
Solutions — Chapter 2

2.1.1. Commutativity of Addition:

(x + i y) + (u + i v) = (x + u) + i (y + v) = (u + i v) + (x + i y).

Associativity of Addition:

(x + i y) +
h
(u + i v) + (p + i q)

i
= (x + i y) +

h
(u + p) + i (v + q)

i

= (x + u + p) + i (y + v + q)

=
h
(x + u) + i (y + v)

i
+ (p + i q) =

h
(x + i y) + (u + i v)

i
+ (p + i q).

Additive Identity : 0 = 0 = 0 + i 0 and

(x + i y) + 0 = x + i y = 0 + (x + i y).

Additive Inverse: −(x + i y) = (−x) + i (−y) and

(x + i y) +
h
(−x) + i (−y)

i
= 0 =

h
(−x) + i (−y)

i
+ (x + i y).

Distributivity :

(c + d)(x + i y) = (c + d)x + i (c + d)y = (cx + dx) + i (cy + dy) = c(x + i y) + d(x + i y),

c[ (x + i y) + (u + i v) ] = c(x + u) + (y + v) = (cx + cu) + i (cy + cv) = c(x + i y) + c(u + i v).

Associativity of Scalar Multiplication:

c [d(x + i y) ] = c [ (dx) + i (dy) ] = (cdx) + i (cdy) = (cd)(x + i y).

Unit for Scalar Multiplication: 1(x + i y) = (1x) + i (1y) = x + i y.

Note: Identifying the complex number x + i y with the vector ( x, y )T ∈ R2 respects the opera-

tions of vector addition and scalar multiplication, and so we are in effect reproving that R2 is a
vector space.

2.1.2. Commutativity of Addition:

(x1, y1) + (x2, y2) = (x1 x2, y1 y2) = (x2, y2) + (x1, y1).

Associativity of Addition:

(x1, y1) +
h
(x2, y2) + (x3, y3)

i
= (x1 x2 x3, y1 y2 y3) =

h
(x1, y1) + (x2, y2)

i
+ (x3, y3).

Additive Identity : 0 = (1, 1), and

(x, y) + (1, 1) = (x, y) = (1, 1) + (x, y).

Additive Inverse:

−(x, y) =

 
1

x
,
1

y

!
and (x, y) +

h
−(x, y)

i
= (1, 1) =

h
−(x, y)

i
+ (x, y).

Distributivity :

(c + d)(x, y) = (xc+d, yc+d) = (xc xd, yc yd) = (xc, yc) + (xd, yd) = c(x, y) + d(x, y)

c
h
(x1, y1) + (x2, y2)

i
= ((x1 x2)

c, (y1 y2)
c) = (xc

1 xc
2, yc

1 yc
2)

= (xc
1, yc

1) + (xc
2, yc

2) = c(x1, y1) + c(x2, y2).

Associativity of Scalar Multiplication:

c(d(x, y)) = c(xd, yd) = (xcd, ycd) = (cd)(x, y).

Unit for Scalar Multiplication: 1(x, y) = (x, y).

42

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced,

in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Applied Linear Algebra, by Peter J. Olver and Cheri Shakiban. ISBN 0-13-147382-4.



Note: We can uniquely identify a point (x, y) ∈ Q with the vector ( log x, log y )T ∈ R2. Then

the indicated operations agree with standard vector addition and scalar multiplication in R2,
and so Q is just a disguised version of R2.

♦ 2.1.3. We denote a typical function in F(S) by f(x) for x ∈ S.
Commutativity of Addition:

(f + g)(x) = f(x) + g(x) = (f + g)(x).

Associativity of Addition:

[f +(g +h)](x) = f(x)+ (g +h)(x) = f(x)+ g(x)+h(x) = (f + g)(x)+h(x) = [(f + g)+h](x).

Additive Identity : 0(x) = 0 for all x, and (f + 0)(x) = f(x) = (0 + f)(x).
Additive Inverse: (−f)(x) = −f(x) and

[f + (−f)](x) = f(x) + (−f)(x) = 0 = (−f)(x) + f(x) = [(−f) + f ](x).

Distributivity :

[(c + d)f ](x) = (c + d)f(x) = cf(x) + df(x) = (cf)(x) + (df)(x),

[c(f + g)](x) = cf(x) + cg(x) = (cf)(x) + (cg)(x).

Associativity of Scalar Multiplication:

[c(df)](x) = cdf(x) = [(cd)f ](x).

Unit for Scalar Multiplication: (1f)(x) = f(x).

2.1.4. (a) ( 1, 1, 1, 1 )T , ( 1,−1, 1,−1 )T , ( 1, 1, 1, 1 )T , ( 1,−1, 1,−1 )T . (b) Obviously not.

2.1.5. One example is f(x) ≡ 0 and g(x) = x3 − x.

2.1.6. (a) f(x) = −4x + 3; (b) f(x) = −2x2 − x + 1.

2.1.7.

(a)

 
x − y
xy

!
,

 
ex

cos y

!
, and

 
1
3

!
, which is a constant function.

(b) Their sum is

 
x − y + ex + 1
xy + cos y + 3

!
. Multiplied by −5 is

 
−5x + 5y − 5ex − 5
−5xy − 5 cos y − 15

!
.

(c) The zero element is the constant function 0 =

 
0
0

!
.

♦ 2.1.8. This is the same as the space of functions F(R2, R2). Explicitly:
Commutativity of Addition: 

v1(x, y)
v2(x, y)

!
+

 
w1(x, y)
w2(x, y)

!
=

 
v1(x, y) + w1(x, y)
v2(x, y) + w2(x, y)

!
=

 
w1(x, y)
w2(x, y)

!
+

 
v1(x, y)
v2(x, y)

!
.

Associativity of Addition: 
u1(x, y)
u2(x, y)

!
+

" 
v1(x, y)
v2(x, y)

!
+

 
w1(x, y)
w2(x, y)

!#
=

 
u1(x, y) + v1(x, y) + w1(x, y)
u2(x, y) + v2(x, y) + w2(x, y)

!

=

" 
u1(x, y)
u2(x, y)

!
+

 
v1(x, y)
v2(x, y)

!#
+

 
w1(x, y)
w2(x, y)

!
.

Additive Identity : 0 = (0, 0) for all x, y, and
 

v1(x, y)
v2(x, y)

!
+ 0 =

 
v1(x, y)
v2(x, y)

!
= 0 +

 
v1(x, y)
v2(x, y)

!
.

Additive Inverse: −
 

v1(x, y)
v2(x, y)

!
=

 
−v1(x, y)
−v2(x, y)

!
, and

 
v1(x, y)
v2(x, y)

!
+

 
−v1(x, y)
−v2(x, y)

!
= 0 =

 
−v1(x, y)
−v2(x, y)

!
+

 
v1(x, y)
v2(x, y)

!
.
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Distributivity :

(c + d)

 
v1(x, y)
v2(x, y)

!
=

 
(c + d)v1(x, y)
(c + d)v2(x, y)

!
= c

 
v1(x, y)
v2(x, y)

!
+ d

 
v1(x, y)
v2(x, y)

!
,

c

" 
v1(x, y)
v2(x, y)

!
+

 
w1(x, y)
w2(x, y)

!#
=

 
cv1(x, y) + cw1(x, y)
cv2(x, y) + cw2(x, y)

!
= c

 
v1(x, y)
v2(x, y)

!
+ c

 
w1(x, y)
w2(x, y)

!
.

Associativity of Scalar Multiplication:

c

"
d

 
v1(x, y)
v2(x, y)

!#
=

 
cdv1(x, y)
cdv2(x, y)

!
= (cd)

 
v1(x, y)
v2(x, y)

!
.

Unit for Scalar Multiplication:

1

 
v1(x, y)
v2(x, y)

!
=

 
v1(x, y)
v2(x, y)

!
.

