift the graph 8 unitsto the left.
(c) To obtain the graph of y = 8 f(x) from the graph of y = f(z), stretch the graph vertically by afactor of 8.
(d) To obtain the graph of y = f(8z) from the graph of y = f(x), shrink the graph horizontally by afactor of 8.

(€) To obtain the graph of y = — f(z) — 1 from the graph of y = f(x), first reflect the graph about the z-axis, and then shift it
1 unit downward.

(f) To obtain the graph of y = 8 f(3) fromthe graph of y = f(x), stretch the graph horizontally and vertically by afactor
of 8.

3. (8) (graph 3) The graph of f isshifted 4 unitsto the right and hasequationy = f(z — 4).
(b) (graph 1) The graph of f is shifted 3 units upward and has equationy = f(z) + 3.
(c) (graph 4) The graph of f isshrunk vertically by afactor of 3 and hasequationy = 3 f(x).
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SECTION 1.3  NEW FUNCTIONS FROM OLD FUNCTIONS L1 25

(d) (graph 5) The graph of f is shifted 4 unitsto the left and reflected about the z-axis. Itsequationisy = — f(z + 4).
(e) (graph 2) The graph of f isshifted 6 unitsto the left and stretched vertically by afactor of 2. Its equation is

y=2f(z+6).

4. (8 Tography = f(x) — 2, we shift thegraph of f, 2 (b) Tography = f(x — 2), we shift the graph of f,
units downward.The point (1, 2) on the graph of f 2 unitsto theright.The point (1, 2) on the graph of f
corresponds to the point (1,2 — 2) = (1, 0). corresponds to the point (1 + 2,2) = (3, 2).

y y

i

0 g 2

0 3 X
(c) Tography = —2f(x), wereflect the graph about the (d) Tography = f (%m) + 1, we stretch the graph

z-axis and stretch the graph vertically by afactor of 2. horizontally by afactor of 3 and shift it 1 unit upward.
The point (1, 2) on the graph of f correspondsto the The point (1, 2) on the graph of f corresponds to the
point (1, —2-2) = (1, —4). point (1-3,2+4+1) = (3,3).

y y

1

of 1 X !

0 3 X
N/

5. (@) Tography = f(2x) we shrink the graph of f (b) Tography = f(%x) we stretch the graph of f

horizontally by afactor of 2. horizontally by afactor of 2.
y
1{

0 } 2 X

The point (4, —1) on the graph of f correspondsto the

The paint (4, —1) on the graph of f corresponds to the point (2-4,—1) = (8, -1).
point (3 -4,—1) = (2,-1).
(c) Tography = f(—x) werreflect the graph of f about (d) Tography = — f(—x) we reflect the graph of f about
the y-axis. the y-axis, then about the z-axis.
y ¥
{1 |
1x

The point (4, —1) on the graph of f corresponds to the

pOINt (—1 -4, —1) = (—4, —1). The point (4, —1) on the graph of f correspondsto the

point (—1-4,—-1-—1) = (—4,1).
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6. (@) The graph of y = 2sin x can be obtained from the graph (b) Thegraph of y = 1 + /x can be obtained from
of y = sin z by stretching it vertically by afactor of 2. the graph of y = /z by shifting it upward 1 unit.
’ y
2 +
T 37
AN £/ 2\
+ + + + } (1,2)

7.y= L Start with the graph of the reciprocal function y = 1/2 and shift 2 unitsto the left.

z+2
y x=-2 y
1
Y=iv2
¥
0 X 0 X
8. y = (z — 1)3: Start with the graph of y = = and shift 1 unit to the right.
y y
y=x’
0 X 0/1 X
y=@-1’
9. y = — /z: Start with the graph of y = ¥/ and reflect about the z-axis.
y - y
v= y=—i
0 X 0 X

10 y =2 + 62 +4 = (2% + 624+ 9) — 5 = (x + 3)% — 5: Start with the graph of y = 22, shift 3 unitsto the left, and then shift

5 units downward.

y:(x+3)2*5”
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

11. y = vz — 2 — 1: Start with the graph of y = /=, shift 2 unitsto the right, and then shift 1 unit downward.

y=yr—2-1

12. y = 4sin 3z: Start with the graph of y = sin z, compress horizontally by a factor of 3, and then stretch vertically by a
factor of 4.

y=sinx Y y=sin3x 7 y=4sin 3x 2
NN 2 ANANATANND /\/\/\ %A/\/\

13. y = sin(z/2): Start with the graph of y = sin - and stretch horizontally by afactor of 2.

y y

y=sinx y=sin(x/2)

(1,2) \y=%—2
(1,1

15. y = —2®: Start with the graph of y = 2® and reflect about the y y
z-axis. Note: Reflecting about the y-axis gives the same result
y= )&3 y= 7)@3
since substituting —x for z givesusy = (—z)% = —2®.
0 x 0 X
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16. y = 1 — 2y/x + 3: Start with the graph of y = /z, shift 3 unitsto theleft, stretch vertically by afactor of 2, reflect about the

z-axis, and then shift 1 unit upward.

y y y
y=+x+3 y=2yx+3
v o
/ 2t
1,,
0 X -3 :2 0 X -3 _‘2 0 X
y y
1
\ 2
X 3& X
+-1
=1-2Jx+3

17. y = %(1 — cos z): Start with the graph of y = cos z, reflect about the z-axis, shift 1 unit upward, and then shrink vertically by

afactor of 2.
y y
1 y=cosx y=—cos x
0 7;' X 0 ;T X
-1
y y
12
1+
T T
0 =1 - cos o2
y S X y=5(1—cosx)

18. y = |z| — 2: Start with the graph of y

= |z| and shift 2 units downward.

y
y=

9. y=1-2z—2>=—(22+22)+1=—(2*+22+1) +2 = —(x + 1)? + 2: Start with the graph of y = 22, reflect about
the z-axis, shift 1 unit to the left, and then shift 2 units upward.

y

y=x

y y

y=—(x+17+2
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SECTION 1.3  NEW FUNCTIONS FROM OLD FUNCTIONS L1 29

20. y = i tan(z — §): Start with the graph of y = tan =, shift £ unitsto theright, and then compress vertically by afactor of 4.

y=tan x y=tan(x—7747) y=%tan(x—%)

J
s

0 x 0}/ x (() x
x=—T =T x=3—77 x=-T x=3—77x=7—77 x=—1 x=3—#x=7—ﬂ-
2 2 2 3 4 2 r=-7 2 2

21. Thisisjust like the solution to Example 4 except the amplitude of the curve (the 30°N curve in Figure 9 on June 21) is
14 — 12 = 2. Sothefunctionis L(¢) = 12 + 2sin[ 2% (¢ — 80)]. March 31 is the 90th day of the year, so the model gives
L(90) = 12.34 h. The daylight time (5:51 Am to 6:18 PM) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 1245-12:31 ~ 0,009, less than 1%.

22. Using asine function to model the brightness of Delta Cephel as a function of time, we takeits period to be 5.4 days, its
amplitude to be 0.35 (on the scale of magnitude), and its average magnitude to be 4.0. If wetake ¢t = 0 at atime of average
brightness, then the magnitude (brightness) as a function of time ¢ in days can be modeled by the formula
M(t) = 4.0+ 0.35sin(251).

23. Let D(t) bethewater depth in meters at ¢ hours after midnight. Apply the following transformations to the cosine function:
o Vertical stretch by factor 5 since the amplitude needsto be 2-2 = 5m
e Horizontal stretch by factor 22 = £ since the period needsto be 12 h
e Vertical shift 7 units upward since the function ranges between 2 and 12 which has a midpoint of % =7m
o Horizontal shift 6.75 unitsto right to position the maximum at ¢ = 6.75 h (6:45AM)
Combining these transformations gives the water depth function D(t) = 5cos (& (t — 6.75)) + 7.

24. Let V(t) bethetota volume of air in mL after ¢ seconds. Because the respiratory cycleis periodic, asine function can be used
as amodel by applying the following transformations:
e Vertical stretch by factor 250 since the amplitude needs to be 232 = 250 mL
e Horizontal stretch by factor -~ = 2 since the period needsto be 4

™

o Vertical shift 2250 units upward since the function ranges between 2000 and 2500 which has a midpoint of
200042500 __ 2250 mL
2

Combining these transformations gives the volume function V' (t) = 250 sin (3¢) + 2250.

25. Let f(t) bethe gene frequency after ¢ years. The gene frequency dynamics can be modeled using a sine function with the
following transformations:

e Vertical stretch by factor 30 since the amplitude needsto be % =30%

e Horizontal stretch by factor % since the period needs to be 3 years

e Vertical shift 50 units upward since the function ranges between 80 and 20 which has a midpoint of 2420 = 50
Combining these transformations gives the gene frequency function f(¢t) = 30sin (%“t) + 50.

26. Let D(t) bethe density of neutrophilsin cells/uL after ¢ days. The density is periodic and can be modeled using a cosine
function with the following transformations:
e Vertical stretch by factor 1000 since the amplitude needs to be 20%=° = 1000
e Horizontal stretch by factor ;—}T since the period needs to be 21 days (or 3 weeks)
o Vertical shift 1000 units upward since the function ranges between 0 and 2000 which has a midpoint of % = 1000
Combining these transformations gives the density function D(t) = 1000 cos (25t) -+ 1000.
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29.

30.
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f(z) = 2® 4+ 227 g(z) = 32° — 1. D =Rforboth f and g.

@ (f+9)(x) = (2*+22°)+ (32> —1) =2® +52° — 1, D=R.
b) (f —9)(x)=(2*+22°) - (32" —1) =2 -2 + 1, D=R.

© (f9)(x) = (2 + 22°)(32® — 1) = 32° + 62" — 2® — 22, D=R.

) (g gmjf’”l . {x | x#i%}since?)ﬁ—lyéo.

flz) =+v3—2, D=(—00,3]; g(a:):\/fol, D = (—o0,—1] U1, 00).

@ (f+9)(z)=+v3—z++V22 -1, D= (—00,—1] UL, 3], whichisthe intersection of the domainsof f and g.

©) (f —9)(x) =vV3 -z - va? =1, D= (—o0, ~1JU[L,3].

© (f9)(@) = V3 -z -va? -1, D= (- ,*1] UlL,3].

(d) (5) (x) = 32_331, D = (—o0,—1) U (1, 3]. We must exclude z = +1 since these values would makeg undefined.
2 —

flx)=2>-1, D=R; gz)=2x+1, D=R.

@ (fog)(zx)=f(g(x)) = fRx+1)= (2x+1)> =1 = (42® + 4o + 1) — 1 = 42> + 42, D = R.
) (go @) =g(f(x) =g(a*—1)=2(a*-1)+1= (22> -2)+1=22> -1, D=R.
© (fof)) = f(f(2)) = fla®~1) = (2® ~1)* ~1= (2" —22° +1) -1 =2" — 22?, D=R.

g2x+1)=222+1)+1=(4de+2)+1=4z+3, D=R.

—
Q
NS
—
Q
o
Q
=
=
8
N
Il
<Q
—~
Q
~
8
NS
Nt
Il

2?43z +4. D =Rforboth f and g, and hence for their composites.

@ (fog) (9(2)) = f(a® + 3z +4) = (2” + 3z +4) —2=2" + 3z + 2.
(b) (gof)(x):g(f(x)):g(m—2):(m—2)2+3(m—2)+4:a72—4x+4+3x—6+4:x2—x+2.
© (fof)

)

(@)=f(f)=flz—2)=(x—-2)—2=a—4
(d) (9o 9)(x) =g(g(x)) = g(z* + 3z +4) = (2® + 3z + 4)> + 3(2> + 3z + 4) + 4
= (z* 4+ 927 + 16 + 62° + 82% + 24z) + 32° + 9z + 12+ 4
= z* + 6% + 2022 + 332 + 32

f(z) =1—-3z; g(x) =cosz. D =Rforboth f and g, and hence for their composites.
@ (f 0 9)(x) = f(g(x)) = f(cosz) = 1 — Bcosa.
(b) (g0 f)(x) = g(f(x)) = g(1 - 3x) = cos(1 — 3).
(© (f )=f(f(z))=f1-32)=1-3(1—-32)=1—-3+92 =9z — 2.

