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CHAPTER 1 - Problem Solutions

Problem 1.1
_ 1
X==%X;=7125
N
n 8
7o =12(xk - X)? =12(xk 71252 = 2792 _34.9375
) 8ia 8
7
7= 13 (X ~T125)( Xy~ 71.25) = 223310 14 74919
8o 8
po=1
= 414218 4o
34.9375
Problem 1.2
Using the tswge R code
data(wtcrude)
plotts.wge(wtcrude)
we obtain the following plots.
wtcrude
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The data shows a non-cyclic wandering behavior with strong correlation between data values that are near
each other in time. The sample autocorrelations show strong positive correlation (above 0.5 for k <13 ),
and the periodogram and Parzen spectral estimator show peaks at zero with no indication of cyclic behavior.

However, none of the diagnostic plots provide an indication of the precipitous drop in oil prices around
t=100.



Using the tswge R code

data(patemp)
plotts.wge(patemp)

we obtain the following plots.
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The data show a strong cyclic behavior (with a period of about 12 which makes sense (because this is
monthly data). The sample autocorrelations show a very slowly damping cyclic behavior with cycle length
12 while the periodogram and Parzen spectral estimator show a strong peak at about f=1/12.



Problem 1.3
Using the tswge R code

data(airline)
airlog=log(airline)
plotts.parzen.wge(airlog,m2=c(10,75))

we obtain
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All spectral estimator have a peak at zero, and all except M=10 show the peaks at the harmonic of the
fundamental frequency 1/12. The spectral estimator that is closest to the AR spectral estimator in Figure
1.25 is the Parzen spectral estimator with M=75. The Parzen spectral estimator with M=10 is clearly too
smooth.

Problem 1.4
Realization 1 has wandering behavior which is corresponds to fairly high positive autocorrelations for lags of
modest length (d) and spectral density with a peak at zero (a): 1, d, a

Realization 2 has very little structure (random-line) which corresponds to small or zero autocorrelations (a)
and flat spectral density (d): 2, a, d

Realization 3 is pseudo-cyclic with a period of about 10 which corresponds to the autocorrelations with
damped sinusoidal behavior of about period 10 (b) and a peak in the spectral density at about f=0.1 (c):
3,b,c

Realization 4 seems to have a pseudo-cyclic behavior with period a little less than 10 along with a higher
frequency components. This corresponds to the autocorrelations in (c) that show a dames sinusoidal



behavior of about 12 along with some high-frequency distortion. The spectral density in (b) shows a peak at
about f=1/12 along with a higher frequency peak.: 4,c, b

Problem 1.5

Using the tswge R code (M=31 is the default for n=100)
data(figl.2l1a)
plotts.parzen.wge(figl.21a)
plotts.parzen.wge(fuigl.2la,dbplot=FALSE)

We get the following plots (not showing the periodogram that is also plotted):

Parzen Window Truncation point: M = 31 Parzen Window Truncation point: M = 31
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Both show strong indication of a peak at abouit f=0.05. However, the plot in dB shows the secondary peak
at about f=0.33 much more clearly.

Problem 1.6

(a-d) The tswge R code
x=gen.sigplusnoise.wge(n=100,coef=c(3,1.5),Ffreq=c(.05, .35),psi=c(0,2))
plotts.sample.wge(x)

produces the following plots.
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The realizations shows a dominant frequency with period about 20 along with higher-frequency behavior.
The autocorrelations show the periodic behavior of associated with the period 20 (f=0.05) with some
indication of a higher frequency component. These two plots provide very little evidence regarding the
nature of the higher frequency behavior. The two spectral plots clearly suggest frequency behavior at both
f=0.05 and f=0.35.

Problem 1.7
Answers will vary

Theoretical Problems

Problem 1.8

Cov(Z;, Zyy)=El(Z; — )(Zi — )]
=E[(Z —)(Z; — )]
=E[(Z; — )2 — )]
=Cov(Z;, Z;_y).