♥ 2.1.9. We identify each sample value with the matrix entry mij = f(ih, j k). In this way, every

sampled function corresponds to a uniquely determined m × n matrix and conversely. Ad-
dition of sample functions, (f + g)(ih, j k) = f(ih, j k) + g(ih, j k) corresponds to matrix
addition, mij + nij , while scalar multiplication of sample functions, cf(ih, j k), corresponds

to scalar multiplication of matrices, cmij .

2.1.10. a + b = (a1 + b1, a2 + b2, a3 + b3, . . . ), ca = (ca1, ca2, ca3, . . . ). Explicity verification of
the vector space properties is straightforward. An alternative, smarter strategy is to iden-
tify R∞ as the space of functions f : N → R where N = {1, 2, 3, . . . } is the set of natural
numbers and we identify the function f with its sample vector f = (f(1), f(2), . . . ).

2.1.11. (i) v + (−1)v = 1v + (−1)v =
“

1 + (−1)
”
v = 0v = 0.

(j) Let z = c0. Then z + z = c(0 + 0) = c0 = z, and so, as in the proof of (h), z = 0.

(k) Suppose c 6= 0. Then v = 1v =

 
1

c
· c
!

v =
1

c
(cv) =

1

c
0 = 0.

♦ 2.1.12. If 0 and e0 both satisfy axiom (c), then 0 = e0 + 0 = 0 + e0 = e0.

♦ 2.1.13. Commutativity of Addition:

(v,w) + (bv, bw) = (v + bv,w + bw) = (bv, bw) + (v,w).

Associativity of Addition:

(v,w) +
h
(bv, bw) + (ev, ew)

i
= (v + bv + ev,w + bw + ew) =

h
(v,w) + (bv, bw)

i
+ (ev, ew).

Additive Identity : the zero element is (0,0), and

(v,w) + (0,0) = (v,w) = (0,0) + (v,w).

Additive Inverse: −(v,w) = (−v,−w) and

(v,w) + (−v,−w) = (0,0) = (−v,−w) + (v,w).

Distributivity :
(c + d)(v,w) = ((c + d)v, (c + d)w) = c(v,w) + d(v,w),

c
h
(v,w) + (bv, bw)

i
= (cv + c bv, cv + c bw) = c(v,w) + c(bv, bw).

Associativity of Scalar Multiplication:

c(d(v,w)) = (cdv, cdw) = (cd)(v,w).

Unit for Scalar Multiplication: 1(v,w) = (1v, 1w) = (v,w).

2.1.14. Here V = C0 while W = R, and so the indicated pairs belong to the Cartesian prod-
uct vector space C0 × R. The zero element is the pair 0 = (0, 0) where the first 0 denotes
the identically zero function, while the second 0 denotes the real number zero. The laws of
vector addition and scalar multiplication are

(f(x), a) + (g(x), b) = (f(x) + g(x), a + b), c(f(x), a) = (cf(x), ca).
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2.2.1.
(a) If v = ( x, y, z )T satisfies x − y + 4z = 0 and ev = ( ex, ey, ez )T also satisfies ex − ey + 4ez = 0,

so does v + ev = ( x + ex, y + ey, z + ez )T since (x + ex)− (y + ey) + 4(z + ez) = (x− y + 4z) +

(ex−ey+4ez) = 0, as does cv = ( cx, cy, cz )T since (cx)−(cy)+4(cz) = c(x−y+4z) = 0.

(b) For instance, the zero vector 0 = ( 0, 0, 0 )T does not satisfy the equation.

2.2.2. (b,c,d,g,i) are subspaces; the rest are not. Case (j) consists of the 3 coordinate axes and
the line x = y = z.

2.2.3. (a) Subspace:

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-2

0

2

-1

-0.5

0

0.5

1

(b) Not a subspace:

-1-0.5
0

0.5
1

-1
-0.5

0
0.5

1

-10

0

10

-1
-0.5

0
0.5

1

(c) Subspace:

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

(d) Not a subspace:

-1
-0.5

0
0.5

1

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0
0.5

1

(e) Not a subspace:
-1

-0.5

0

0.5

1

-2.5

-2.25

-2

-1.75

-1.5

0.5

0.75

1

1.25

1.5

-1
-0.5

0

0.5

1

-2.5

-2.25

-2

-1.75

-1.5

(f ) Even though the cylinders are not

subspaces, their intersection is the z axis, which is a subspace:

-2
-1

0
1

2

-2

-1

0
1

2

-2

-1

0

1

2

-2
-1

0
1

2

-2

-1

0
1

2

2.2.4. Any vector of the form a

0
B@

1
2

−1

1
CA + b

0
B@

2
0
1

1
CA + c

0
B@

0
−1

3

1
CA =

0
B@

a + 2b
2a − c

−a + b + 3c

1
CA =

0
B@

x
y
z

1
CA will

belong to W . The coefficient matrix

0
B@

1 2 0
2 0 −1

−1 1 3

1
CA is nonsingular, and so for any
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x = ( x, y, z )T ∈ R3 we can arrange suitable values of a, b, c by solving the linear system.

Thus, every vector in R3 belongs to W and so W = R3.

2.2.5. False, with two exceptions: [0, 0] = {0} and (−∞,∞) = R.

2.2.6.
(a) Yes. For instance, the set S = {(x, 0} ∪ {(0, y)} consisting of the coordinate axes has

the required property, but is not a subspace. More generally, any (finite) collection of 2
or more lines going through the origin satisfies the property, but is not a subspace.

(b) For example, S = { (x, y) |x, y ≥ 0 } — the positive quadrant.

2.2.7. (a,c,d) are subspaces; (b,e) are not.

2.2.8. Since x = 0 must belong to the subspace, this implies b = A0 = 0. For a homogeneous
system, if x,y are solutions, so Ax = 0 = Ay, so are x+y since A(x+y) = Ax+ Ay = 0,
as is cx since A(cx) = cAx = 0.

2.2.9. L and M are strictly lower triangular if lij = 0 = mij whenever i ≤ j. Then N = L + M

is strictly lower triangular since nij = lij + mij = 0 whenever i ≤ j, as is K = cL since

kij = c lij = 0 whenever i ≤ j.

♦ 2.2.10. Note tr(A+B) =
nX

i=1

(aii + bii) = tr A+tr B and tr(cA) =
nX

i=1

caii = c
nX

i=1

aii = c tr A.

Thus, if tr A = tr B = 0, then tr(A + B) = 0 = tr(cA), proving closure.

2.2.11.
(a) No. The zero matrix is not an element.

(b) No if n ≥ 2. For example, A =

 
1 0
0 0

!
, B =

 
0 0
0 1

!
satisfy det A = 0 = det B, but

det(A + B) = det

 
1 0
0 1

!
= 1, so A + B does not belong to the set.

2.2.12. (d,f,g,h) are subspaces; the rest are not.

2.2.13. (a) Vector space; (b) not a vector space: (0, 0) does not belong; (c) vector space;
(d) vector space; (e) not a vector space: If f is non-negative, then −1 f = −f is not (un-
less f ≡ 0); (f ) vector space; (g) vector space; (h) vector space.

2.2.14. If f(1) = 0 = g(1), then (f + g)(1) = 0 and (cf)(1) = 0, so both f + g and cf be-
long to the subspace. The zero function does not satisfy f0) = 1. For a subspace, a can be
anything, while b = 0.

2.2.15. All cases except (e,g) are subspaces. In (g), |x | is not in C1.

2.2.16. (a) Subspace; (b) subspace; (c) Not a subspace: the zero function does not satisfy
the condition; (d) Not a subspace: if f(0) = 0, f(1) = 1, and g(0) = 1, g(1) = 0, then f
and g are in the set, but f + g is not; (e) subspace; (f ) Not a subspace: the zero function
does not satisfy the condition; (g) subspace; (h) subspace; (i) Not a subspace: the zero
function does not satisfy the condition.

2.2.17. If u′′ = xu, v′′ = xv, are solutions, and c, d constants, then (cu + dv)′′ = cu′′ + dv′′ =
cxu + dxv = x(cu + dv), and hence cu + dv is also a solution.