)
(d) (gog)(z) = g(g(x)) = g(cosz) = cos(cosz) [Notethat thisisnot cosz - cos z.]
f(x) =vz, D=[0,00); g(z)=VT—-z, D=R.
@ (fog)(@) = flg@) = F(VT=7) = V-2 = VI—=.
Thedomainof fogis{z| ¥T—2z>0}={z|1-2>0}={z |z <1} = (—oo,1].
() (90 f)(z) = 9(f(2) = g(v/7) = /1~ Va.

Thedomainof g o fis{z | x isinthedomain of f and f(x) isin the domain of g}. Thisisthe domain of f,
that is, [0, 00).

© (fo f)lx) = f(f(x) = f(vVT) = \/v/xr = ¥z. Thedomainof fo fis{z |z >0and/z >0} = [0,0).

o
~
—
=

8

(
(
(
(
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(d) (gog)(x) = g(g(z)) =g(VT—2) = V/1 - /1 — z, and thedomainiis (—oco, c0).

B @)=t D={z|o 40} o) =T D={u|o£-2)
@ (Foa)@) = o) = (5 ) = Tog + oy = T + 2
42
@)@+ )+ (e +2)(@+2) @ +2+1)+ (P +4+4) 22 $62+5
- (z+2)(z+1) B (z+2)(z+1) (e +2)(x+1)

Since g(z) isnot defined for x = —2 and f(g(z)) isnot defined for x = —2 andx = —1,
thedomain of (f o g)(z)isD = {z | x # —2,—1}.

(r—i—l)—i-l a?+ltw
X

1 2?4+l 2tz
®) (40 (@) = o(f(@) =g+ ) = E SRR it Eu i Bl s
X X

Since f(x) isnot defined for x = 0 and g(f(x)) is not defined for z = —1,
thedomainof (go f)(z)isD = {z | z # —1,0}.

(© (fof)(z):f(f(m)):f(x—i—%) :(m+§)+x-1-l :x—l-é-&-Llﬂ :a?—i-%-i-xzﬁ_l

z(z)(z® +1) +1(2° + 1) + z(x) '+ a2+ 142°

z(z?2 +1) z(z2 +1)
ot + 322 +1
_r T Tl po
SR Dlat0)
l’+1+1 z+1+1(z+2)
. . r+1\ 42 _ T+ 2 o xz+l+x+2  2x+3
@ (gog)(m)_g(g(m))_g<x+2> TaAl L, wFlt2@+2) a+lt2e+4 3z+5
42 T+ 2

Since g(x) isnot defined for = —2 and g(g(z)) isnot defined for z = —%,
thedomain of (go g)(z)isD = {z | x # -2, -2 }.

4. f(x) = Him, D={zx|x+#-1}; g(z)=sin2z, D=R.

@ (7 0.9)(x) = flg(e) = f(sin2e) = o2t

Domain: 1 +sin2x #0 = sin2x# -1 = 2z # 3% +2mn = x# % + 7n  [n aninteger].
b) (90 /(@) = g(f(2)) = g<1%> = sin(lzfx)

Domain: {z | z # —1}

@ (70 £)@) = £ = £( 75 ) = 1f% - (1(??.)(.1(:@@ = Trovs - mr
z 1+z

Since f(z) isnot defined for z = —1, and f(f(z)) isnot defined for x = —
thedomainof (f o f)(z)isD ={z |z # —1,—3}.

+

1
31
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36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

(d) (go9)(9) = g(g(x)) = g(sin2z) = sin(2sin 2z).
Domain: R

(f o g0 h)(@) = F(g(h(x))) = f(9(z*)) = f(sin(z?)) = Bsin(z?) -2
(fogoh)(@) = f(glh()) = Flg(va) = F(2) = [2V7 - 4|

(fogoh)(x) = f(g(h(z))) = fg(z® +2)) = fl(z* +2)*]
=f(2® +42° +4) = /(25 + 423+ 4) — 3= Va6 + 423 + 1

(fogoh)(z) = f(g(h(x))) = f(g(Vz)) :f<%{°7f 1) :tar‘(e/g/f 1)

Let g(z) = 2z + 2% and f(z) = z*. Then (f o g)(z) = f(g(x)) = f(2x + 2?) = 2z + 2*)* = F(x).

Let g(x) = cosz and f(z) = z>. Then (f o g)(z) = f(g(x)) = f(cosx) = (cosz)? = cos® x = F(x).

Letg(a) = YT and [ () = T Then (7 0 9)(v) = f(9(2) = F(VF) = 1L = F(0).

Let g(x) = —— and f(z) = ¢/z. Then (f o g)(x) = f(g(x)) = f( — o[ T = G().
1+ 1+x 1+z

Let g(t) = t*> and f(t) = secttant. Then (f o g)(t) = f(g(t)) = f(t?) = sec(t?) tan(t?) = v(t).

tant

Let g(t) = tan and £ (1) = 7 Then (f 0 9)(8) = f{g(t)) = f(tant) = T

1+t
Let h(z) = v, g(z) = — 1, and f(z) = \/_ Then
(fogoh)(x) = fg(h(2))) = flg(va) = F(Vz—1) = /o —1=R(x
Let h(z) = |z|, g(x) = 2+ z, and f(z) = §/z. Then
(fogoh)(z)=flg(h(x))) = flg(lz]) = f 2+ |z]) = V2 + |2| = H(z).
Let h(z) = v/, g(z) = secx, and f(z) = z*. Then
(fogoh)(z) = f(g(h(z))) = f(9(vT)) = f(sec /) = (sec /)" =sec* (vT) = H(x).

= u(t).

@ f(g(1)) = f(6) =5 (0) g(f(1)) = 9(3) =2
© f(f(1) =f3) =4 (A g(g(1)) = 9(6) =3
®) (90 NB)=9(f(3)) =9(4) =1 (f) (f 0 9)(6) = f(9(6)) = f(3) =4

(@) g(2) = 5, because the point (2, 5) ison the graph of ¢. Thus, f(g(2)) = f(5) = 4, because the paint (5,4) ison the
graph of f.

(b) 9(f(0)) = 9(0) =3

© (f29)(0) = f(9(0)) = F(3) =0

(d) (go f)(6) = g(f(6)) = g(6). Thisvalueis not defined, because thereis no point on the graph of ¢ that has

z-coordinate 6.
(€ (gog)(—2) =g(9(-2)) =g(1) =4

() (f o £)(4) = F(F(4)) = f(2) = 2

© 2016 Cengage'LLearning:“All"Rights Reserved. May not, be'scanned; copied, or duplicated; or posted to a publicly accessiblewebsite, in whole'orin part:



SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

50. To find aparticular value of f(g(z)), say for x = 0, we note from the graph that ¢(0) ~ 2.8 and f(2.8) ~ —0.5. Thus,

f(g(0)) = f(2.8) = —0.5. The other values listed in the table were obtained in a similar fashion.

z | g(z) | flg(z)) z | g(@) | flg(@)) ,
-5 | —02| -4 0| 28| -05 T
—4| 12| -33 1| 22| -17
3| 22| -17 2 1.2 | —3.3 *
—2| 28| -05 3| -02]| -4
1| 3 | -02 4| -19| —22
5| —41| 19

51. (a) Using the relationship distance = rate - time with the radius r as the distance, we have r(t) = 60t.
(b) A=7r> = (Aor)(t) = A(r(t)) = 7(60t)> = 3600xt>. Thisformula gives us the extent of the rippled area
(incm?) at any time't.
52. (a) Theradiusr of the balloonisincreasing at arate of 2 cm/s, S0 7(t) = (2 cm/s)(t s) = 2t (incm).
(b) Using V = 37r®, weget (V or)(t) = V(r(t)) = V(2t) = 3m(2t)° = L7t>.

Theresult, V = 3—3277153, gives the volume of the balloon (in cm?) as afunction of time (in s).

53. (a) From thefigure, we have aright triangle with legs 6 and d, and hypotenuse s. ship ¢
By the Pythagorean Theorem, d? + 62 = s> = s = f(d) = v/d2 + 36. 65
H -
(b) Using d = rt, weget d = (30 knyh)(¢ hours) = 30t (in km). Thus, i
d= g(t) = 30¢t. lighthouse shoreline

© (fog)t) = f(g(t)) = f(30t) = 1/(30t)2 + 36 = /900¢2 + 36. This function represents the distance between the
lighthouse and the ship as a function of the time elapsed since noon.

54. (@) The passage of the drug through the body can be represented as inputs into the defined functions as follows:

- S —  #surviving bacteria
dose stream infection
Therefore, the amount of the drug that reaches the site of infection is
4h(x) 4 (32) 4z - L
h=g(h = = = , and the number of surviving bacteriais given b
goh=9(h() = 30537 (e)+4  z+8 d given by
_ _ 4z \ 3200 _ 400 400 (z +8)*
ngOh—f(g(h(w)))—f(I+8)— Az 2 = 272 T 3224+ 162+ 64"
x+8 (x4 8)

(b) With direct injections, the bioavailability function isno longer required since the entire antibiotic dosage is administered
directly into the bloodstream. In this case, the number of surviving bacteriais given by

_ B 4o\ 3200 3200 400 400 (z +4)°
ng—f(g(I))—f<x+4>—8+ tw \ g 1627 20 348+ 16
z+4 (x4 4)? (x4 4)
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(C) y;
4001
3001
2001 Oral
Injected
0 25 50 75 «x

55. (a) Thediameter d of the tumor isincreasing at arate of g mm/year, S0 d(t) = (g9 mm/year)(t year) = gt (in mm).

(b) Using S = 47r? = md? for the surface area of asphere, we get (S o d)(t) = S(d(t)) = S(gt) = 7(gt)* = mg*t*. Now,
since P is proportional to the surface area, we have P(S) = kS where k is a proportionality constant. Thus,
(PoSod)(t)=P(S(d(t)) = P(ng*t?) = kng?t>.

Theresult, P = kng®t?, gives the rate of enzyme production as afunction of time.
Alternative Solution: If we assume theinitial tumor size is nonzero so that d(0) = do, then d(t) = do + gt. Thisgives

(PoSod)(t) =kn(do + gt)>.

56. If A(x) = 1.04z, then

(Ao A)(z) = A(A(z)) = A(1.04z) = 1.04(1.04z) = (1.04),

(Ao Ao A)(z) = A((Ao A)(x)) = A((1.04)%*z) = 1.04(1.04)%z = (1.04)%z, and

(AoAoAoA)(z) = A((Ao Ao A)(z)) = A((1.04)3z) = 1.04(1.04)3z, = (1.04)*x.

These compositions represent the amount of the investment after 2, 3, and 4 years.

Based on this pattern, when we compose n copies of A, we get theformula(Ao Ao ---0 A)(z) = (1.04)"z.
57. If f(x) = miz + by and g(z) = meax + be, then

(fog)(@) = f(g(x)) = f(maz + b2) = ma(max + b2) + b1 = mamax + mabz + by.

So f o g isalinear function with slope mimsa.

58. We need to examine h(—xz).
h—z) = (fog)(—z) = f(9(—=x)) = f(g(z)) [becausegiseven] = h(x)

Because h(—x) = h(z), h isan even function.

59. h(—z) = f(g9(—=x)) = f(—g(z)). At this point, we can’t simplify the expression, so we might try to find a counterexample to
show that k is not an odd function. Let g(z) = z, an odd function, and f(x) = x® 4 2. Then h(x) = 2 4 z, which is neither
even nor odd.

Now suppose f isan odd function. Then f(—g(z)) = —f(g(z)) = —h(z). Hence, h(—z) = —h(z), and so h isodd if
both f and g are odd.

Now suppose f isan even function. Then f(—g(z)) = f(g(z)) = h(z). Hence, h(—z) = h(z),and so h isevenif g is
odd and f iseven.
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PROJECT THE BIOMECHANICS OF HUMAN MOVEMENT I 35

PROJECT The Biomechanics of Human Movement

1. (8 Thefunction f(t) = 1 — cos(8nt) hasavalue of zero FaA
at t = 0s (foot-strike), smoothly increases to a peak 21 fiy=1-cosm)
vaueof 2 at ¢t = 0.125s, and smoothly decreasesto

zero at t = 0.25s (toe-off). This effectively models the

foot-strike cycle described.

|
I
=

0.2 t
(b) Fa
20
1 4
0 0.5 1 15 ¢
2. (a) Applying a horizontal stretch by afactor of 2= = 18 FA

to f(t) givesthe new function
h(t) = f(Zt) = 1 — cos(57t) which has avalue of

zeroatt =0sandt = 0.8s.