Problem 1.9  Z, =a, where a, is drawn independently for any t and where the distribution of a, is

given by
: 1
c with prob. =
a, = 2 forc>o.
: 1
—Cc with prob. =
2
(a)
E[Zt] = E[a(]

1 1
=—Cc+—(-¢c)=0
¢35 (0)

E[Z,]=0 isaconstant .

Var(Z,) = Var(a,)
= E[a’] since E[a,]=0
1.

Lleleoocs
2 2

Var(Z,) =c’ is a finite a constant.



7. =Cov(Z,,Z,.,)
=E[Z,Z,,]-0

:E[a‘tauk]
70=C2
7 =0
7.=0, k=1
_Je?, k=0
"0, k20

So, y, depends only on lag k, and the process is covariance stationary.

(b) This part was answered in the solution to part (a).

Problem 1.10
Assume X@,..., X" are k uncorrelated covariance stationary time series and

E(Xt(i)) =4
Var(X")=o? <o i=1..k

Now let’s consider the sum of the k series

E {Zk: Xf"] = Zk:yi constant
i=1

i=1

Ko K _
Var()_ X")=>" o7 <o constant (since the X,”'s are uncorrelated)
i=1 i=1

0=l £x0 L S50 -u

B (X0 )X (X D)

L i=L j=1 i
Tk -
=B 22 (X - )(Xih -
L i=l j=1

—E Zk:(xf ) (X9 - J)} (since E[(Xt(” m)(X8 - ﬂj)]

i=1

(unless j =1)

- Zy(') which depends only on lag h.

0



Problem 1.11
Based on Example 1.3.

If Y ~U(0,27) then cos(At+Y)is covariance stationary. Since
v, W, v, ~U(0,27), then cos(27(0.025)t +,), 1.5cos(27(0.)t +y,), and 2cos(27(0.15)t +y,

are all covariance stationary.

W, ¥, y, uncorrelated = cos(27(0.025)t +y,), 1.5cos(2z(0.)t +y,), and 2cos(27(0.15)t +y, are
all covariance stationary.

By Exercise 1.10 X, = cos(27(0.015)ty;,) +1.5cos(27z(0.1)t +y,) +2cos(27(0.15)t + )

IS covariance stationary.

(a) By Example 1.3 E(X,)=0
X @ (t) = cos(27(0.025)t +1,), X @ (t) =1.5c0s(27(0.1)t +,), X D(t) = 2cos(27(0.15)t +y,)
y(h) =y (h)+72 (h)+ 7 (h)

2 2

= %COS(ZH(.025)h + 1'; cos(2z(.1)h) + 2?005(27z(.15)h)

=.5¢0s(27(.025)h +1.125c0s(27(.1)h) + 2cos(27(.15)h)

(b) o2 =y(0)=.5+1.125+2=3.625 .

)= y(h) .5cos(27(.025)h+1.125c0s(27(.1)h) +2cos(27(.15)h)
~y(0) 3.625 .
=.138c0s(27(.025)h +.310cos(2x(.1)h) +.552 cos(27(.15)h)

(©) p(h

Problem 1.12
Y, =C,cos2rft+y,)+N,, t=0,+1..
From Example 1.3



H, =C, cos(2x f,t +y,) is covariance stationary.
i. E[H,]=0

2
i, Var(H,) =%l< o
.. C?
ii. 7, =7cos(27r fk)
Also, N, is discrete iswhite noise, = the N,'s are identically distributed.
i. E[N,]=0
ii. Var(N,) = o <o (fixed and finite)
iii. " =0ifk=0and 5V =0f <
So,
I. E[Y,]= E[H,]+ E[N,] =0 (constant).