2.2.18. For instance, the zero function u(x) ≡ 0 is not a solution.

2.2.19.
(a) It is a subspace of the space of all functions f : [a, b ] → R2, which is a particular instance

of Example 2.7. Note that f(t) = ( f1(t), f2(t) )T is continuously differentiable if and
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only if its component functions f1(t) and f2(t) are. Thus, if f(t) = ( f1(t), f2(t) )T and

g(t) = ( g1(t), g2(t) )T are continuously differentiable, so are

(f + g)(t) = ( f1(t) + g1(t), f2(t) + g2(t) )T and (c f)(t) = ( cf1(t), cf2(t) )T .

(b) Yes: if f(0) = 0 = g(0), then (c f + dg)(0) = 0 for any c, d ∈ R.

2.2.20.∇ · (cv + dw) = c∇ · v + d∇ · w = 0 whenever ∇ · v = ∇ · w = 0 and c, d,∈ R.

2.2.21. Yes. The sum of two convergent sequences is convergent, as is any constant multiple of
a convergent sequence.

2.2.22.
(a) If v,w ∈ W ∩ Z, then v,w ∈ W , so cv + dw ∈ W because W is a subspace, and

v,w ∈ Z, so cv + dw ∈ Z because Z is a subspace, hence cv + dw ∈ W ∩ Z.
(b) If w + z, ew + ez ∈ W + Z then c(w + z) + d( ew + ez) = (cw + d ew) + (cz + dez) ∈ W + Z,

since it is the sum of an element of W and an element of Z.
(c) Given any w ∈ W and z ∈ Z, then w, z ∈ W ∪ Z. Thus, if W ∪ Z is a subspace, the

sum w + z ∈ W ∪ Z. Thus, either w + z = ew ∈ W or w + z = ez ∈ Z. In the first case
z = ew − w ∈ W , while in the second w = ez − z ∈ Z. We conclude that for any w ∈ W
and z ∈ Z, either w ∈ Z or z ∈ W . Suppose W 6⊂ Z. Then we can find w ∈ W \ Z, and
so for any z ∈ Z, we must have z ∈ W , which proves Z ⊂ W .

♦ 2.2.23. If v,w ∈ T

Wi, then v,w ∈ Wi for each i and so cv + dw ∈ Wi for any c, d ∈ R because
Wi is a subspace. Since this holds for all i, we conclude that cv + dw ∈ T

Wi.

♥ 2.2.24.
(a) They clearly only intersect at the origin. Moreover, every v =

 
x
y

!
=

 
x
0

!
+

 
0
y

!
can

be written as a sum of vectors on the two axes.
(b) Since the only common solution to x = y and x = 3y is x = y = 0, the lines only

intersect at the origin. Moreover, every v =

 
x
y

!
=

 
a
a

!
+

 
3b
b

!
, where a = − 1

2 x+ 3
2 y,

b = 1
2 x − 1

2 y, can be written as a sum of vectors on each line.

(c) A vector v = ( a, 2a, 3a )T in the line belongs to the plane if and only if a + 2(2a) +
3(3a) = 14a = 0, so a = 0 and the only common element is v = 0. Moreover, every

v =

0
B@

x
y
z

1
CA =

1

14

0
B@

x + 2y + 3z
2(x + 2y + 3z)
3(x + 2y + 3z)

1
CA +

1

14

0
B@

13x − 2y − 3z
−2x + 10y − 6z
−3x − 6y + 5z

1
CA can be written as a sum

of a vector in the line and a vector in the plane.
(d) If w + z = ew + ez, then w − ew = ez − z. The left hand side belongs to W , while the right

hand side belongs to Z, and so, by the first assumption, they must both be equal to 0.
Therefore, w = ew, z = ez.

2.2.25.
(a) (v,w) ∈ V0 ∩ W0 if and only if (v,w) = (v,0) and (v,w) = (0,w), which means v =

0,w = 0, and hence (v,w) = (0,0) is the only element of the intersection. Moreover, we
can write any element (v,w) = (v,0) + (0,w).

(b) (v,w) ∈ D ∩ A if and only if v = w and v = −w, hence (v,w) = (0,0). Moreover, we

can write (v,w) = ( 1
2 v + 1

2 w, 1
2 v + 1

2 w) + ( 1
2 v − 1

2 w,− 1
2 v + 1

2 w) as the sum of an
element of D and an element of A.

2.2.26.
(a) If f(−x) = f(x), ef(−x) = ef(x), then (cf + d ef)(−x) = cf(−x) + d ef(−x) = cf(x) +

d ef(x) = (cf + d ef)(x) for any c, d,∈ R, and hence it is a subspace.
(b) If g(−x) = −g(x), eg(−x) = −eg(x), then (cg + deg)(−x) = cg(−x) + deg(−x) =

−cg(x) − deg(x) = −(cg + deg)(x), proving it is a subspace. If f(x) is both even and
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odd, then f(x) = f(−x) = −f(x) and so f(x) ≡ 0 for all x. Moreover, we can write any

function h(x) = f(x) + g(x) as a sum of an even function f(x) = 1
2

h
h(x) + h(−x)

i
and

an odd function g(x) = 1
2

h
h(x) − h(−x)

i
.

(c) This follows from part (b), and the uniqueness follows from Exercise 2.2.24(d).

2.2.27. If A = AT and A = −AT is both symmetric and skew-symmetric, then A = O.

Given any square matrix, write A = S + J where S = 1
2

“
A + AT

”
is symmetric and

J = 1
2

“
A − AT

”
is skew-symmetric. This verifies the two conditions for complementary

subspaces. Uniqueness of the decomposition A = S + J follows from Exercise 2.2.24(d).

♦ 2.2.28.
(a) By induction, we can show that

f (n)(x) = Pn

 
1

x

!
e−1/x = Qn(x)

e−1/x

xn
,

where Pn(y) and Qn(x) = xnPn(1/x) are certain polynomials of degree n. Thus,

lim
x→ 0

f (n)(x) = lim
x→ 0

Qn(x)
e−1/x

xn
= Qn(0) lim

y →∞ yn e−y = 0,

because the exponential e−y goes to zero faster than any power of y goes to ∞.
(b) The Taylor series at a = 0 is 0 + 0x + 0x2 + · · · ≡ 0, which converges to the zero

function, not to e−1/x.

2.2.29.

(a) The Taylor series is the geometric series
1

1 + x2
= 1 − x2 + x4 − x6 + · · · .

(b) The ratio test can be used to prove that the series converges precisely when |x | < 1.
(c) Convergence of the Taylor series to f(x) for x near 0 suffices to prove analyticity of the

function at x = 0.

♥ 2.2.30.
(a) If v+a,w+a ∈ A, then (v+a)+(w+a) = (v+w+a)+a ∈ A requires v+w+a = u ∈ V ,

and hence a = u − v − w ∈ A.

(b) (i) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(ii) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(iii) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(c) Every subspace V ⊂ R2 is either a point (the origin), or a line through the origin, or all

of R2. Thus, the corresponding affine subspaces are the point {a}; a line through a, or

all of R2 since in this case a ∈ V = R2.
(d) Every vector in the plane can be written as ( x, y, z )T = ( ex, ey, ez )T + ( 1, 0, 0 )T where

( ex, ey, ez )T is an arbitrary vector in the subspace defined by ex − 2ey + 3 ex = 0.
(e) Every such polynomial can be written as p(x) = q(x) + 1 where q(x) is any element of

the subspace of polynomials that satisfy q(1) = 0.
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2.3.1.

0
B@
−1

2
3

1
CA = 2

0
B@

2
−1

2

1
CA−

0
B@

5
−4

1

1
CA.

2.3.2.

0
BBB@

−3
7
6
1

1
CCCA = 3

0
BBB@

1
−3
−2

0

1
CCCA+ 2

0
BBB@

−2
6
3
4

1
CCCA+

0
BBB@

−2
4
6

−7

1
CCCA.

2.3.3.