(b) Applying a horizontal compression by afactor of 2 to 4
'
h(t) givesanew function that oscillates twice as fast: 2 — cos( rt) — cos(5 )

h(2t) = 1 — cos(5nt). Adding thisto h(t) from
part (a) gives 2 — cos(37t) — cos(5t). Thisfunction

has the correct shape but the peak force istoo high

(3.125kN). Scaling this new function by afactor of 4

gives afunction that closely approximates the

stride-cyclein Figure 1 (b):

I(t) = (2 — cos(57t) — cos(57t)) /4
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(© 1

3@ 2 2 2

; ; 2.5 L L 2.5 . . 2.5
1 0 p 0 ;

0

The constant g acts as a transition weight between the functions f1 (£) = 1 — cos(3t) and f2(t) = 1 — cos(5mt). When
q=0= g(t) = f1(t). Asq increases, g(t) smoothly transitions from f1 (¢) to f2(t).

(b) The graphs of g(t) are similar in shape to the graph of {(¢) from Problem 2(b) for constant valuesq = 0.8 and ¢ = 1.8.

Note, however, that the peak values of ¢(t) are higher than those of I(¢).

1.4 Exponential Functions

4=3 28 28 28 1 1

1 (@ =2 == 2 986 _92_ 4y () = = —— =g /3

2-8 7 43 (22)3 26 i a3
2. (@) 8% = (8% =21=16 (b) 2(32°%)% =z - 3%(2?)® = 27z - 2° = 2727
6,°)F  6i(y%)t 1296y
3. (a) b¥(20)* = b® - 2'b* = 16b"2 b ¢ = = = 648y”
(a) b°(20) 6 0 = s = g, =648y
x2n . x3n71 1,2n+3n71 x5n71 An_3
4. (a) xnt2 = xn+2 = xnt2 =
() Vavb  Javvb a7t o (1/2=1/3)p(1/4=1/3) _ ,1/6p~1/12
3

\/E - \3/5\3/13 T ql/3p1/3 T
5 (@) f(x)=0b", b>0 (b) R (©) (0,00) (d) SeeFigures5(c), 5(b), and 5(a), respectively.

6. (8) The number e isthe value of b such that the slope of the tangent line at = = 0 on the graph of y = b” isexactly 1.
(b) e ~ 2.71828 ©) f(z)=¢€"
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SECTION 1.4  EXPONENTIAL FUNCTIONS U

7. All of these graphs approach 0 as xz — —oo, al of them pass through the point 5y=20"y=5"y=e"

=

. The graph of e~* isthe reflection of the graph of e about the y-axis, and the

. The functions with bases greater than 1 (3” and 10”) are increasing, while those

(0,1), and all of them areincreasing and approach co asx — oo. Thelarger the
base, the faster the function increases for = > 0, and the faster it approaches 0 as

r — —OQ.

graph of 8~ isthe reflection of that of 8 about the y-axis. The graph of 8*
increases more quickly than that of e” for z > 0, and approaches 0 faster

asSr — —0o0.

with baseslessthan 1 [(%)” and (55)”] aredecreasing. Thegraph of (1)” isthe
reflection of that of 3* about the y-axis, and the graph of () is the reflection of

that of 10% about the y-axis. The graph of 10” increases more quickly than that of

3 for z > 0, and approaches 0 faster asz — —oc.

Each of the graphs approaches co as z — —oo, and each approaches 0 as y=03" y=01" 6

x — oo. The smaller the base, the faster the function growsasz — —oo, and

the faster it approaches 0 asz — oo.

We start with the graph of y = 10® y ¥
(Figure 4) and shift it 2 unitsto the left to

obtain the graph of y = 10°72,
y=10" y=10"+2
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12. We start with the graph of y = (0.5)”

13.

14.

15.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

(Figure 4) and shift it 2 units downward

to obtain the graph of y = (0.5)° — 2.

The horizontal asymptote of the final

graphisy = —2.

We start with the graph of y = 27 (Figure 4),
reflect it about the y-axis, and then about the
x-axis (or just rotate 180° to handle both

reflections) to obtain the graph of y = —27°.

In each graph, y = 0 isthe horizontal

asymptote.

y=-2

L

_—

0

y=2°

We start with the graph of y = e® (Figure 17) and

reflect the portion of the graph in the first quadrant

about the y-axis to obtain the graph of y = ¢/®!.

y=ehl

=
O\H <

1 x 0

1 x

We start with the graph of y = e® (Figure 17) and reflect about the y-axis to get the graph of y = e~ *. Then we compress

the graph vertically by afactor of 2 to obtain the graph of y = e~ * and then reflect about the z-axis to get the graph of

y = —3e”“. Finaly, we shift the graph upward one unit to get the graph of y = 1 — 277,

y

y

v

=]
N_\
w

16. We start with the graph of y = ¢® (Figure 17) and reflect about the xz-axis to get the graph of y = —e”. Then shift the graph
upward one unit to get the graph of y = 1 — e”. Finally, we stretch the graph vertically by afactor of 2 to obtain the graph of

y=2(1-—¢").

y=2(1—e¢")
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24.

25.

SECTION 1.4 EXPONENTIAL FUNCTIONS O 39

(a) Tofind the equation of the graph that results from shifting the graph of y = ¢® 2 units downward, we subtract 2 from the
original functiontogety = e* — 2.

(b) To find the equation of the graph that results from shifting the graph of y = e® 2 unitsto theright, we replace x with x — 2
inthe original function to get y = (=2,

(c) Tofind the equation of the graph that results from reflecting the graph of y = e* about the xz-axis, we multiply the origina
functionby —1togety = —e”.

(d) To find the equation of the graph that results from reflecting the graph of y = e” about the y-axis, we replace x with —z in
theoriginal functiontogety = e™*.

(e) To find the equation of the graph that results from reflecting the graph of y = ¢” about the z-axis and then about the
y-axis, we first multiply the original function by —1 (to get y = —e®) and then replace x with —z in this equation to
gety = —e ™ ”.

(a) Thisreflection consists of first reflecting the graph about the z-axis (giving the graph with equation y = —e®)
and then shifting this graph 2 - 4 = 8 units upward. So the equationisy = —e® + 8.

(b) Thisreflection consists of first reflecting the graph about the y-axis (giving the graph with equation y = e™*)
and then shifting thisgraph 2 - 2 = 4 unitsto the right. So the equationisy = ¢~ @9,

(a) Thedenominatoriszerowhen1 —e! > =0 < e =1 & 1-2°=0 < 2==+1. Thus

2

. 1—e" }
thefunction f(z) = P hasdomain {z | x # £1} = (—o0,—1) U (—1,1) U (1, 00).
(b) The denominator is never equal to zero, so the function f(z) = 1o has domain R, or (—oo, 00).

ecosx

(a) The sine and exponential functions have domain R, so g(t) = sin(e™*) also has domain R.

(b) Thefunction g(t) = /1 — 2t hasdomain {¢t | 1 — 2" > 0} = {t | 2* < 1} = {t | t < 0} = (—o0,0].

Usey = Cb” withthepoints (1,6) and (3,24). 6 =Cb" [C=2¢] and24=Cb" = 24= (%)b‘”’ =

4=b = b=2 [snceb>0] andC = £ = 3. Thefunctionis f(z) = 3-2".

Usey = Cb” with the points (—1,3) and (1, 3). From the point (—1,3), wehave 3 = Cb~", hence C' = 3b. Using thisand
thepoint (1,5), weget2 =Cb' = $=(@Bbb = 2=0" = b=2 [dnceb>0] andC =3(2)=2.The

functionis f(z) = 2(%)".

If f(z) = 5%, then

flth) — f(a) 5 o5t 5" 5t 55(5"—1) 5x<5h 3 1)
) - - .

h h - h - h

Suppose the month is February. Your payment on the 28th day would be 2281 = 227 = 134,217,728 cents, or

$1,342,177.28. Clearly, the second method of payment resultsin alarger amount for any month.

2ft=1241in, f(24) =242 in=576in=48ft. ¢(24) = 2%*in = 2%*/(12 - 5280) mi ~ 265 mi
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26. We see from the graphs that for z lessthan about 1.8, g(z) = 5% > f(z) = z°, and then near the point (1.8, 17.1) the curves
intersect. Then f(x) > g(x) fromaz ~ 1.8 until z = 5. At (5, 3125) thereis another point of intersection, and for z > 5 we

seethat g(x) > f(z). Infact, g increases much more rapidly than f beyond that point.

325

4375

27. Thegraph of g finally surpassesthat of f at x ~ 35.8.

1x10'°

28. Wegraph y = ¢* and y = 1,000,000,000 and determine where 1,100,000,000 —
e” =1 x 10°. Thisseemsto betrueat = ~ 20.723,50e® > 1 x 10°
for z > 20.723.
0 25
29. (a) 200
=) .
=
S
E [ ]
3 .
Q
.S °
b5 )
g ¢ °
m
0 - + + + + J 25

Time (hours)

(b) Using acalculator to fit an exponentia curve to the data gives f(t) = (36.78) - (1.07)".
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(© 200 Using the TRACE feature of a calculator, we find that the bacteria
~ N . .
2 count increases from 50 CFU to 100 CFU in about 10.8 hours.
9: Therefore it takes approximately 10.8 hours for the bacteria count to
=}
8 double.
8
3
S 4
m

Time (hours)

30. (&) Three hours represents 6 doubling periods (one doubling period is 30 minutes). 500 - 2° = 32,000

(b) Int hours, there will be 2t doubling periods. The initial population is 500, “0’(000 ; ~

so the population y at timet isy = 500 - 2%,
@©t=8=2 = y=-500 2>*% ~1260
(d) We graph y1 = 500 - 22¢ and y» = 100,000. The two curves intersect at
t ~ 3.82, so the population reaches 100,000 in about 3.82 hours. 0 3

31. (a) Fifteen days represents 3 half-life periods (one half-life period is 5 days). 200 (%)3 =25mg
(b) Int hours, therewill bet/5 haf-life periods. Theinitial amount is 200 mg,

/5

so the amount remaining after ¢ daysisy = 200 (3)" ", or equivalently,
y =200-27%°, s
(€) t = 3 weeks = 21 days = y =200-272Y/° ~ 10.9 mg
(d) Wegraphy; = 200 - 27%/® and y» = 1. The two curvesintersect at
t ~ 38.2, so the mass will be reduced to 1 mg in about 38.2 days. . 0

32. (&) Sixty hours represents 4 half-life periods. 2 - (%)4 =z9

(b) Int hours, therewill bet/15 half-life periods. Theinitial massis2 g,

0.02
sothemassy at timetisy = 2- ()", [\ }
(©4days=4-24=96hours t =96 = y=2-(1)"" ~00249
(d)y =001 = ¢t~ 114.7 hours { M
100 150

0

33. The half-life is approximately 3.5 days since the RNA load drops from 40 to 20 in that time.

34. (@) Let C(t) = a - b* represent the blood alcohol concentration ¢ hours after midnight. Theinitial concentration at midnight is
C(0) = a-b° = a = 0.6. Thiswill drop by half after 1.5 hoursimplying ¢ = a - b'° < 1=0"" &

b= (%)1/1'5 ~ 0.62996. So the exponential decay model is C'(t) = (0.6) - (0.62996)" .
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36.
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38.
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(b)

BCA (mg/mL)

0.8

Time (hours)

By graphing the exponential model

C(t) = (0.6) - (0.62996)" dong with the line

C = 0.08, we observe that one can legally drive home
after about 4.4 hours.

Let t = 0 correspond to 1950 to get the model P = ab’, where a ~ 2614.086 and b ~ 1.01693. To estimate the population in

1993, let t = 43 to obtain P = 5381 million. To predict the population in 2020, let ¢ = 70 to obtain P =~ 8466 million.