2

ii. Var(Y,) = Var(H,) + Var(N,) =C71+a,§ < oo (constant)
ii. 7, =Cov(Y,,Y )

= E[Yth+k]

= E[(Ht + Nt)(Ht+k + Nt+k)]

=E[(HH, )]+ E[H N J+E[NH_ ]+ E[NN,,]

= E[Hth+k]+ E[NtNt+k]

CZ

So, ¥ :71“;5', ifk=0

c? .
= 7005(27; fik), ifk=0

which only depends on k. Thus, Y, is also a covariance stationary process.

Problem 1.13
Z, ~N(0,0%)
(a) Stationary
I. E(X,)=E(a+bzZ,)+cZ, ;) =a (constant)
ii. Var(X,) = Var [a +bZ, +cZ, 71] = Var(a) + Var(bz,) + Var(cZ, ) (since uncorrelated)

=b’c® +c*c? = (b* +c?)o’ (finite constant)



ii. y(t,t,) =cov(X,,Z, )=cov(a+bZ +cZ ,,a+bZ +cZ ,)
=b?cov(Z,,Z, ) +bc(cov(Z, . Z, ,)+cov(Z, ,Z, ))+c*cov(Z, ,,Z, ;)
(b*+c*)o? t =t
=< bco® |t -t =1
0 otherwise

(b) Stationary
i. E(X,)=E(a+bZz,)=a+bE(Z,)=a
ii. Var(X,) = Var(a+bz,) =b*c?
iii. y(t,,t,) =cov(a+bZ,,a+bz,) =b*Var(Z,) =b’c?

(c) Not stationary
I. E(X,) = E(Z, cos(ct)+ Z, , sin(ct)) =0
ii. Var(X,) = Var(Z, cos(ct) + Z,_, sin(ct)) = cos’(ct)Var(Z,) +sin*(ct)Var(Z, _,)
= (cos®(ct) +sin®(ct))o” = o> (finite constant)
ii. y(t;,t,) = cov[Z, cos(ct,) +Z, sin(ct,),Z, cos(ct,)+Z, ,sin(ct,)]
=cov[Z, cos(ct,),Z, cos(ct,)]+cov[Z, cos(ct,), Z, , sin(ct,)]
+cov[Z, ,sin(ct,), Z, cos(ct,)]+cov[Z, ,sin(ct,),Z, ,sin(ct,)]

[cos®(ct,) +sin’(ct)]c’ =0° t,—t,=0

~ cos(ct,)sin(ct,)o” t, -t =1
cos(ct,)sin(ct,)o” t,-t,=-1
0 otherwise

Depends on t,t,, noonly dependson t, -t .

(d) Not stationary
Var(X,) = cos®(ct)o which is a function of t

Problem 1.14
1) X®=X,-05X,,.

Let #=E(X,) and o* = Var(X,) .

10



i E(X®)=E(X,-0.5X,,)=x—-054=05x (constant for all t) .

ii. Var(X?) =Var(X, -0.5X,_,) = Var(X,) +0.25Var(X,_,) —cov(X,, X, ,)

=1.250% -y, (which is a finite constant)

iii. Let k = 0 be an integer.
7|£1) = Cov[X; —.5X 3, Xk =9 Xyl
= E[{(X, — ) ~5(X 1 — i) H (X — 1) 5K g g — 03]
= E[(X; — ) ( Xy — )] = BE[(X 3 — 1) (X — )]
—~ BE[(X; — )Xo — 01+ 25EL(X g~ 1) (Xipig — 4]
=2k =-OFks1 =9k +-257k
=125y, =504 =504, iF k=0

=1.250% -y, ifk=0
which depends only on lag k. So, Xt(l) is covariance stationary.
2) X@=x®_x8
i. EXP)=E(X® -X®)=E(X"”)=0.51-0.51=0 (constant)
ii. Var(X{?) = Var(x{® - X)) = Var(x{®) + Var(x %)) - 2cov(X{?, X
=1.250% -y, +1.256° — y, — 2y