(a) Yes, since

0
B@

1
−2
−3

1
CA =

0
B@

1
1
0

1
CA− 3

0
B@

0
1
1

1
CA;

(b) Yes, since

0
B@

1
−2
−1

1
CA = 3

10

0
B@

1
2
2

1
CA+ 7

10

0
B@

1
−2

0

1
CA− 4

10

0
B@

0
3
4

1
CA;

(c) No, since the vector equation

0
BBB@

3
0

−1
−2

1
CCCA = c1

0
BBB@

1
2
0
1

1
CCCA+ c2

0
BBB@

0
−1

3
0

1
CCCA+ c3

0
BBB@

2
0
1

−1

1
CCCA does not have a

solution.

2.3.4. Cases (b), (c), (e) span R2.

2.3.5.

(a) The line ( 3 t, 0, t )T :

-2

0

2
-1
-0.5
0
0.5
1-1
-0.5
0
0.5

1

-2

0

2

-1
-0.5
0
0.5

1

(b) The plane z = − 3
5 x − 6

5 y:

-1
-0.5

0

0.5

1-1

-0.5

0
0.5

1

-1

0

1

-1

-0.5

0
0.5

1

(c) The plane z = −x − y:

-1

-0.5

0

0.5

1

-1

-0.5
0

0.5
1

-2

-1

0

1

2
-1

-0.5
0

0.5
1

2.3.6. They are the same. Indeed, since v1 = u1 + 2u2, v2 = u1 + u2, every vector v ∈ V can
be written as a linear combination v = c1v1 + c2v2 = (c1 + c2)u1 +(2c1 + c2)u2 and hence
belongs to U . Conversely, since u1 = −v1 + 2v2, u2 = v1 − v2, every vector u ∈ U can be
written as a linear combination u = c1u1 + c2u2 = (−c1 + c2)v1 + (2c1 − c2)v2, and hence
belongs to U .

2.3.7. (a) Every symmetric matrix has the form

 
a b
b c

!
= a

 
1 0
0 0

!
+ c

 
0 0
0 1

!
+ b

 
0 1
1 0

!
.
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(b)

0
B@

1 0 0
0 0 0
0 0 0

1
CA ,

0
B@

0 0 0
0 1 0
0 0 0

1
CA ,

0
B@

0 0 0
0 0 0
0 0 1

1
CA ,

0
B@

0 1 0
1 0 0
0 0 0

1
CA ,

0
B@

0 0 1
0 0 0
1 0 0

1
CA ,

0
B@

0 0 0
0 0 1
0 1 0

1
CA.

2.3.8.
(a) They span P(2) since ax2 +bx+c = 1

2 (a−2b+c)(x2 +1)+ 1
2 (a−c)(x2−1)+b(x2 +x+1).

(b) They span P(3) since ax3 +bx2 +cx+d = a(x3−1)+b(x2 +1)+c(x−1)+(a−b+c+d)1.

(c) They do not span P(3) since ax3 +bx2 +cx+d = c1x3 +c2(x
2 +1)+c3(x

2−x)+c4(x+1)
cannot be solved when b + c − d 6= 0.

2.3.9. (a) Yes. (b) No. (c) No. (d) Yes: cos2 x = 1 − sin2 x. (e) No. (f ) No.

2.3.10. (a) sin 3x = cos
“

3x − 1
2 π

”
; (b) cos x − sin x =

√
2 cos

“
x + 1

4 π
”
,

(c) 3 cos 2x+4 sin 2x = 5 cos
“

2x − tan−1 4
3

”
, (d) cos x sin x = 1

2 sin 2x = 1
2 cos

“
2x − 1

2 π
”
.

2.3.11. (a) If u1 and u2 are solutions, so is u = c1 u1 + c2 u2 since u′′ − 4u′ + 3u = c1(u
′′
1 −

4u′
1 + 3u1) + c2(u

′′
2 − 4u′

2 + 3u2) = 0. (b) span {ex, e3x }; (c) 2.

2.3.12. Each is a solution, and the general solution u(x) = c1 + c2 cos x + c3 sin x is a linear
combination of the three independent solutions.

2.3.13. (a) e2x; (b) cos 2x, sin 2x; (c) e3x, 1; (d) e−x, e−3x; (e) e−x/2 cos
√

3
2 x,

e−x/2 sin
√

3
2 x; (f ) e5x, 1, x; (g) ex/

√
2 cos

x√
2

, ex/
√

2 sin
x√
2

, e−x/
√

2 cos
x√
2

, e−x/
√

2 sin
x√
2

.

2.3.14. (a) If u1 and u2 are solutions, so is u = c1 u1 + c2 u2 since u′′ + 4u = c1(u
′′
1 + 4u1) +

c2(u
′′
2 + 4u2) = 0, u(0) = c1 u1(0) + c2 u2(0) = 0, u(π) = c1 u1(π) + c2 u2(π) = 0.

(b) span {sin 2x}

2.3.15. (a)

 
2
1

!
= 2 f1(x) + f2(x) − f3(x); (b) not in the span; (c)

 
1 − 2x
−1 − x

!
= f1(x) −

f2(x) − f3(x); (d) not in the span; (e)

 
2 − x

0

!
= 2 f1(x) − f3(x).

2.3.16. True, since 0 = 0v1 + · · · + 0vn.

2.3.17. False. For example, if z =

0
B@

1
1
0

1
CA, u =

0
B@

1
0
0

1
CA, v =

0
B@

0
1
0

1
CA, w =

0
B@

0
0
1

1
CA, then z = u + v, but

the equation w = c1u + c2v + c3 z =

0
B@

c1 + c3
c2 + c3

0

1
CA has no solution.

♦ 2.3.18. By the assumption, any v ∈ V can be written as a linear combination

v = c1v1 + · · · + cm vm = c1v1 + · · · + cn vm + 0vm+1 + · · · + 0vn

of the combined collection.

♦ 2.3.19.

(a) If v =
mX

j =1

cj vj and vj =
nX

i=1

aij wi, then v =
nX

i=1

bi vi where bi =
mX

j =1

aij cj , or, in

vector language, b = A c.
(b) Every v ∈ V can be written as a linear combination of v1, . . . ,vn, and hence, by part

(a), a linear combination of w1, . . . ,wm, which shows that w1, . . . ,wm also span V .
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♦ 2.3.20.

(a) If v =
mX

i=1

ai vi, w =
nX

i=1

bi vi, are two finite linear combinations, so is

cv + dw =
max{m,n}X

i=1

(cai + dbi)vi where we set ai = 0 if i > m and bi = 0 if i > n.

(b) The space P(∞) of all polynomials, since every polynomial is a finite linear combination
of monomials and vice versa.

2.3.21. (a) Linearly independent; (b) linearly dependent; (c) linearly dependent;
(d) linearly independent; (e) linearly dependent; (f ) linearly dependent;
(g) linearly dependent; (h) linearly independent; (i) linearly independent.

2.3.22. (a) The only solution to the homogeneous linear system

c1

0
BBB@

1
0
2
1

1
CCCA+ c2

0
BBB@

−2
3

−1
1

1
CCCA+ c3

0
BBB@

2
−2

1
−1

1
CCCA = 0 is c1 = c2 = c3 = 0.

(b) All but the second lie in the span. (c) a − c + d = 0.

2.3.23.
(a) The only solution to the homogeneous linear system

A c = c1

0
BBB@

1
1
1
0

1
CCCA+ c2

0
BBB@

1
1

−1
0

1
CCCA+ c3

0
BBB@

1
−1

0
1

1
CCCA+ c4

0
BBB@

1
−1

0
−1

1
CCCA = 0

with nonsingular coefficient matrix A =

0
BBB@

1 1 1 1
1 1 −1 −1
1 −1 0 1
0 0 1 −1

1
CCCA is c = 0.

(b) Since A is nonsingular, the inhomogeneous linear system

v = A c = c1

0
BBB@

1
1
1
0

1
CCCA+ c2

0
BBB@

1
1

−1
0

1
CCCA+ c3

0
BBB@

1
−1

0
1

1
CCCA+ c4

0
BBB@

1
−1

0
−1

1
CCCA

has a solution c = A−1v for any v ∈ R4.