Let ¢ = 0 correspond to 1900 to get the model P = ab’, where a ~ 80.8498 and b ~ 1.01269. To estimate the population in

1925, let t = 25 to obtain P ~ 111 million. To predict the populationin 2020, let t = 120 to obtain P ~ 367 million.

2 From the graph, it appearsthat f isan odd function (f is undefined for x = 0).
[—/ fv)= i;fiw To prove this, we must show that f(—z) = — f(x).
o
_ 1
3 3 TR R R e v A L
I =T ams = T = L LT B
1/x
—2 _ et —f(z) !
T 14el/m
so f isan odd function.
We'll start with b = —1 and graph f(x) = # fora =0.1,1, and 5. 2
1+ aeb= )
From the graph, we see that thereis a horizontal asymptotey = 0 as — a=1
grap asymptote y T — —00 » —]
and ahorizontal asymptote y = 1 asz — oo. If a = 1, they-intercept is (0, 3). , a=01 a=s ;
Asa gets smaller (closeto 0), the graph of f moves|eft. Asa gets larger, the graph { b1
of f movesright. -1 ’
As b changes from —1 to 0, the graph of f is stretched horizontally. Asb p 2 .
changes through large negative values, the graph of f is compressed horizontally. b=-0.5 N h=—2
(This takes care of negatives values of b.) b=-0.1 _4—_:
-7 7
(. a=1 J
-1
If b is positive, the graph of f isreflected through the y-axis. p 2 N
b=0.5
b=2
&_&
Last, if b = 0, the graph of f isthehorizontal liney = 1/(1 + a). _ ;
(. a=1 J
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1.5 Logarithms; Semi-log and Log-log Plots

10.

11.

12.

13.

14,

15.

16.

. (a) See Definition 1.

(b) It must pass the Horizontal Line Test.

@ f'ly)=2 & f(x)=yforanyyinB. Thedomanof f~'isB andtherangeof f~'is A.

(b) Seethestepsin (5).
(c) Reflect the graph of f about theliney = .

. f isnot one-to-one because 2 # 6, but f(2) = 2.0 = f(6).
. f isone-to-one because it never takes on the same value twice.

. We could draw a horizonta line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the

function is not one-to-one.

. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.

. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the

function is not one-to-one.

b —2

. Thegraph of f(z) = 2* — 2z isaparabolawith axis of symmetry x = —— = ——— = 1. Pick any z-values equidistant

2a 2(1)
from 1 to find two equal function values. For example, f(0) = 0 and f(2) = 0, so f isnot one-to-one.

Thegraph of f(z) = 10 — 3z isalinewith dope —3. It passes the Horizonta Line Test, so f is one-to-one.

Algebraic solution: If z1 # z2, then —3z1 # —3z2 = 10 —3z1 #10—3z2 = f(z1) # f(z2), SO f iSone-to-one.

g@)=1/z. z1#22 = 1/v1#1/z2 = g(71)# g(2),50gisoneto-one.
Geometric solution: The graph of g is the hyperbola shown in Figure 14 in Section 1.2. It passes the Horizontal Line Test,

S0 g is one-to-one.
g(x) = cosz. ¢(0) =1 = g(27), 0 g isnot one-to-one.

A football will attain every height 2 up to its maximum height twice: once on the way up, and again on the way down.

Thus, even if ¢, doesnot equal 2, f(t1) may equal f(t2), so f isnot 1-1.

fisnot 1-1 because eventually we all stop growing and therefore, there are two times at which we have the same height.
(@ Since fis1-1, f(6) =17 < f~1(17)=6.

(b) Since fis1-1, f~'(3) =2 < f(2)=3.

First, we must determine 2 such that f(x) = 3. By inspection, we seethat if z = 1, then f(1) = 3. Since f is1-1 (f isan

increasing function), it has an inverse, and f~!(3) = 1. If f isa1-1 function, then f(f~'(a)) = a, s0 f(f1(2)) = 2.
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17. First, we must determine z such that g(z) = 4. By inspection, we see that if = = 0, then g(z) = 4. Sincegis1-1 (gisan
increasing function), it has an inverse, and g~ *(4) = 0.

18. (8) f is1-1 because it passes the Horizontal Line Test.
(b) Domain of f = [-3,3] = Rangeof f~'. Rangeof f = [~1,3] = Domainof f~*.
() Since f(0) =2, f1(2) = 0.
(d) Since f(—1.7) = 0, f~1(0) ~ —1.7.

19. WesolveC' = 5(F —32) for F: 2C = F —32 = F = 2C + 32. Thisgivesusaformulafor the inverse function, that
is, the Fahrenheit temperature F' as a function of the Celsiustemperature C. F' > —459.67 = %C + 32> —459.67 =

%C > —491.67 = C > —273.15, thedomain of theinverse function.

2 2 2 2 2 2

m v my v m, m my
W.m=——a = 1-—=-—2 = —=1--2 = 2=32(1-22 = v=cy/1- =2,
/1—1}2/62 c2 m?2 c2 m2 m?2 m2

Thisformula gives us the speed v of the particle in terms of its mass m, that is, v = f~*(m).

. y=fx)=1++v/2+3z (y>1) = y—1=/2+3z = (y—-12=2+32z = (y—1)>-2=3z =

x=32(y—1)°>— 2. Intecchangez andy: y = 3(z —1)> — 2. S0 f~'(x) = 3(z — 1)® — . Notethat the domain of f~*

isx > 1.
4o — 1
22.y:f(:1c):2x+3 = y2z+3)=4dr—-1 = 2uzy+3y=4r—-1 = 3y+l=dz—2zy =
3y+1 3z +1 1 3z+1
1=(4-2 = . Interch dy: y = . S0 = .
3y + ( Y = = 12y nterchange « andy: y = -——— f =) FRms

B.y=f2)=e*"' = hhy=22—-1 = 1+hy=2r = z=3i(l+Iny).
Interchangez andy: y = 2(1+1nz). So f'(z) = 1(1 + Inz).
U y=fl)y=2>-2z (>3) = y=r-z+1-1 = y=@@-1°-1 =

y+1=@=-3)° = z-1=,/y+: = z=31+4./y+iintechangezandy: y=1+,/z+1. S0

B.y=f@)=In(z+3) = x+3=¢' = x=c¥—3. Interchangerandy: y =e" —3. S0 f~!(z) = " — 3.

T

2.y = f(x)

= y+2ye®=e" = y=e*—2ye® = y=e"(1-2y = = =

T 11 2en

m:ln( y ).Interchange:candy:yzln( x ).Soffl(x):ln( x ).Notethattherangeoffandthe
1—-2y 1—-2x 1-2x

domainof f~"is(0, 2).
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.y=flx)y=2"+1 = y—1=2z' = z=y—1 [not + since
x> 0]. Interchangez and y: y = /z — 1. S0 f*(z) = +/z — 1. The
graph of y = /= — 1 isjust the graph of y = /z shifted right one unit.

From the graph, we seethat f and f~! are reflections about theliney = .

8.y=f(zr)=2—-¢" = e*=2-—y = z=1In(2-y).Interchange

zandy: y = In(2 — z). S0 f~*(z) = In(2 — ). From the graph, we see

that f and f~! are reflections about the liney = .

29. Reflect the graph of f about theliney = z. The points (-1, —2), (1, —1),
(2,2),and (3,3) on f arereflected to (—2, —1), (-1, 1), (2,2), and (3, 3)

onf~1.

30. Reflect the graph of f about theliney = x.

3L @y=flz)=vl-2? (0<z<1
SofHz)=+v1—22, 0<x <1 Weseetha f~'and f arethe samefunction.

andnotethaty >0) = y?*=1-2> = 22=1—y

y
11
(b) Thegraph of f isthe portion of thecirdez? + 3? = 1 with0 < z < 1 and
0 <y < 1 (quarter-circlein thefirst quadrant). The graph of f issymmetric
with respect to theline y = z, so itsreflection about y = «x isitsalf, that is, 5

=g
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32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

. . . . . . 1 1
Find the inverse function by solving for v in the equation P = 1 — Rol—0) & Ro(l—0) 1-P &

1 1 1
RO(].—’U)—ﬁ = 1—U—m = U—l—m
to the origina function if P and v areinterchanged. Thisimplies the original function is symmetric about the line P = v.

. Observe that the inverse function is identical

(a) It is defined asthe inverse of the exponential function with base b, that is, log, z =y < b ==.
(b) (0, 00) ©R (d) SeeFigure 11.

(a) The naturd logarithm is the logarithm with base e, denoted In .

(b) The common logarithm is the logarithm with base 10, denoted log .

(c) SeeFigure 13.

. 1 . 1 1
— 3 _ —_ = B =
(@) log; 125 = 3 since5° = 125. (b) log, o7 3since3 3 = o7
@ In(l/e)=Inl—Ine=0—-1=-1 (b) log,, v/10 = log;, 102 = 3 by (2.
(a) log, 6 — log, 15 + log, 20 = log, (1% ) + log, 20 [by Law 2]
= log, (% - 20) [by Law 1]
=log, 8, and log, 8 = 3 since2® = 8.
(b) logs 100 — logs 18 — logs 50 = logg(%) — log4 50 = log, (%)
= logs($), and logs(3) = —2since3 * = &.
—2In5 __ (_In5\—2 (6 —2_i_i 10 (6 10y 6
@e = (e ) =5 == =3 (b) ln(lne ) = In(e’”) =10
In5+5n3=1In5+1n3° [by Law 3]
=1n(5-3%) [by Law 1]
=1n1215
In(a +b) +In(a —b) —2Inc=1In[(a + b)(a — b)] —Inc? [by Laws 1, 3]
= IHW [by Law 2]
232
or In2 b
2In(z+2)° + 3 [lnz — In(z® + 32+ 2)*] = In[(z + 2)3)/3 4+ 11n m [by Laws3, 2]
_ VT
_ln(x+2)+lnx2+3x+2 [by Law 3]
(z+2)Vz
=ln——F—~+—— by Law 1
"ErD@+2) [by Law 1]
=In VT
z+1

Note that since In z is defined for = > 0, wehave z + 1, = + 2, and z> + 3z + 2 all positive, and hence their logarithms
are defined.
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In10 In8.4
42. (@) log,, 10 = o 0.926628 (b) log, 8.4 = s 3.070389
43. 3 ft = 36 in, sowe need  such that log, = 36 < 2 = 236 = 68,719,476,736. In miles, thisis

o 1ft 1mi .

68,719,476,736 N = Ss0 1,084,587.7 mi.
44, 2 40
F__f /’.;J y=Inx
y=x
0 - 5
y=Inx
J 1x10" 0 7x10"

From the graphs, we see that f(z) = 2°' > g(z) = Inx for approximately 0 < = < 3.06, and then g(z) > f(x) for
3.06 < x < 3.43 x 10*® (approximately). At that point, the graph of £ finally surpasses the graph of g for good.

45. (a) Shift the graph of y = log,, z five unitsto the left to (b) Reflect the graph of y = In 2 about the z-axis to obtain
obtain the graph of y = log,,(x + 5). Note the vertical thegraphof y = —Inx.
asymptote of z = —5. y Y

y =log,x y =logy(z +5) y=Inz y=—Inzx

46. (a) Reflect the graph of y = In 2 about the y-axis to obtain (b) Reflect the portion of the graph of y = In x to the right
the graph of y = In (—2z). of the y-axis about the y-axis. The graph of y = In |z|

L— =

isthat reflection in addition to the original portion.

y y

7

y=lnz y=In(—x) y=lnz y =In|z|

0 x 0

4. @e =6 & T—4z=In6 < T-Inb6=4z < z=1(7—1Inb)
b)In(Bz—10)=2 & 3z-10=¢> & 3z=€e'4+10 & z=1(c>+10)
8. @In(z*-1)=3 & 22-1=€ & *=1+ & z=4/1+63
(D) e —3e"+2=0 < (" —1)(e*"—2)=0 & e*=10e"=2 & r=Inlorz=1In2,0z=00rIn2.

49, @2 °=3 & log,3=2-5 & x=25+log,3.

ln_3 & :13*5—0-111—3
In2 - In2

®Inz+n(z—1)=h(zz—-1)=1 & z(x—1)=e << z*—1z—e=0.Thequadraticformula(witha =1,
b=—1,andc = —e) givesz = %(1 +v1+ 46), but we reject the negative root since the natural logarithm is not
defined for z < 0. S0z = £ (1 + 1+ 4e).
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50.