=2.50% -2y, — 2(1.25y; — .57, —.57,)
=350%-45y,+7,

i, 7@ (t,6) =Cov(X P - X &, X -x )

o
= E[{(X{Y = 52) = (X, = By H(X ) - 5) = (X, - 53]
= E[(X = 5u)(X Y = 5) ~E[(X?; = Bu)(X ) —.5)]
—E[(X, - 5u)(X Y = 5u)]+ EI(X ) - 5u)(X (D, - 5u)]
=yt -t) - 7Pt -t - - Ot - t, - )+ Ot - ty)

1 1 1 1
=7 =y =B+ O

=125y =571 =571 — (12571 — 5y —-5xx2)
— (1257411 =-57ks2 —97k) +1.257 = 5y —-5r¢a
=3.57k =2.25k41 = 2.250 1 +-Sks2 +O¥k 2

which only depends on lag k. So, Xt‘z) IS covariance stationary.

11

@
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Problem 1.15
(@) Joint distribution of (Ztl,...,Ztn)is that of (X, X,..., X)
Joint distribution of (Zt1+h,...,Ztn+h) is that of (X, X,..., X)

Hence it is strictly stationary.

For weak stationarity:

i. E(Z,)=u constant
ii. Var(Z,)=o? <o constant

i, y(k) =E(Z, — t)(Zy, — 1)
= o’ which does not depend on t.

Therefore, Z, is weakly stationary.
(b) y(k) =0 as shown in (a) and so p(k) :% =1forallk .
v

(c) Atypical realization is

t

@ Z=1%7,=x
N
and lim E(Z - )% = lim E(X = x)? = lim 62 =% %0
n—oo n—oo n—o0

. Z; is not ergodic for p.

Problem 1.16
(@) E[Y,]=a+bt+ u (where E[X,]= u, Var[X,]=0c? <©)

which depends on t if b= 0 so Y, is not covariance stationary.

12



(b) Z, =a+bt+ X, —(a+b(t—a)+ X,)
= b + Xt - Xt—l
i. E[Z,]1=Db
il. Var[Z,]=Var[X,;]+ Var[X,_;]-2CoV[ X, X, ;]
=20? -2n
= 2(o® - ;) which is a finite, positive constant
i,y (k) =Cov(Xy = X3, X = Xgika)
=E[{(X; — 1) - (Xiaa = i) HX g = 1) = (Kpea — 40}
= E[(X; — ) (Xs — )] = EI(X 1 = 1) (X — 12)]
—E[(X; = ) (X — )]+ E[(X g — 1) (X141 — 1))
=V T Ve T VL Tk
=2k — ¥k~ Y1 1F k=0
=2(c?-p), ifk=0

which only depends on lag k. So, Y, is covariance stationary.

Problem 1.17

E[Xt(l)] = E[Xt(z)] =0

Var[X V=02 +6°c% =2 (1+6?)
1 1
Var[X{?]=c? +?0'§ = o2 (l+?)

y®= Covx®, XH1=El(a, - 0a,_;) (a1~ 6a,)]
= E[aa,,;]1- 0E[a_4a,,,1- OE[al]+ 0°E[a,_a(]
=02 (since a, is white noise)
2 @ v (@7_ 1 1
7= CovIX¢™, X 1= El(a _gat—l)(anl _Eat )]
1 1 1
= E[aa,4] ) Ela,_jat,4]- 2 E[atz] + ? Ela,;a]

- _%ag (since a, is white noise)

13



Note that if k > 1 then the associated covariances are zero (there are no subscripts that “match”).