(c)

0
BBB@

1
0
0
1

1
CCCA = 3

8

0
BBB@

1
1
1
0

1
CCCA+ 1

8

0
BBB@

1
1

−1
0

1
CCCA+ 3

4

0
BBB@

1
−1

0
1

1
CCCA− 1

4

0
BBB@

1
−1

0
−1

1
CCCA

2.3.24. (a) Linearly dependent; (b) linearly dependent; (c) linearly independent; (d) linearly
dependent; (e) linearly dependent; (f ) linearly independent.

2.3.25. False:0
B@

1 0 0
0 1 0
0 0 1

1
CA−

0
B@

0 1 0
1 0 0
0 0 1

1
CA−

0
B@

0 0 1
0 1 0
1 0 0

1
CA−

0
B@

1 0 0
0 0 1
0 1 0

1
CA+

0
B@

0 1 0
0 0 1
1 0 0

1
CA+

0
B@

0 0 1
1 0 0
0 1 0

1
CA = O.

2.3.26. False — the zero vector always belongs to the span.

2.3.27. Yes, when it is the zero vector.
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2.3.28. Because x,y are linearly independent, 0 = c1u + c2v = (ac1 + cc2)x + (bc1 + dc2)y if
and only if ac1 + cc2 = 0, bc1 + dc2 = 0. The latter linear system has a nonzero solution
(c1, c2) 6= 0, and so u,v are linearly dependent, if and only if the determinant of the coef-

ficient matrix is zero: det

 
a c
b d

!
= ad − bc = 0, proving the result. The full collection

x,y,u,v is linearly dependent since, for example, ax+by−u+0v = 0 is a nontrivial linear
combination.

2.3.29. The statement is false. For example, any set containing the zero element that does not
span V is linearly dependent.

♦ 2.3.30. (b) If the only solution to A c = 0 is the trivial one c = 0, then the only linear com-
bination which adds up to zero is the trivial one with c1 = · · · = ck = 0, proving linear
independence. (c) The vector b lies in the span if and only if b = c1v1 + · · · + ck vk = A c
for some c, which implies that the linear system A c = b has a solution.

♦ 2.3.31.
(a) Since v1, . . . ,vn are linearly independent,

0 = c1v1 + · · · + ck vk = c1v1 + · · · + ck vk + 0vk+1 + · · · + 0vn

if and only if c1 = · · · = ck = 0.

(b) This is false. For example, v1 =

 
1
1

!
, v2 =

 
2
2

!
, are linearly dependent, but the

subset consisting of just v1 is linearly independent.

2.3.32.
(a) They are linearly dependent since (x2 − 3) + 2(2 − x) − (x − 1)2 ≡ 0.

(b) They do not span P(2).

2.3.33. (a) Linearly dependent; (b) linearly independent; (c) linearly dependent; (d) linearly
independent; (e) linearly dependent; (f ) linearly dependent; (g) linearly independent;
(h) linearly independent; (i) linearly independent.

2.3.34. When x > 0, we have f(x) − g(x) ≡ 0, proving linear dependence. On the other hand, if
c1f(x) + c2g(x) ≡ 0 for all x, then at, say x = 1, we have c1 + c2 = 0 while at x = −1, we
must have −c1 + c2 = 0, and so c1 = c2 = 0, proving linear independence.

♥ 2.3.35.

(a) 0 =
kX

i=1

ci pi(x) =
nX

j =0

kX

i=1

ci aij xj if and only if
nX

j =0

kX

i=1

ci aij = 0, j = 0, . . . , n, or, in

matrix notation, AT c = 0. Thus, the polynomials are linearly independent if and only if

the linear system AT c = 0 has only the trivial solution c = 0 if and only if its (n+1)×k

coefficient matrix has rank AT = rank A = k.

(b) q(x) =
nX

j =0

bj xj =
kX

i=1

ci pi(x) if and only if AT c = b.

(c) A =

0
BBBBB@

−1 0 0 1 0
4 −2 0 1 0
0 −4 0 0 1
1 0 1 0 0
1 2 0 4 −1

1
CCCCCA

has rank 4 and so they are linearly dependent.

(d) q(x) is not in the span.

♦ 2.3.36. Suppose the linear combination p(x) = c0 + c1 x + c2 x2 + · · · + cn xn ≡ 0 for all x.
Thus, every real x is a root of p(x), but the Fundamental Theorem of Algebra says this is
only possible if p(x) is the zero polynomial with coefficients c0 = c1 = · · · = cn = 0.
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♥ 2.3.37.
(a) If c1 f1(x) + · · · + cn fn(x) ≡ 0, then c1 f1(xi) + · · · + cn fn(xi) = 0 at all sample points,

and so c1 f1 + · · · + cn fn = 0. Thus, linear dependence of the functions implies linear
dependence of their sample vectors.

(b) Sampling f1(x) = 1 and f2(x) = x2 at −1, 1 produces the linearly dependent sample

vectors f1 = f2 =

 
1
1

!
.

(c) Sampling at 0, 1
4 π, 1

2 π, 3
4 π, π, leads to the linearly independent sample vectors

0
BBBBBBBB@

1

1

1

1

1

1
CCCCCCCCA

,

0
BBBBBBBB@

1√
2

2
0

−
√

2
2

−1

1
CCCCCCCCA

,

0
BBBBBBBB@

0√
2

2
1√
2

2
0

1
CCCCCCCCA

,

0
BBBBBBBB@

1

0

−1

0

1

1
CCCCCCCCA

,

0
BBBBBBBB@

0

1

0

−1

0

1
CCCCCCCCA

.

2.3.38.
(a) Suppose c1 f1(t) + · · · + cn fn(t) ≡ 0 for all t. Then c1 f1(t0) + · · · + cn fn(t0) = 0, and

hence, by linear independence of the sample vectors, c1 = · · · = cn = 0, which proves
linear independence of the functions.

(b) c1 f1(t) + c2 f1(t) =

 
2c2 t + (c1 − c2)

2c2 t2 + (c1 − c2)t

!
≡ 0 if and only if c2 = 0, c1 − c2 = 0, and

so c1 = c2 = 0, proving linear independence. However, at any t0, the vectors f2(t0) =
(2 t0 − 1)f1(t0) are scalar multiples of each other, and hence linearly dependent.

♥ 2.3.39.
(a) Suppose c1 f(x) + c2 g(x) ≡ 0 for all x for some c = ( c1, c2 )T 6= 0. Differentiating,

we find c1 f ′(x) + c2 g′(x) ≡ 0 also, and hence

0
@

f(x) g(x)

f ′(x) g′(x)

1
A
0
@

c1

c2

1
A = 0 for all x.

The homogeneous system has a nonzero solution if and only if the coefficient matrix is
singular, which requires its determinant W [f(x), g(x) ] = 0.

(b) This is the contrapositive of part (a), since if f, g were not linearly independent, then
their Wronskian would vanish everywhere.

(c) Suppose c1 f(x) + c2 g(x) = c1 x3 + c2 |x |3 ≡ 0. then, at x = 1, c1 + c2 = 0, whereas
at x = −1, −c1 + c2 = 0. Therefore, c1 = c2 = 0, proving linear independence. On the

other hand, W [x3, |x |3 ] = x3(3x2 sign x) − (3x2) |x |3 ≡ 0.