51

52.

53.

54.

55.

56.

57.

58.
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@In(nz)=1 & "0 =¢! o hnz=e'=¢c & "=¢ & z=c¢
(b) e =Ce’® & Ine™ =In[C(e’™)] & ax=IC+mne™” & ar=InC+br <

ar—br=InC & (a—blz=InC & I:lan
a—

@nz<0 = z<e® = z<1. Sincethedomainof f(x) =Inzisz > 0, the solution of the original inequality
is0 <z <1

b)e*>5 = Ine®*>Inb = z>Inbd
@1<e®'<2 = Inl<3z-1<ln2 = 0<3z—-1<In2 = 1<3z<1+h2 =
i1 <z<3(1+n2)

b)1-2lhz<3 = —2lhz<2 = he>-1 = z>c’

(a) Solvefor ¢ inthe equation: c(t) = coe™ “*/V = 0.60 = 1.65¢ 340%/3294  « In (%:80) =1n (6’340”32941) &

_ 32041 0.60
t=—=35 In (1.65

) ~ 98.0 minutes

(b) Solvefor T"inthe equation: ¢(T) = coe X7V & ol) _ -mriv iy (C(T)> =-KT)V &

7=V (C(T))

K Co

(8 Since Kt represents the volume of blood processed in ¢ hours, the quantity Kt/V isthe amount of blood processed

relative to total blood volume. Kt has units [ —2L_] . [minute] = [mL] and V has units [mL], so Kt/V is unitless.

minute

(b) Thefractiona reduction in ureais

Initial Concentration — Final Concentration ¢ — ¢(t) c(t) KtV
Initial Concentration Co Co

As Kt/V increases, theterm e~ */V decreases so that U increases. Similarly, as K't/V decreases, U decreases.

(@ Wemusthavee® —3 >0 = ¢e*>3 = a>1In3.Thus thedomanof f(z) =In(e® — 3)is(In3, co).

My=Ine"-3) = e=¢"-3 = " =e'+3 = z=In(e’+3),0f (z) =In(e” + 3).
Nowe® +3>0 = %> —3,whichistruefor any real z, sothedomain of f ' isR.

(@) By (6), €™3% = 300 and In(e**°) = 300.

300

(b) A calculator gives ¢! 30 = 300 and an error message for In(e3°°) since ¢3%° islarger than most calculators can evaluate.

' ' i ©n =500 - 4 LI ¢ ELLE
(@) Find theinverse by solving for t: n = 500-4° < ln(500) In(4) & ln(500) tn(4) &
_ log(n/500)

Tog (@) The inverse function gives the number of hours that have passed when the population size reaches n.

In (10,000/500) _ In (20)
In (4) " In(4)

(b) Substituting n = 10, 000 into the inverse function givest = ~ 2.16 hours.

DO=Qol—e) = L _q_ote o a9 —321(1_Q> =

()Q QO( € ) QO e e Q() p n QO
t=—aln(l — Q/Qo). Thisgives usthetime ¢ necessary to obtain agiven charge Q.

0 QR=09Qanda=2 = t=-2In(1-0.9Q0/Qo)=—2In0.1 = 4.6 seconds.
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5. @ 06 b))  -02 -0.2
s ) )
I [ L] i L]
I L] = L) = L]
yor R log y . log y R
[ L) ° °
; ; ; ? ) * J
1 1 1 1 1 1 13 0 L L 1 1 L 1 13 0 . 1 1 1 1 1 12
0 X -1.2 X -1.2 log x
(c) Sincethe semi log plot is approximately linear, an exponential model is 0.6
N
appropriate. L
(d) Using acalculator to fit an exponential curve to the data gives r
y = (0.056769) (1.204651)" . Ior
0 1 1 IX 1 1 1 ]3
60. @ 9 (b) 1 1
s A
i ° r L] r o
r ® L] (]
r ) * r ° [ ] r . L[]
y : ¢ logy ) logy | .
- L] E L
[ L ° F e
L I | I L 0\ L L L 1 1 /6 —0.1 '\ L L L JO 8
0 6 .
x 0.4 X 0.4 log x
9
(c) Sincethe scatter plot is approximately linear, alinear model is appropriate. N
(d) Using acalculator to fit aline to the data gives y = (1.208925) = + 1.961293. I
v [
O 1 1 ; 1 1 6
6. (& 4.5 (b) 065 0.65
M ' I N
| . L [ L °
. ° L
L . i . A
y . logy . logy + i
I . r [} [ L]
L L] L ° | L]
0 L L L 4 0 L L L J4 —0.4\_ 1 L L /0.6
2 0.35 X 0.35
X
log x

(c) Since the scatter plot is approximately linear, alinear model is appropriate.
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(d) Using acalculator to fit aline to the data givesy = (—0.618857) = + 4.368000. 45
y
0\ . - . 4
2
X
62. (8 500 (b) 3 3
A M e ™
L ® o °
[ [ ] - [ ]
. ° d
I log * | *
¥ . Y- . 09y - .
L] F oo L
- ° L
0 L] . L \ 70 0 N i L L /70

(c) Sincethelog-log plot is approximately linear, a power model is appropriate.

(d) Using acalculator to fit power curve to the datagives y = (0.894488) - 2:1-599230,

63. & 100 (b) 2 2
e A . ) . )
E L] r [ ) r L]
Ll . L]
¥ . logy . logy .
L] [} L]
0 L . L Vg 0 | b . L Jg 0 41\ bl \ , . L
* X log x
. . . . . . 100
(c) Sincethelog-log plot is approximately linear, a power model is appropriate. ~N

(d) Using a calculator to fit a power curve to the data gives y = (1.260294) - 2002959
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64. (@ 20 (b) 2 2
L] \ \
y logy . logy .
L . . .
0\ 1 L L 0 L] L L L 35 0.6\_e | 1 L L J
3 35 5 S 1.6
X X log x
(c) Sincethe semi log plot is approximately linear, an exponential model is 20
appropriate. |
(d) Using acalculator to fit an exponential curve to the data gives F
y
y = (0.002717) - (1.339539)". L
0 . . .
- 35
X
65. 1100 3.1 3.1
@ s N
L] _ L ° —~ [ ]
5 . g | . g | .
= = g
= . = L . E L U
& 3 3 .
&~ & ¢ S
) EX . g .
. [ . ;
1940 . . L2010 1940\ . . L Jool0 329\ . o 4 3.302
300 Vear 2.5 Year 23 log(Year)

Since the semi log plot is approximately linear, an exponential model is appropriate.

(b) Using a calculator to fit an exponential curve to the data gives P = (2.276131 . 10*15) . (1.020529)Y where P isthe
population in millionsand Y isthe year. Alternatively, we could have defined Y to be the number of years since 1950.

(©) In 2010, the model predicts a population of P = (2.276131 - 10~?) - (1.020529)*°** ~ 1247 million. The model
overestimates the true population by 1247 — 1173 = 74 million. Therefore, this exponential model does not generalize
well to the future population growth in India.

66. (@ 120 2.5 2.5
~
L]
. [ * [ o '
r o oy ° LY °
Lot ‘e logL 1, o logL | . *
L o * o . :
L]
_' Y [
1 J
O. L L 1 20 0\ L | 1 20 -2 1 1 1 J1.5
0.5 0.5
w w log W

Since thelog-log plot is approximately linear, a power model is appropriate.

(b) Using a calculator to fit an exponential curve to the data gives L = (22.874763) - (1.126290)" . Fitting a power curve to
the datagives L = (30.562377) - TW°-395199
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(© 120 120

Exponential Model Power Model
The power model isamore suitablefit to the data.

(d) As predicted by the power model in (b), the wingspan of a 45-1b bird is
L(45) = (30.562377) - (45)%*%°"%% ~ 137.57 inches. This suggests the dodo bird would require awingspan close to
138 inchesin order to fly. The actual wingspan of the dodo was much shorter and therefore the bird could not create

enough lift for flight.

67. (@ 250 2.5 2.5
o ( N .
= |- L] . |- L] hd
L] L]
s T . logs [* logs [ ¢
L ° Cd L o
L]
= . - [ ] L]
LJ
0\.. 1 1000 0\ 1 1000 0 1 1 L
A A log A

Since the log-log plot is approximately linear, a power model is appropriate.

(b) Using acalculator to fit a power curve to the data gives S = (0.881518) - A%-841701,
250

1000
68. (a 8,000,000 8
N F logN | . °
0} —e—e . 8
1 1 | 1 1 1 1 1 1 | 1 1 1 1 8
—500,000 0 ,
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(b) Using acalculator to fit an exponential curve to the data gives 8,000,000

N = (54.980508) - (5.543613)" . The exponential function fits the curve well.

N E
0 8
L 1 1 1 1 L L
—500,000
69. (a 0.35 0
. 4
o [ e *,
BAC [ . log(BAC) | Te
0 | | | ° ° 4.5 O_E | ! | . /4.5
t t
(b) 0.35

Using a calculator to fit an exponentia curve to the data gives

C(t) = (1.343328) - (0.338676)" where C(t) isthe blood acohol
concentration after ¢ hours. The exponentia function overestimates
BAC for small values of ¢.

BAC

(0) Solvefor tinthe equation: C(t) < 0.08 <« (1.343328) - (0.338676)° < 0.08 <« In (0.338676") < In (7235 -)

1.343328

& tIn(0.338676) < In (1m9e5g) < t>

In (0.08/1.343328) inequality switched direction
In (0.338676) because In(0.338676) < 0

} ~ 2.61 hr. Therefore,
the driver’s blood alcohol concentration will be under the legal limit after approximately 2.6 hours.

70. (a) Let C(n) be the number of DNA molecules after n cycles. The number of molecules doubles every cycle so that

C(1) =2z, C(2)=20(1)=2%z, C(3)=20C(2)=2°zandingeneral C(n) =z -2".

(b) Thethreshold isreached when C(n) = T < 2-2" =T & In(2") =In (g) o n:%

(c) Observe that we can rewrite

~ In(T/z)  In(z/T) 1 1
n(z) = O — ONE — (E) In (T x) . Therefore, the graph

of n(z) can be obtained from the graph of y = In x by horizontally stretching by
factor T, reflecting about the z-axis, and vertically compressing by factor In 2.
These transformations lead to the sketch shown. We see that having alarger initial
number of DNA molecules leads to shorter times to reach the detection threshold.
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PROJECT The Coding Function of DNA

. Thedomainis {A, T, C, G}. Since the coding function maps an input (codon) to exactly one output (amino acid), the biggest

possible rangeis 4 amino acids.

. With two-base codons, there are 4% = 16 possibilities which can be found by combining the basesin all possible

arrangements. Thus, thedomainis{AA, AT, AC, AG,TA, TT,TC,TG,CA,CT,CC,CG,GA,GT,GC,GG}. The
biggest possible range is 16 output amino acids, which would be achieved if every codon mapped to a distinct amino acid.

. With three-base codons, there are 43 = 64 possibilities. The domain of 64 codons can be found by iterating through all

possible three-base codons using the 4 bases. Formally, the domainis {(z, j, k) | iand j and k € {A, T, C,G}}. The biggest
possible range is 64 amino acids.

. Asobserved in Problems 1 and 2, codons with 1 or 2 bases have too small arange to generate the 20 different amino acids

required to build proteins. Three-base codons have 64 possible "words" which is more than enough to code for 20 amino acids.
Codons with 4 or more bases would have excess redundancy in the genetic code, thus making three-bases the optimal number
for coding amino acids.

. Three-base codons can code up to 64 amino acids, however, there are only 20 distinct amino acids that are coded for by the

DNA of living organisms. Therefore, there are multiple codons that produce the same amino acid. E.g. the codons AAG and
AAA both code for the amino acid Lysine. Thisimplies the coding function is not one-to-one.

1.6 Sequences and Difference Equations

5.