) ®
o _ 2 ow_n __ 0 o _
So, p, 7/(1) Fork =1 p yél)_1+02 Fork>2, p” =0.
1
and p{? = " Fork =1 p? = n_ "o _ b Fork>2, p{? =0
7P R S R <
0
Problem 1.18

Using the trigonometric identity for the cosine of a sum, the result follows by noting that

cos[27z(1.3)k] = cos[27k + 27(.3)k]
= cos[2zk]cos[27(.3)k]—sin[2zk]sin[27(.3)K]
= cos[27(.3)k] because for integer k, cos[2zk]=1and sin[27zk]=0

Problem 1.19
@P,(~F)= 3, exp(-27ik(- )y,

_ i exp(=27i(—k)(= )y,

o0

= Z exp(=27ikf )y,

:—OO

=P(f)
P P

X X

S, (~f) = =S (f)

14



0) P(f)= 3 ye 2
k=—c0

o]

= 7 [cos(2z tk) —isin(2z tk)]  (Euler's formula)

k=—o0
-1 ©
= Z 7 [cos(27 Tk)] + Z ri[cos(2z k)] + g
k=—00 k=1

- i[ le 7 [sin(2z fk)]+i;/k [sin(27 fk)]}

k=-o0 k=1
= 2§: y[cos(2z tk)]+ yo —1i [i 7 sin(2z tk)]+ y_ [Sin(2x fk)]}
k=1 k=1

=23y [cos(27 tk)] + 0%
k=1

s,(F)=) 193 ) cosf2r fk]
k=1

2
O-x

5 5 . _ -
(C) J‘ PX (f)eZﬂ'ifkdf _ J‘ |: Z ]/ge_zﬂlwi|e2mfkdf
-5

_5Ll=—0

_ i v, f o2t (k=0) ¢
(=—0 _§

_ id zi(k=0)  —ri(k=0)
=y +y ———|e —e
7k szsz(k—ﬁ)[ J

- Zﬁ%[zi sin(z(k - ¢))]

=7, since sin(zk) =0 for integer k

5 5
P i i
pe =" = [ X (f)e?m™df = [ 5, (F)e? df
}/0 _SO-X _5

15



(d) Letk =0in(c). We immediately get

5 5
ol = j P (f)e?™ T gt =j P, (f)df
-5 -5

.5 5
po=1= j S, (f)e2 i Ot :j Sy (f)df
-5 -5

5
(€) 7= [ Py (F)e®™™df
5 s
= [ P (f)[cos(2x fk]df +i [ P ()[sin(27 fk]df
-5 -5

5
=2 j P, (f)cos(2x fk)df
0

since Py (f)cos(27x fk) is an odd function
Py (f)sin(27 fk) is an even function

5 5
pr =L~ 2] B0 ooz it = 2[5, () cos(ar fldf
Ox 0o 9x 0

Problem 1.20
1] | 1] n ?
() =X Xe? M = =13 X, cos(2kt /n)—i > X, sin(2zkt / n)
n t=1 n t=1 t=1
1 n 2 n 2
== [Z X, cos(2zkt / n)] +[Z X, sin(2zkt / n)j
AN t=1
_ 1 n2 2 b2
——T[aﬁ ¢
_Nro2 2
(1) _4[ak+bk}

16



n 2 n 2
%%[(Z(Xt —~ ?)cos%t] +(Z(Xt — X)sin %t] }

t=1 t=1
1y 27k
:HZZ(X - X)(Xs —X)(cos( t)cos( s)+sm(—t)sm(—s)j
t=1s=1
=lznlzn:(x - X)(X, —X)cos(—(t— )j
t=1s=1

=% Zn:(x SXY 42 Y (X = K)(Xs X)cos(%(t s)ﬂ
I<t<s<n

3|I—‘

| t=1 =1\ t=1

- Z(Xt X)? +2§[n§(xt—>?)(xw X)cos —v ﬂ
:_Z(Xt X)? +2n2[i2(xt X)Xy — X)cos[ kvj]

t=1

M =7+ ZiVV cos (%vj

v=l

That is, forms I, I, and 11l are equivalent.

Problem 1.21 Without loss of generality we assume x = 0.

:%ZZE(XiXJ)
N" iz j=1
1 n n
P DNE
i=1l j=1
=5 [Wo+ (=07 1+ (1D +(1=27 5+ (=D ++ (= (=17 oy + (1= (1D
1 n-1
=L 5 (1)
=—(n-1)
2 n-l
LA (_Mjpk
N "y
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