2.4.1. Only (a) and (c) are bases.

2.4.2. Only (b) is a basis.

2.4.3. (a)

0
B@

1
0
0

1
CA ,

0
B@

0
1
2

1
CA; (b)

0
BB@

3
4

1
0

1
CCA ,

0
BB@

1
4

0
1

1
CCA; (c)

0
BBB@

−2
1
0
0

1
CCCA,

0
BBB@

−1
0
1
0

1
CCCA,

0
BBB@

1
0
0
1

1
CCCA.

2.4.4.
(a) They do not span R3 because the linear system A c = b with coefficient matrix

A =

0
B@

1 3 2 4
0 −1 −1 −1
2 1 −1 3

1
CA does not have a solution for all b since rank A = 2.

(b) 4 vectors in R3 are automatically linearly dependent.
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(c) No, because if v1,v2,v3,v4 don’t span R3, no subset of them will span it either.
(d) 2, because v1 and v2 are linearly independent and span the subspace, and hence form a

basis.

2.4.5.
(a) They span R3 because the linear system A c = b with coefficient matrix

A =

0
B@

1 2 0 1
−1 −2 −2 3

2 5 1 −1

1
CA has a solution for all b since rank A = 3.

(b) 4 vectors in R3 are automatically linearly dependent.

(c) Yes, because v1,v2,v3 also span R3 and so form a basis.

(d) 3 because they span all of R3.

2.4.6.

(a) Solving the defining equation, the general vector in the plane is x =

0
B@

2y + 4z
y
z

1
CA where

y, z are arbitrary. We can write x = y

0
B@

2
1
0

1
CA+ z

0
B@

4
0
1

1
CA = (y + 2z)

0
B@

2
−1

1

1
CA+ (y + z)

0
B@

0
2

−1

1
CA

and hence both pairs of vectors span the plane. Both pairs are linearly independent
since they are not parallel, and hence both form a basis.

(b)

0
B@

2
−1

1

1
CA = (−1)

0
B@

2
1
0

1
CA+

0
B@

4
0
1

1
CA ,

0
B@

0
2

−1

1
CA = 2

0
B@

2
1
0

1
CA−

0
B@

4
0
1

1
CA;

(c) Any two linearly independent solutions, e.g.,

0
B@

6
1
1

1
CA ,

0
B@

10
1
2

1
CA, will form a basis.

♥ 2.4.7. (a) (i) Left handed basis; (ii) right handed basis; (iii) not a basis; (iv) right handed
basis. (b) Switching two columns or multiplying a column by −1 changes the sign of the
determinant. (c) If det A = 0, its columns are linearly dependent and hence can’t form a
basis.

2.4.8.

(a)
“
− 2

3 , 5
6 , 1, 0

”T
,
“

1
3 ,− 2

3 , 0, 1
”T

; dim = 2.

(b) The condition p(1) = 0 says a + b + c = 0, so p(x) = (−b− c)x2 + bx + c = b(−x2 + x) +

c(−x2 + 1). Therefore −x2 + x, −x2 + 1 is a basis, and so dim = 2.
(c) ex, cos 2x, sin 2x, is a basis, so dim = 3.

2.4.9. (a)

0
B@

3
1

−1

1
CA, dim = 1; (b)

0
B@

2
0
1

1
CA,

0
B@

0
−1

3

1
CA, dim = 2; (c)

0
BBB@

1
0

−1
2

1
CCCA,

0
BBB@

0
1
1
3

1
CCCA,

0
BBB@

1
−2

1
1

1
CCCA, dim = 3.

2.4.10. (a) We have a + bt + ct2 = c1(1 + t2) + c2(t + t2) + c3(1 + 2 t + t2) provided a = c1 + c3,

b = c2 + 2c3, c = c1 + c2 + c3. The coefficient matrix of this linear system,

0
B@

1 0 1
0 1 2
1 1 1

1
CA,

is nonsingular, and hence there is a solution for any a, b, c, proving that they span the space
of quadratic polynomials. Also, they are linearly independent since the linear combination
is zero if and only if c1, c2, c3 satisfy the corresponding homogeneous linear system c1+c3 =
0, c2 + 2c3 = 0, c1 + c2 + c3 = 0, and hence c1 = c2 = c3 = 0. (Or, you can use

the fact that dimP(2) = 3 and the spanning property to conclude that they form a basis.)
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(b) 1 + 4 t + 7 t2 = 2(1 + t2) + 6(t + t2) − (1 + 2 t + t2)

2.4.11. (a) a+bt+ct2+dt3 = c1+c2(1−t)+c3(1−t)2+c4(1−t)3 provided a = c1+c2+c3+c4,

b = −c2 − 2c3 − 3c4, c = c3 + 3c4, d = −c4. The coefficient matrix

0
BBB@

1 1 1 1
0 −1 −2 −3
0 0 1 3
0 0 0 −1

1
CCCA

is nonsingular, and hence they span P(3). Also, they are linearly independent since the lin-
ear combination is zero if and only if c1 = c2 = c3 = c4 = 0 satisfy the corresponding

homogeneous linear system. (Or, you can use the fact that dimP (3) = 4 and the spanning

property to conclude that they form a basis.) (b) 1 + t3 = 2− 3(1− t) + 3(1− t)2 − (1− t)3.

2.4.12. (a) They are linearly dependent because 2p1 − p2 + p3 ≡ 0. (b) The dimension is 2,
since p1, p2 are linearly independent and span the subspace, and hence form a basis.

2.4.13.

(a) The sample vectors

0
BBBBB@

1

1

1

1

1
CCCCCA

,

0
BBBBB@

1√
2

2

0

−
√

2
2

1
CCCCCA

,

0
BBBBB@

1

0

−1

0

1
CCCCCA

,

0
BBBBB@

1

−
√

2
2

0√
2

2

1
CCCCCA

are linearly independent and

hence form a basis for R4 — the space of sample functions.

(b) Sampling x produces

0
BBBBB@

0
1
4
1
2
3
4

1
CCCCCA

=
1

2

0
BBBBB@

1

1

1

1

1
CCCCCA

− 2 +
√

2

8

0
BBBBB@

1√
2

2

0

−
√

2
2

1
CCCCCA

− 2 −
√

2

8

0
BBBBB@

1

−
√

2
2

0√
2

2

1
CCCCCA

.

2.4.14.

(a) E11 =

 
1 0
0 0

!
, E12 =

 
0 1
0 0

!
, E21 =

 
0 0
1 0

!
, E22 =

 
0 0
0 1

!
is a basis since we

can uniquely write any

 
a b
c d

!
= aE11 + bE12 + cE21 + dE22.

(b) Similarly, the matrices Eij with a 1 in position (i, j) and all other entries 0, for

i = 1, . . . , m, j = 1, . . . , n, form a basis for Mm×n, which therefore has dimension mn.

2.4.15. k 6= −1, 2.

2.4.16. A basis is given by the matrices Eii, i = 1, . . . , n which have a 1 in the ith diagonal
position and all other entries 0.

2.4.17.

(a) E11 =

 
1 0
0 0

!
, E12 =

 
0 1
0 0

!
, E22 =

 
0 0
0 1

!
; dimension = 3.

(b) A basis is given by the matrices Eij with a 1 in position (i, j) and all other entries 0 for

1 ≤ i ≤ j ≤ n, so the dimension is 1
2 n(n + 1).

2.4.18. (a) Symmetric: dim = 3; skew-symmetric: dim = 1; (b) symmetric: dim = 6; skew-

symmetric: dim = 3; (c) symmetric: dim = 1
2 n(n+1); skew-symmetric: dim = 1

2 n(n−1).