Cap = sothesequenceis{

2n

4 6 8 10 _[,438 5
n2+1’ 14+1°441°94+1°16+1"25+1""""[ 1 7’5°5°17°13"" " ["

n

a S o the sequenceis 3 9 27 81 243 = 123§§
T 1 4o & 142144148 1+16"1+32""""[ 7’57717 117" [

(=)t -1 1 -1 1 1 1 1 1 1

(1
. anp = ————,s0thesequenceis{ —, —, ==, —, ==, ... ¢ =< =, — ==, =, ————, =———, ... (.
“ 5n = {51 52753 5455 } {5 25 125" 625° 3125 }

4.

a, = cos %, sothesequenceis{cosg,cosw,cos 377l-,c0527r,cos 5771-,} =4{0,-1,0,1,0,...}.

ay

_3n
T 14 6n 0.5¢ W e s o e o o o

0.4286 4
0.4615
0.4737
0.4800 of s T T .
0.4839
0.4865
0.4884
0.4898
0.4909
0.4918

3

an

© 00 N O Ut kW N

[
o
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an =2+ —(_1) 3
n

3

1.0000 21 LTt
2.5000
1.6667
2.2500 T T
1.8000
2.1667
1.8571
2.1250
1.8889
2.1000

© 0 N O Ot s W NN

—_
o

3

o =1+ (-3’

0.5000
1.2500 .
0.8750
1.0625 3
0.9688
1.0156
0.9922
1.0039
0.9980
1.0010

© 00 N O Ot W N

—_
o

10"
gn I .
2.1111 1 . e

2.2346 27
2.3717 I
2.5242
2.6935
2.8817
3.0908
3.3231
3.5812
3.8680

an:1+

3

© 00 N O O W N

—
o

1
2n—1°

9. {1,4,%,1,%,...}. Thedenominator of the nth term is the nth positive odd integer, s0 a,, =

10. {1,—%,%,—5 57:---}- Eachtermis—2 timesthe preceding term, so a,, = (—%)"71.
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11.
12.

13.

14.

15.

17.

19.

21.

23.

24,

00 CHAPTER1 FUNCTIONS AND SEQUENCES

{-3,2,-%,8,—38,...}. Thefirsttermis—3 and each term is —2 times the preceding one, so a,, = —3(——)”71.
{5,8,11,14,17,...}. Eachtermislarger than the precedingtermby 3,0a, = a1 +d(n —1) =5+3(n —1) = 3n + 2.

{3,-%,2,-15 2 1 Thenumerator of the nth term is »> and its denominator isn + 1. Including the alternating signs,

n2
weget a, = (—1)”“n—+1.
{1,0,-1,0,1,0,—1,0,...}. Two possibilitiesare a,, = sin% and an = cos @
a1 =1 16. a1 =6
az =ba1 —3=5(1) -3 =2 az=a1/1=6/6 =6
a3 =ba —3=5(2)—3 =7 as =az/2 =6/2 —3
as =5a3 —3=5(7)—3 =32 as =as/3=3/3 -1
as =bas —3=5(32) =3 =157 as =as/d =1/4 =1/4
as =bas — 3 =5(157) — 3 =782 as =as/5 = (1/4)/5=1/20
ay =2 18. a1 =1
a=a/(ltam)=2/1+2)  =2/3 G2 =41 —4—1-3
az =az/(1+a2) =(2/3)/(1+2/3)=2/5 az=4—-ax=4-3=1
as = as/(1+as) = (2/5)/(1 +2/5) = 2/7 damd—as=d—1=3
as =as/(1+as) =(2/7)/(1+2/7)=2/9 as =4—as=4-3=1
as = as/(1 +as) = (2/9)/(1 4 2/9) =2/11 ag=4—as=4—1=3
a1 =1 20. a1 =3
az =+/3a; = (3-1)/2 —3l/2 az =+3Bar =(3-3)1/2=3
a3:\/%:(3.31/2)1/2 — 33/4 a3:\/%:(3~3)1/2:3
as =+/3az = (3-3/4H)1/2 =37/8 s =/3a3 = (3-3)/2 =3
a5:\/ﬂ:(3.37/8)1/2 _ 315/16 aszmz(g.g)lﬂzg
as =+/3az = (3-319/16)1/2 = 331/% as =+/3a5 = (3-3)"/* =3
a1 =2 2. a1 =1
az =1 az =2
a3 =as —a; =1—2 =-1 ag =az +2a1 =2+2(1) =4
ag=a3—a=-1-1 =-2 as =az+2a =4 +2(2) =8
as =as —az=—2—(-1)=~1 as = a4+ 2a3 =8+ 2(4) =16
ag=as—as=—-1—(-2)=1 as = as + 2a4 = 16 + 2(8) = 32

Let a,, be the number of rabbit pairsin the nth month. Clearly a1 = 1 = a2. Inthe nth month, each pair that is
2 or more months old (that is, a.,—2 pairs) will produce a new pair to add to the a,,_1 pairs already present. Thus,
an = Gn-1+ an_2, s0that {a,} = {f.}, the Fibonacci sequence.

(8) We are given that the initial population is 5000, so Py = 5000. The number of catfish increasesby 8% per month and is
decreased by 300 per month, so P, = Py + 8% Py — 300 = 1.08 Py — 300, P> = 1.08 P, — 300, and so on. Thus,
P, =1.08P,—1 — 300.

(b) Using the recursive formulawith Py = 5000, we get P1 = 5100, P> = 5208, P; = 5325 (rounding any portion of a
catfish), Py = 5451, Ps = 5587, and Ps = 5734, which is the number of catfish in the pond after six months.
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25. The solution to the difference equation N;+; = RN; asgiven in equation (2) is N; = NoR*. When Ny = 1, the solution is
Nt - Rt.
(@) Thesolution N; = R' saysthat the tth term is found by multiplying R by itself ¢ times. If R < 1, N, will decrease ast
increases. For example, consider the casewhen R = §, sothat Ny = 3, N> = 3, Ns = £, and if ¢ isvery large, say 100,

then N1go = 21100 ~ 8-1073! ~ 0. Therefore, we infer that when R < 1, the value of N, approaches zero ast becomes
large.

(b) When R = 1, the general solutionis NV; = (1) = 1. That is all termsin the sequence have a value of one.

() When R > 1, the solution N, = R* will increase ast increases. For example, consider the case when R = 2, so that
N1 =2,N, =4, N; =8, and if ¢ isvery large, say 100, then N1go = 2'°° ~ 10%°. Therefore, we infer that when R > 1,
the sequence grows indefinitely as ¢ increases.

26. (@) If Nyy1 = f(Ny), then (f o f)(Ne) = f(f(Nt)) = f(Ne+1) = Nego. Therefore, f o f represents the population size

two time steps ahead of the current time.

(b) FH(Ney1) = FH(f(Ny)) = Ny since f isaone-to-one function. Therefore, f~* takes as input the population size at a
given time and outputs the population one time step earlier.

27-31 A calculator was used to compute the first 10 terms of each sequence and these (¢, =) data points were then graphed.

21. ; o 0.6 ) 28. ; - 0.7 N
0 | 0.5000 0 | 0.5000
1 | 03750 I 1 | 06250 I I
2 | 03516 S 2 | 05859
3 | 03419 | Tt 3 | 0.6065 1
4 | 03375 . e e 4 | 0.5966 . D
5 | 0.334 0.2 5 | 0.6017 0.4
6 | 0.3344 The sequence decreases and 6 | 0.5992 The sequence oscillates above
7 | 0.3338 approaches 1/3. 7 | 0.6004 and below 0.6, approaching 0.6
8 | 0.3336 8 | 0.5998 ast increases.
9 | 0.3335 9 | 0.6001
10 | 0.3334 10 | 0.5999
29. | 30. |
t Tt t Tt
0 | 0.8750 L e ° ° o o 0 | 0.8750 LT & * o ° o
1 | 03741 | 1 | 03773 |
2 | osoos | | e e . 2 | 0.8106 | L.,
3 | 05456 ) 3 | 05207 )
ajosare| (| ] ajosses| [| ]
5 | 0.4411 0 5 | 0.4167 0
6 | 0.8431 Ast increases, the sequence 6 | 0.8386 Ast increases, the sequence
7 | 0.4523 cycles near two values (0.44 and 7 | 0.4670 cycles near two values (0.42 and
8 | 0.8472 0.84). 8 | 0.8587 0.84).
9 | 0.4427 9 | 0.4185
10 | 0.8438 10 | 0.8396
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31.

33.

0 CHAPTER1

© 00 N O 0o~ WDN P O

=
o

0.5000
0.9250
0.2567
0.7060
0.7681
0.6591
0.8313
0.5189
0.9237

0.2608
0.7134

Tt

© 00 N O 0o A WN PP O

=
o

0.8750
1.2475
1.2254
1.2306
1.2294
1.2297
1.2296
1.2296
1.2296

1.2296
1.2296

FUNCTIONS AND SEQUENCES

0

Ast increases, the sequence

cyclesirregularly among arange
of values between 0.25 and 0.93.

0.8

32.(a)

Tt

© 00 N O O A W N PP O]

=
o

0.5000
0.7582
0.8880
0.9135
0.9161
0.9163
0.9163
0.9163
0.9163

0.9163
0.9163

0.4

(b) The Ricker model increases toward a value of 0.9163

while the logistic model convergesin an oscillatory

fashion toward 0.6.

The Ricker model approaches 1.2296 in an oscillatory fashion.

Thisisvery different compared to the cycling behavior

observed from the logistic model in Exercise 29.

34. () At each time step, thereis an increase in concentration of A and adecrease of kC:. Therecursionis

ct+1 = ¢t + inflow — outflow = ¢; + A — ket

terms of the sequence using co = 120 for several different

(b) A calculator was used to calculate and graph the first 10

values of A and k. In every case, the concentration

converges toward a constant value as t increases. Larger

values of A result in higher long-run concentrations while

larger values of & give lower long-term concentrations. Note

that each sequence converges toward the value A /k.

-1

320

O * e X

cA=80,k=1/2
xA=80,k=1/4
. +A=280,k=3/4
. 0oA=20,k=1/2

/11

0

35. (a) Sinceareais proportional to number of bacteria, the relationship between colony radius, r, and the population size can be

found asfollows: Agrge = kN < 7w’ =kN & r= ,/f]\f where k is a proportionality constant.
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Since | is proportiona to the colony circumference, C, the input of new individuasis
I =RC = R(2rr) = 2Ry /EN = RK+/N where K = ZW\/E isaconstant. This gives the recursion eguation
Nes1 = Ny + RKV/N,.

(b) A calculator was used to calculate and graph thefirst 10 terms of the sequence using Ny = 40 for severa different values

of R-K.

800
[ o
I ° xR-K=1/2
[ ° *R-K=1
r ° *R-K=2
L . ° . oRK=4
L o * *

° ° L * *» ¥ « o °
[ p ¥ t s 2 M X x x X
—1 * L 1 1 1 L 11
0

36. Let NV; be the number of individualsin the colony at time t. Since volume is proportional to N, the relationship between

colony radius, r, and the population size can be found asfollows: Vgnee = kN; < 37r® = kN, < r= /2N,

where k is a proportionality constant. Because growth occurs only at the surface-resource interface, the input of new

individuals, I, is proportional to the surface area, A, of the spherical colony. With proportionality constant R, this gives
I=R-A=R(4nr®) = 4nR (%Nt)m’ =C-(N,)*? whereC = 47R (%)2/3 is aconstant. Therefore, the difference
equationis Nyy1 = Ny 4+ 1 = N, + C - (N,)*/%.

37. (a) Let n, represent the number of fish at time¢. First, the fish face predation reducing the populationto n* = n, — dn:. The
n™ fish then produce offspring and die resulting in a population of n** = n* 4+ bn™ —n* = bn*. Finadly, m additional fish
are added to the population and al swim to seagiving therecursionns1 =n** +m =bn* + m=>b(1 — d) n + m.

(b) Inthis case, the fish first reproduce and die resulting in a population of n* = bn,. Then, m fish are added increasing the
populationto n** = n* + m. Lastly, al the fish face predation while swimming downstream giving afinal population of
np1=n"—dn™"=(1—-d)(n"+m)=(1-4d) (bne + m).

(c) The difference in recursions from parts (a) and (b) is
b(Al—d)ni+m]—[(1—d)(bne +m)]=m (1 —(1—d)) =md>0sincem > 0andd > 0. Hence, the recursion
from part (a) gives the largest increase in population from one year to the next. This seems sensible since all the offspring
and additional fish face predation in part (b), whereas all the additional fish survive in part (a).

38. Let f; represent the fraction of methylated DNA at time ¢. The fraction of unmethylated DNA is then

given by 1 — f;. First, m unmethylated locations become methylated giving a new fraction of
= ft +m(1— f:). Then u methylated locations become unmethylated giving afinal fraction of

Jiri=f"—uf =1 [fi+mA-fi)]=1-m) (1 —u)fi + m(1—u).

% Gty _ Raay — %at — wherea = Rq/R
+ P+l at+1 + by Roas + Ryby %}';-at + by aat + by o/
at
o
_ ar + b _ apt _ Qapy _ apt
ot by pt+at+bt_at api+1— at apt +1—p;
as + by at + by at + by at + b
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2

When a; = 11, thefirst 40 teremsare 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

La, if a, isaneven number
40. any1 = . .
3a, +1 if a, isanodd number

16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4, 2,1, 4. When a; = 25, thefirst 40 terms are 25, 76, 38,

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,16, 8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point a; .

PROJECT Drug Resistance in Malaria

1. Let g represent the frequency of ij individuals. For random and independent unions, the frequency of RR individuals will be
given by the probability that any two R individuals unite, that is, grr = p: - p: = p?. Similarly, the probability that any two S
individuals uniteis gss = (1 — p:) - (1 — p¢) = (1 — p¢)*. The probability that an RS diploid individual formsis
grs = 2p¢ (1 — pi) - Weinclude afactor of 2 since there are two ways of selecting RS: first an R individua, thenan S

individual, and vice versa. Observe that the sum of the frequencies grr + grs + gss = 1 asisrequired.

2. Scaling each frequency by the respective probabilities of survival gives Wrrps, Wss (1 — p)?,and  2Wrsp: (1 —pe).
These new quantities no longer sum to one, but instead sum to W = Warrp? + Wss (1 — p¢)® + 2Wrsp: (1 — pt). To ensure

the new diploid frequencies (after survival) g* sum to one, we normalize or divide by W giving gir = % p?,

Wi
g5 == (1 —pe)?,and  gis = 2%% (1—po).

3. If thereare atotal of V individualsin the population, then after reproduction, the number of R-type haploidsis

bN (gir + 398s) = BN (M%R 7+ V%S pe (1 — pt)> and the total number of haploid individuals

iSON (gir + grs + gds) = N (1) = bN. Therefore, the frequency of R-type haploidsis

Wrr o . Wkrs >
s — ( W Pt W pe (1 —pe) B WRRp2 n WRSpt (1—p) = Wrrp: + Wrspe (1 — pt)
= = Rp2 4 28 —p,) = .
bN W w Wrrp? + 2Wersp: (1 — pt) + Wes (1 — pe)*

4. Substituting Wrr = 4 and Wrs = Wss = 5 into p¢41 gives
%P% + %pt (1 —pe)
W2 5pe (1 —po) + 5 (1 —pe)?

pi 4 2pe (1 — py)
p2+4p: (1 —pe) +2(1 —pe)?

Pt+1 =

_ —p} +2p:

—3p2 + 4p: + 2 — 4dp, + 2p?
_ pf — 2py

P —2

Thisisthe same rational function discussed in Section 1.2.
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1 Review
TRUE-FALSE QuIZ
1. Fase. Letf(z)=2%s=—1,andt=1.Then f(s+1t) = (-1+1)* =
f(s)+f(t) = ( 1)?+12=2#£0= f(s +1).
2. Flse.  Let f(x) = 2°. Then f(—2) = 4 = f(2), but —2 # 2.
3. Fase.  Let f(2) = 2. Then f(3z) = (32)® = 922 and 3f () = 32°. So f(3x) # 3f(x).
4. True. If x1 < z2 and f isadecreasing function, then the y-values get smaller as we move from left to right.
Thus, f(z1) > f(x2).
5. True. Seethe Vertical Line Test.

Fase. Let f(z) = 2% and g(z) = 2z. Then (f o g)(z) = f(g(x)) = f(22) =

(g0 f)(x) = g(f(x)) = g(z*) =22*. S0 fog # go f.

(22)? = 42 and

. Fdse. Let f(z) = 2®. Then f isoneto-oneand f~*(z) = ¢/z. But 1/f(x) = 1/2*, whichisnot equal to f~*(z).

8. True. We can divide by e” since e” # 0 for every x.
9. True.  ThefunctionIn z isanincreasing function on (0, co).
10. False. Letz =ec. Then(lnz)% = (lne)® =1 = 1,but 6lnz = 6lne =6 -1 = 6 # 1 = (Inx)®. What istrue, however,
isthat In(x®) = 61Inx for z > 0.
Inx In e? 2Ine T e? .
11. Fdse. Letz=ec?anda =e. Then — = = =2andln — =In— =Ine = 1, soin genera the statement
Ina Ine Ine a e
isfalse. What is true, however, isthat In L
a
12. Fdse.  For example, if = —3, then \/(—3)2 = v/9 = 3, not —
EXERCISES
1. (@ Whenz = 2,y ~ 2.7. Thus, f(2) ~ 2.7. b) f(z)=3 = z=~23,5.6
(c) Thedomainof fis—6 < x < 6, or [—6, 6]. (d) Therangeof fis—4 <y < 4,or [—4,4].
(e) fisincreasing on [—4,4], thatis,on —4 < z < 4.
(f) f isnot one-to-one sinceit fails the Horizontal Line Test.
(9) f isodd sinceits graph is symmetric about the origin.
9/
2. (& Whenz =2,y =3.Thus, g(2) = 3.

(b) g isone-to-one because it passes the Horizontal Line Test.

(©) Wheny = 2,2~ 0.2. Sog™*(2) =~ 0.2.

(d) Therange of g is[—1, 3.5, which isthe same as the domain of g~*.

(e) We reflect the graph of ¢ through theline y = z to obtain the graph of g~

1
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3. () S(1000) ~ —36m
(b) The sealevel waslowest about 18, 000 years ago and highest about 121, 000 ago present.
(€) {S]-114 < S <8} =[-114,8]
(d) The dropsin sealevel around 150,000 and 18,000 years ago correspond to periods of glaciation during which large
amounts of Earth’s water was frozen in ice sheets.
4. (8 When F' = 70, t~ 1982.
(b) The lowest fish catch was about 18 million and the largest fish catch was about 86 million. So therange of F'is
approximately {F' |18 < F < 86} = [18, 86].
5 f(z) =2* —2x+3,%0 fla+h) = (a+h)®> —2(a+h) + 3 = a® + 2ah + h® — 2a — 2h + 3, and
fla+h)—f(a) (a*>+2ah+h*>—-2a—2h+3)—(a®*—2a+3) h(2a+h—2)

= = - = " =2a+h-2
6. Therewill be some yield with no fertilizer, increasing yields with increasing yield
fertilizer use, aleveling-off of yields at some point, and disaster with too
much fertilizer use.
0] fertilizer
7. f(z) =2/(3z —1). Domain: 3z —1#0 = 3z#1 = z#3. D= (-00,3)U(3,00)

Range: all realsexcept 0 (y = 0 isthe horizontal asymptotefor f.) R = (—00,0) U (0, c0)

8. g(x) = V16 — 2%, Domain: 16 —2*>0 = 2*<16 = |z|< V16 = |z|]<2. D=[-22]
Range y>0andy<+v16 = 0<y<4. R=10,4]

9. h(z) = In(z + 6). Domain: x+6>0 = z>-6. D=(—6,00)
Range: x4+ 6 > 0, s01n(x + 6) takeson all real numbers and, hence, therangeis R.
R = (_OO, OO)

10. y = F(t) =3+ cos2t. Domain: R. D = (—o0,00)
Range —1<cos2t<1 = 2<3+4cos2t<4 = 2<y<4 R=][2,4]
11. (a) To obtainthegraph of y = f(z) + 8, we shift the graph of y = f(x) up 8 units.
(b) To obtain the graph of y = f(z + 8), we shift the graph of y = f(x) left 8 units.

(c) Toobtain thegraph of y = 1 + 2f(x), we stretch the graph of y = f(x) vertically by afactor of 2, and then shift the
resulting graph 1 unit upward.

(d) To obtain the graph of y = f(z — 2) — 2, we shift the graph of y = f(x) right 2 units (for the “—2" inside the
parentheses), and then shift the resulting graph 2 units downward.

(€) To obtain the graph of y = — f(x), wereflect the graph of y = f(x) about the z-axis.
(f) To obtain the graph of y = f~*(z), we reflect the graph of y = f(x) about theline y = x (assuming f is one-to-one).
12. (a) Toobtainthegraph of y = f(z — 8), we shift the (b) To obtain the graph of y = — f(z), we reflect the graph
graph of y = f(x) right 8 units. of y = f(x) about the z-axis.

y Y‘l

1

ol 1 X
1
0‘ i X
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13.

14.

15. y =

16.

CHAPTER1 REVIEW 0O 63

(c) To obtain the graph of y = 2 — f(z), we reflect the (d) To obtain the graph of y = 1 f(x) — 1, we shrink the
graph of y = f(z) about the z-axis, and then shift the graph of y = f(z) by afactor of 2, and then shift the
resulting graph 2 units upward. resulting graph 1 unit downward.

y y
1
\ }
! 0 x
071\ X

(e) Toobtainthe graph of y = f~'(x), wereflect the (f) To obtainthe graph of y = f~*(z + 3), we reflect the

graph of y = f(z) about theliney = x. graph of y = f(z) about theliney = z [see part (€)],
and then shift the resulting graph left 3 units.

y = —sin 2z: Start with the graph of y = sin x, compress horizontally by afactor of 2, and reflect about the x-axis.
y y
—s1n,\ y=sin2x y=—sin2x
VANVAN /\ JAYVA VAN VANVAN
/ \/‘ \/ E VAV \/‘ \Sr x Vv \V 0[\/ N \Ux
y = 3In(z —2): y Y4 ix=2 7 ix=2
Start withthe graph of y = In z,
y=Inx y=In(x —2)
shift 2 unitsto the right, and y=3In(x-2)
stretch vertically by afactor of 3. ojft x of 43 x o if3 x
11+e”): y y y
Start with the graph of y = €7,
shift 1 unit upward, and compress _iy oy 27 Li+en
vertically by afactor of 2. y=et b : 4/1 y=1
0 x 0 x 0 x

y=2— \/EI . 2 —
, y=x y=2-vx
Start with the graph of y = /=, x
. . 0 X 0 X 0 4'1\
reflect about the z-axis, and shift y=—Jx

2 units upward.
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17.

18.

19.

20.

21.

22.

23.

00 CHAPTER1 FUNCTIONS AND SEQUENCES

1

f(m):x_~_2: y ) a oy

Start with the graph of f(z) = 1/z

and shift 2 unitsto the left. j

flx)=2* -2z VA yA
=(2?-224+1) -1
=(@z-17%-1

y=x-

Start with the graph of ¢y = 2, shift 1 unit
down, and shift 1 unit right. -1t

-z ifz <0
-

(L, -1

e* —1 ifx>0

On (—o0,0), graph y = —z (theline with slope —1 and y-intercept 0) y=—x y=e'—1

with open endpoint (0, 0).
On [0, 00), graph y = e® — 1 (the graph of y = e” shifted 1 unit downward)
with closed endpoint (0, 0).

(a) Thetermsof f are amixture of odd and even powers of z, so f isneither even nor odd.

(b) Thetermsof f areall odd powers of x, so f isodd.

© f(—z) =e 2" =" = f(z), 50 f iseven.

(d) f(—z) =14sin(—z) =1 —sinz. Now f(—=z) # f(z) and f(—=z) # — f(z), 0 f isneither even nor odd.
f(z)=Inz, D=(0,00); g(z)=2>-9, D=R.

@ (fog)(x) = fg(x)) = f(a® = 9) =In(z* - 9).