♥ 2.4.19.
(a) If a row (column) of A adds up to a and the corresponding row (column) of B adds up

to b, then the corresponding row (column) of C = A + B adds up to c = a + b. Thus,
if all row and column sums of A and B are the same, the same is true for C. Similarly,
the row (column) sums of c A are c times the row (column) sums of A, and hence all the
same if A is a semi-magic square.
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(b) A matrix A =

0
B@

a b c
d e f
g h j

1
CA is a semi-magic square if and only if

a + b + c = d + e + f = g + h + j = a + d + e = b + e + h = c + f + j.
The general solution to this system is

A = e

0
B@

1 −1 0
−1 1 0

0 0 0

1
CA+ f

0
B@

1 0 −1
−1 0 1

0 0 0

1
CA+ g

0
B@
−1 1 1

1 0 0
1 0 0

1
CA+ h

0
B@

0 0 1
1 0 0
0 1 0

1
CA+ j

0
B@

0 1 0
1 0 0
0 0 1

1
CA

= (e − g)

0
B@

1 0 0
0 1 0
0 0 1

1
CA+ (g + j − e)

0
B@

0 1 0
1 0 0
0 0 1

1
CA+ g

0
B@

0 0 1
0 1 0
1 0 0

1
CA+

+ f

0
B@

1 0 0
0 0 1
0 1 0

1
CA+ (h − f)

0
B@

0 0 1
1 0 0
0 1 0

1
CA ,

which is a linear combination of permutation matrices.
(c) The dimension is 5, with any 5 of the 6 permutation matrices forming a basis.
(d) Yes, by the same reasoning as in part (a). Its dimension is 3, with basis0

B@
2 2 −1

−2 1 4
3 0 0

1
CA ,

0
B@

2 −1 2
1 1 1
0 3 0

1
CA ,

0
B@
−1 2 2

4 1 −2
0 0 3

1
CA.

(e) A = c1

0
B@

2 2 −1
−2 1 4

3 0 0

1
CA+ c2

0
B@

2 −1 2
1 1 1
0 3 0

1
CA+ c3

0
B@
−1 2 2

4 1 −2
0 0 3

1
CA for any c1, c2, c3.

♦ 2.4.20. For instance, take v1 =

 
1
0

!
, v2 =

 
0
1

!
, v3 =

 
1
1

!
. Then

 
2
1

!
= 2v1 + v2 =

v1 + v3. In fact, there are infinitely many different ways of writing this vector as a linear
combination of v1,v2,v3.

♦ 2.4.21.
(a) By Theorem 2.31, we only need prove linear independence. If 0 = c1 Av1 + · · · +

cn Avn = A(c1v1 + · · · + cn vn), then, since A is nonsingular, c1v1 + · · · + cn vn = 0,
and hence c1 = · · · = cn = 0.

(b) Aei is the ith column of A, and so a basis consists of the column vectors of the matrix.

♦ 2.4.22. Since V 6= {0}, at least one vi 6= 0. Let vi1
6= 0 be the first nonzero vector in the list

v1, . . . ,vn. Then, for each k = i1 + 1, . . . , n − 1, suppose we have selected linearly indepen-
dent vectors vi1

, . . . ,vij
from among v1, . . . ,vk. If vi1

, . . . ,vij
,vk+1 form a linearly inde-

pendent set, we set vij+1
= vk+1; otherwise, vk+1 is a linear combination of vi1

, . . . ,vij
,

and is not needed in the basis. The resulting collection vi1
, . . . ,vim

forms a basis for V
since they are linearly independent by design, and span V since each vi either appears in
the basis, or is a linear combination of the basis elements that were selected before it. We
have dim V = n if and only if v1, . . . ,vn are linearly independent and so form a basis for
V .

♦ 2.4.23. This is a special case of Exercise 2.3.31(a).

♦ 2.4.24.
(a) m ≤ n as otherwise v1, . . . ,vm would be linearly dependent. If m = n then v1, . . . ,vn

are linearly independent and hence, by Theorem 2.31 span all of Rn. Since every vector
in their span also belongs to V , we must have V = Rn.

(b) Starting with the basis v1, . . . ,vm of V with m < n, we choose any vm+1 ∈ Rn \ V .
Since vm+1 does not lie in the span of v1, . . . ,vm, the vectors v1, . . . ,vm+1 are linearly

independent and span an m + 1 dimensional subspace of Rn. Unless m + 1 = n we can
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then choose another vector vm+2 not in the span of v1, . . . ,vm+1, and so v1, . . . ,vm+2
are also linearly independent. We continue on in this fashion until we arrive at n lin-
early independent vectors v1, . . . ,vn which necessarily form a basis of Rn.

(c) (i)
“

1, 1, 1
2

”T
, ( 1, 0, 0 )T , ( 0, 1, 0 )T ; (ii) ( 1, 0,−1 )T , ( 0, 1,−2 )T , ( 1, 0, 0 )T .

♦ 2.4.25.
(a) If dim V = ∞, then the inequality is trivial. Also, if dim W = ∞, then one can find

infinitely many linearly independent elements in W , but these are also linearly indepen-
dent as elements of V and so dim V = ∞ also. Otherwise, let w1, . . . ,wn form a basis
for W . Since they are linearly independent, Theorem 2.31 implies n ≤ dim V .

(b) Since w1, . . . ,wn are linearly independent, if n = dim V , then by Theorem 2.31, they
form a basis for V . Thus every v ∈ V can be written as a linear combination of
w1, . . . ,wn, and hence, since W is a subspace, v ∈ W too. Therefore, W = V .

(c) Example: V = C0[a, b ] and W = P(∞).

♦ 2.4.26. (a) Every v ∈ V can be uniquely decomposed as v = w + z where w ∈ W, z ∈ Z. Write
w = c1w1 + . . . + cj wj and z = d1 z1 + · · · + dk zk. Then v = c1w1 + . . . + cj wj + d1 z1 +

· · · + dk zk, proving that w1, . . . ,wj , z1, . . . , zk span V . Moreover, by uniqueness, v = 0 if

and only if w = 0 and z = 0, and so the only linear combination that sums up to 0 ∈ V is
the trivial one c1 = · · · = cj = d1 = · · · = dk = 0, which proves linear independence of the

full collection. (b) This follows immediately from part (a): dim V = j+k = dim W +dim Z.

♦ 2.4.27. Suppose the functions are linearly independent. This means that for every 0 6= c =

( c1, c2, . . . , cn )T ∈ Rn, there is a point x
c

∈ R such that
nX

i=1

ci fi(xc
) 6= 0. The as-

sumption says that {0} 6= Vx1,...,xm
for all choices of sample points. Recursively define the

following sample points. Choose x1 so that f1(x1) 6= 0. (This is possible since if f1(x) ≡ 0,
then the functions are linearly dependent.) Thus Vx1

( Rm since e1 6∈ Vx1
. Then, for each

m = 1, 2, . . . , given x1, . . . , xm, choose 0 6= c0 ∈ Vx1,...,xm
, and set xm+1 = x

c0
. Then

c0 6∈ Vx1,...,xm+1
( Vx1,...,xm

and hence, by induction, dim Vm ≤ n − m. In particular,

dim Vx1,...,xn
= 0, so Vx1,...,xn

= {0}, which contradicts our assumption and proves the

result. Note that the proof implies we only need check linear dependence at all possible col-
lections of n sample points to conclude that the functions are linearly dependent.

2.5.1.

(a) Range: all b =

 
b1
b2

!
such that 3

4 b1 + b2 = 0; kernel spanned by

 1
2

1

!
.

(b) Range: all b =

 
b1
b2

!
such that 2b1 + b2 = 0; kernel spanned by

0
B@

1
1
0

1
CA,

0
B@
−2

0
1

1
CA.

(c) Range: all b =

0
B@

b1
b2
b3

1
CA such that −2b1 + b2 + b3 = 0; kernel spanned by

0
BBB@

− 5
4

− 7
8

1

1
CCCA.

(d) Range: all b = ( b1, b2, b3, b4 )T such that −2b1 − b2 + b3 = 2b1 + 3b2 + b4 = 0;

kernel spanned by

0
BBB@

1
1
1
0

1
CCCA,

0
BBB@

−1
0
0
1

1
CCCA.
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2.5.2. (a)

0
BB@
− 5

2

0
1

1
CCA,

0
BB@

1
2

1
0

1
CCA: plane; (b)

0
BBB@

1
4
3
8

1

1
CCCA: line; (c)

0
B@

2
0
1

1
CA,

0
B@
−3

1
0

1
CA: plane;

(d)

0
B@
−1
−2

1

1
CA: line; (e)

0
B@

0
0
0

1
CA: point; (f )

0
BB@

1
3
5
3
1

1
CCA: line.

2.5.3.