Domain:z> —9>0 = 2°>9 = |z/>3 = € (-00,-3)U(3,00)
() (go f)(z) = g(f(z)) = g(Inz) = (Inx)* —9. Domain: = > 0, or (0, c0)
© (fo @) = f(f(z)) = f(lnz) =In(lnz). Domain:lnz >0 = z>e’=1,0r(1,00)

(d) (gog)(x) = g(g(z)) = g(z® — 9) = (> — 9)> —9. Domain: z € R, or (—o0, o)

1
Let h(z) =z 4+ /z, g(z) = /z,and f(x) = 1/z. Then (f o g o h)(2) = —— = F(x).
(z) Vo, g(z) =V (x) =1/ ( )(2) N (z)
80 Many models appear to be plausible. Your choice depends on whether you

think medical advanceswill keep increasing life expectancy, or if thereis
bound to be a natural leveling-off of life expectancy. A linear model,
y = 0.2493x — 423.4818, gives us an estimate of 77.6 years for the

1890, . 2010 year 2010.
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24. (a) Let z denote the number of toaster ovens produced in one week and ¥ 4 (cost)
y the associated cost. Using the points (1000, 9000) and 12,0001
90001

(1500, 12,000), we get an equation of aline: y =6x+3000

60001

12,000 — 9000
— - - — 3000
y — 9000 = —E— e (x — 1000) =
y =6 (z —1000) + 9000 = y = 6z + 3000. 500 1000 1500 2000

(toaster ovens)
(b) The dope of 6 means that each additional toaster oven produced adds $6 to the weekly production cost.
(c) The y-intercept of 3000 represents the overhead cost—the cost incurred without producing anything.

25. We need to know the value of = such that f(z) = 2z + Inx = 2. Sincex = 1 givesusy = 2, f~'(2) = 1.

26. y = I—H. Interchanging « and y givesusz = y+1 = 2zy+z=y+1 = 2zy—y=1—-2 =
2z +1 2y +1
B o l—-x
y2z—-1)=1-z = y—2x71_f (z).

27. (a) 621n3 — (eln3)2 — 32 =9
(b) log, 25 + logyo 4 = log, (25 - 4) = log;, 100 = log,, 10? = 2

(c) tan(arcsin ) = tan & = %

(d) Let @ = cos™! %, SO cosf = %. Then sin(cosf1 %) =sinf =+/1—cos20 =,/1— (%)2 =,/2 =2

28. (@ e"=5 = x=Inb nz=2 = z=¢€ ©e" =2 = e*=mh2 = z=In(n2)

29. (a) After 4 days, 3 gram remains; after 8 days, 1 g; after 12 days, £ g; after 16 days, = g.
(b) m(4) = % m(8) = 2% m(12) = 2—13 m(16) = 2—14. From the pattern, we see that m(t) = Zt%’ or 27t/4,
©m=2""* = log,m=—t/4 = t=—4log,m;thisisthetime elapsed when there are m grams of *°°Pd.

(@) m=001 = ¢=—4log,0.01 = 74<11110.;)1) ~ 26.6 days
n
3. @ 00 The population would reach 900 in about 4.4 years.

10

0
(b) P = w = 100P + 900Pe~* = 100,000 = 900Pe~* = 100,000 — 100P =
"~ 100 + 900e—t I I
_; _ 100,000 — 100P L 1000 — P _ 1000 — P 9P e .
e =~ 900P = t=1In —op = t=—In —op ,0rln 1000 P ; thisisthetime

required for the population to reach a given number P.

9-900

) = 1n81 ~ 4.4 years, asin part (a).
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31 f(z) = In(z? — ¢). If ¢ < 0, thedomain of f isR. If ¢ = 0, the

domain of f is(—o0,0) U (0,00). If ¢ > 0, thedomain of f is

(=00, —/€) U (y/¢, ). As cincreases, the dip at = 0 becomes

deeper. For ¢ > 0, the graph has asymptotes at = = ++/c.

32. 50 100 500

-2 y = logy x
L J =510 -2
-10 —-10 =50

For large values of z, y = a” hasthelargest y-valuesand y = log,, = has the smallest y-values. This makes sense because

they areinverses of each other.

33. () 30 (b) 1.4 L4
- - e ~
[ ] [ ]
[ d ° °
[ ]
B ° [ ° [ .
y L . log y log y
[ ] L]
| hd | | .
L]
0 . . . . 25 o\__*, . . L Jas o4\t . . L J14
B 0.8 . 0.8 log x

(c) Sincethe log-log plot is approximately linear, a power model is appropriate.

(d) Using computer software to fit a power curve to the data gives

y = (2.608377) - g0 712277,

¥.@ g (b) 1 1
~ " I
L)
I logy | ° logy | ¢
ylL o 0 . 20 0 1.5
| ° L L ] L [ ]
° * o N\ | | | . 1 |
0 L L L 20 —1 -1
X X log x
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35.

36.

38.

39.

CHAPTER1 REVIEW O 67
(c) Sincethe semi-log plot is approximately linear, an exponential model is 8
appropriate.
(d) Using computer software to fit an exponentia curve to the data gives
y [
y = (8.982193) - (0.801749)" .
0 1 1 1 20
X
@ 180 2.25 2.25
L L L L]
F = =
§ .g - ° ,g L .
s r ¢ 'L; r . % r °
= o jo8)
= L 4 ::2 r ° Q?' [ .
= . EX o |
i) . ) .
L . | |
1980 hd . . 2010 1980 ° \ . 2010 3.296 ° . . 3.304
80 1.9 1.9
Year Year log(Year)

Both the semi-log and log-log plots are approximately linear, so an exponential or power model is appropriate.

(b) Using computer software to fit an exponential curve to the data gives P = (6.6326 - 10~") - (1.025977)" where P isthe
population in millionsand Y is the year. Alternatively, we could have defined Y to be the number of years since 1985.
(©) P(2008) = (6.6326 - 102") - (1.025977)**°° ~ 153 million

P(2020) = (6.6326 - 10~2") - (1.025977)°*° & 209 million

a1 =sin (1-7/3) =+/3/2 37. a1 =3

az =sin (2 -7/3) =/3/2 az=1+2a1 —1=1+2(3)—-1 =6
a3 =sin(3-7/3) =0 a3 =2+2a—1=2+2(6)—1 =13
as =sin (4-7/3) = —/3/2 as=3+2a3 —1=3+2(13) —1=28
as =sin (5-7/3) = —/3/2 as =4+2a4 —1=4+2(28) —1=59
as =sin (6 -7/3) =0 ag =5+2a5 —1=5+2(59) —1=122

iti ; i i i 35 _7 9 11 ;
Writing the first term in the sequence as a fraction gives — 3, 5, — 3, 75, — 35 - Observe the numerator of the fractions start at 3

and increases by 2 in succeeding terms. Hence, the nth term will have numerator 2n + 1. The denominator of the nth termiis

n?. The signs of each term alternate from positive to negative so we multiply by (—1)". Therefore a,, = (—1)" 2”;; ! .
t Tt t Tt !
ol 09000 I 6 | 06126 |- The sequence approaches 0.63 in an oscillatory fashion.
1] 0.2430 7 | 0.6407 . * o
2| 0497 || 8 | 0.6215 *
3106750 || 9 | 06351 .
4 | 05923 || 10 | 0.6257 . . . 10
5 | 0.6520
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40. (&) A calculator was used to calculate and plot thefirst 10 terms of the Beverton-Holt recursion model with ¢ = 1.7.

80
:°°°°°9° . *N, =10
SRR “N, =30
] s " °Ny=170
*
. . *
—1 1 L 1 1 L 11
0
(b) A calculator was used to calculate and plot the first 10 terms of the 0
discrete logistic equation with » = 1.7 and K = 50. Observe that L
both the discrete logistic mode! and the Beverton-Holt model from I 2 e, . *N, =10
(T 20T eN=30
part (a) converge toward the carrying capacity. The BH model has i ° Nz =70
populations either increase or decrease toward K while the logistic L]
model has populations converge in an oscillatory fashion toward K. -1 L ) ) ) ) 1
0

CASE STUDY 1a Kill Curves and Antibiotic Effectiveness

1. When ¢, hasvalues {0.019,0.038,0.075,0.15, 0.3, 0.6, 1.2}, the respective

values of a are approximately {2.17,6.13,10.01, 13.98,17.94, 21.9, 25.86}.
These are the times at which the bacteria population changes from
exponential decay to exponential growth. We plot P(t) using the piecewise

function (2a) when ¢cp = 0 (co < MIC) and we use equation (2b) for all

35

other values of ¢o (co > MIC). Thisgivesthe graph at right.
The kill curves from the data and the model show an initial decrease in bacteria population and then an increase to a maximum
value of 12 CFU/mL (when ¢y > 0.013). The larger theinitial concentration ¢, the longer it takes the population to reach its
maximum value. When ¢, = 0 the bacteria population increases immediately in both the model and data. Thekill curves
obtained from the data are more jagged and follow an irregular path up to the maximum value of 12 as compared to the model

curves. The datakill curves also appear to reach a minimum value earlier than the model kill curves.

2. The antibiotic concentration ¢(t) = coe " is an exponential decay function that has an initial value at ¢(0) = co and

Cmax Co

MIC ~ MIC"

decreases as time passes. Thus, the peak antibiotic concentration is co. Thisgives p = The other measure 7

. o —kT __ _ — MIC 7l ‘o
must satisfy ¢(7) = MIC = coe™*" = MIC = kT_ln( w ) 7 T_kln(MIC)'
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CASE STUDY la  KILL CURVES AND ANTIBIOTIC EFFECTIVENESS LI 69

_co _ copg/mL N .
p= MIC ~ 0.013 ug/mL ~ 76.92¢co  (unitless) 50

1 co 1 co pg/mL
=1 =
TR (MIC) 0.175 (Uhours) (0.013 1ug/mL
~ 5.711n (76.92¢co) hours

1 co pg/mL
= ~ 439. h
@ = 0.175 (Uhours) (0.013 g/ mL 39-56¢o hours

. Asseen in Problem 1 and Equation (2b), the bacteria population starts to rebound when ¢ = a. So the drop in population size

is
A= P(0) = P(a) = 6 64¢*/* =6 [1 = (T7co) > >TTT0)/3] — 6 [1 — (77c0) 2 (T7c0)> "7
=6[1— (77co)™ "7
Observe from the population functions P(t) in equation (2a) and (2b) that P(0) = 6. When ¢o < 0.013, thereisno drop in

the bacteria count since 6¢*/>

isan increasing function. Focusing on the other case cp > 0.013, the piecewise function
decreasesintheinterval ¢ < a. Thus, the measure T must satisfy P(T) = 0.9P(0) = 6e" 7/ =0.9(6) =

e T/ =09 = T=-20In0.9.

. T = f(co) = —201n0.9 ~ 2.11 seconds  (a constant function)

A =g(co) =6[1— (7T7co) "]

_ _ 1 co pug/mL N . .
a=h(c) = 0.175 (Uhours) (0.013 gL )~ 439.56¢0 hours  (asin question 3)

. If theinverse function of oo = h(co) exists, we can find it by solving the equation for ¢, to give co = h™* (). Substituting this

into A = g (co) givesthe composite function A = g (™" (a)) = (9o h™") (a). Thus, we write A asafunction of « by first

finding A ™" () and then determining A = (g o h™") () asfollows:

Co

0175 (0013) ~ ©~ h~(a) = (0.175) (0.013) o =

o =

A=g(h ' (a)) =g((0.175) (0.013) @) = 6 [1 — (77 (0.175) (0.013) a) " *°] ~ 6 [1 — (0.175a) "%

. In Problem 5, we found that T" is a constant function, that is, it isindependent of ¢, and hence, also independent of a.. So

T = f(a) = —201n0.9 ~ 2.11 seconds.

~\ W
J

600 o————"—"—%600

A=6(1-(0.1750)""?) T =-20In0.9 ~ 2.11
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9. In the bacteria population model P(t) in equation (2b), the population decreases at the same rate for al initial drug
concentrations governed by P(t) = 6e~"/2° when ¢ < a. Thus, the time taken to reach 90% of the initial population size ()
isthe samefor al initial drug concentrations (co) as seen in Figure 9. However, the duration of the population decline phase
increases as theinitial drug concentration increases because the concentration remains above the minimum inhibitory
concentration (M IC') for alonger period of time. So larger initial concentrations lead to longer time periodsin the population
decline phase that, in turn, lead to larger dropsin population size before rebound (A) as seen in Figure 8.
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