(a) Kernel spanned by

0
BBB@

3
1
0
0

1
CCCA; range spanned by

0
B@

1
2
0

1
CA,

0
B@

2
0
1

1
CA,

0
B@

0
2

−3

1
CA;

(b) compatibility: − 1
2 a + 1

4 b + c = 0.

2.5.4. (a) b =

0
B@
−1

2
−1

1
CA; (b) x =

0
B@

1 + t
2 + t
3 + t

1
CA where t is arbitrary.

2.5.5. In each case, the solution is x = x? + z, where x? is the particular solution and z belongs
to the kernel:

(a) x? =

0
B@

1
0
0

1
CA, z = y

0
B@

1
1
0

1
CA+ z

0
B@
−3

0
1

1
CA; (b) x? =

0
B@

1
−1

0

1
CA, z = z

0
BB@
− 2

7
1
7
1

1
CCA;

(c) x? =

0
BBB@

− 7
9

2
9
10
9

1
CCCA, z = z

0
B@

2
2
1

1
CA; (d) x? =

0
BB@

5
6

1

− 2
3

1
CCA, z = 0; (e) x? =

 
−1

0

!
, z = v

 
2
1

!
;

(f ) x? =

0
BBBB@

11
2
1
2

0
0

1
CCCCA

, z = r

0
BBBB@

− 13
2

− 3
2

1
0

1
CCCCA

+ s

0
BBBB@

− 3
2

− 1
2

0
1

1
CCCCA

; (g) x? =

0
BBB@

3
2
0
0

1
CCCA, z = z

0
BBB@

6
2
1
0

1
CCCA+ w

0
BBB@

−4
−1

0
1

1
CCCA.

2.5.6. The ith entry of A ( 1, 1, . . . , 1 )T is ai1 + . . . + ain which is n times the average of the en-

tries in the ith row. Thus, A ( 1, 1, . . . , 1 )T = 0 if and only if each row of A has average 0.

2.5.7. The kernel has dimension n−1, with basis −rk−1 e1+ek =
“
−rk−1, 0, . . . , 0, 1, 0, . . . , 0

”T

for k = 2, . . . n. The range has dimension 1, with basis (1, rn, r2n . . . , r(n−1)n)T .

♦ 2.5.8. (a) If w = P w, then w ∈ rng P . On the other hand, if w ∈ rng P , then w = P v for

some v. But then P w = P 2v = P v = w. (b) Given v, set w = P v. Then v = w + z

where z = v −w ∈ ker P since P z = P v − P w = P v − P 2v = P v − P v = 0. Moreover, if
w ∈ ker P ∩rng P , then 0 = P w = w, and so ker P ∩rng P = {0}, proving complementarity.

2.5.9. False. For example, if A =

 
1 1

−1 −1

!
then

 
1
1

!
is in both ker A and rng A.

♦ 2.5.10. Let r1, . . . , rm+k be the rows of C, so r1, . . . , rm are the rows of A. For v ∈ ker C, the

ith entry of C v = 0 is ri v = 0, but then this implies Av = 0 and so v ∈ ker A. As an

example, A = ( 1 0 ) has kernel spanned by

 
1
0

!
, while C =

 
1 0
0 1

!
has ker C = {0}.
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♦ 2.5.11. If b = Ax ∈ rng A, then b = C z where z =

 
x
0

!
, and so b ∈ rng C. As an example,

A =

 
0
0

!
has rng A = {0}, while the range of C =

 
0 1
0 0

!
is the x axis.

2.5.12. x?
1 =

 
−2
3
2

!
, x?

2 =

 
−1
1
2

!
; x = x?

1 + 4x?
2 =

 
−6
7
2

!
.

2.5.13. x? = 2x?
1 + x?

2 =

0
B@
−1

3
3

1
CA.

2.5.14.
(a) By direct matrix multiplication: Ax?

1 = Ax?
2 =

0
B@

1
−3

5

1
CA.

(b) The general solution is x = x?
1 + t(x?

2 − x?
1) = (1 − t)x?

1 + tx?
2 =

0
B@

1
1
0

1
CA+ t

0
B@
−4

2
−2

1
CA.

2.5.15. 5 meters.

2.5.16. The mass will move 6 units in the horizontal direction and −6 units in the vertical di-
rection.

2.5.17. x = c1x?
1 + c2x?

2 where c1 = 1 − c2.

2.5.18. False: in general, (A + B)x? = (A + B)x?
1 + (A + B)x?

2 = c + d + Bx?
1 + Ax?

2, and the
third and fourth terms don’t necessarily add up to 0.

♦ 2.5.19. rng A = Rn, and so A must be a nonsingular matrix.

♦ 2.5.20.
(a) If Axi = ei, then xi = A−1ei which, by (2.13), is the ith column of the matrix A−1.

(b) The solutions to Axi = ei in this case are x1 =

0
BB@

1
2

2

− 1
2

1
CCA, x2 =

0
BB@

− 1
2

− 1

− 1

1
CCA, x3 =

0
BB@

1
2

− 1
1
2

1
CCA,

which are the columns of A−1 =

0
BB@

1
2 − 1

2
1
2

2 −1 −1

− 1
2

1
2

1
2

1
CCA.

2.5.21.

(a) range:

 
1
2

!
; corange:

 
1

−3

!
; kernel:

 
3
1

!
; cokernel:

 
−2

1

!
.

(b) range:

0
B@

0
1
2

1
CA,

0
B@
−8
−1

6

1
CA; corange:

0
B@

1
2

−1

1
CA,

0
B@

0
0

−8

1
CA; kernel:

0
B@
−2

1
0

1
CA; cokernel:

0
B@

1
−2

1

1
CA.

(c) range:

0
B@

1
1
2

1
CA,

0
B@

1
0
3

1
CA; corange:

0
BBB@

1
1
2
1

1
CCCA,

0
BBB@

0
−1
−3

2

1
CCCA; kernel:

0
BBB@

1
−3

1
0

1
CCCA,

0
BBB@

−3
2
0
1

1
CCCA; cokernel:

0
B@
−3

1
1

1
CA.
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(d) range:

0
BBBBB@

1
0
2
3
1

1
CCCCCA

,

0
BBBBB@

−3
3

−3
−3

0

1
CCCCCA

,

0
BBBBB@

1
−2

0
3
3

1
CCCCCA

; corange:

0
BBBBB@

1
−3

2
2
1

1
CCCCCA

,

0
BBBBB@

0
3

−6
0

−2

1
CCCCCA

,

0
BBBBB@

0
0
0
0
4

1
CCCCCA

;

kernel:

0
BBBBB@

4
2
1
0
0

1
CCCCCA

,

0
BBBBB@

−2
0
0
1
0

1
CCCCCA

; cokernel:

0
BBBBB@

−2
−1

1
0
0

1
CCCCCA

,

0
BBBBB@

2
1
0

−1
1

1
CCCCCA

.

2.5.22.

0
B@
−1

2
−3

1
CA,

0
B@

0
1
2

1
CA,

0
B@
−3

1
0

1
CA, which are its first, third and fourth columns;

Second column:

0
B@

2
−4

6

1
CA = 2

0
B@
−1

2
−3

1
CA; fifth column:

0
B@

5
−4

8

1
CA = −2

0
B@
−1

2
−3

1
CA+

0
B@

0
1
2

1
CA−

0
B@
−3

1
0

1
CA.

2.5.23. range:

0
B@

1
2

−3

1
CA,

0
B@

0
4
1

1
CA; corange:

0
B@

1
−3

0

1
CA,

0
B@

0
0
4

1
CA; second column:

0
B@
−3
−6

9

1
CA = −3

0
B@

1
2

−3

1
CA;

second and third rows:

0
B@

2
−6

4

1
CA = 2

0
B@

1
−3

0

1
CA+

0
B@

0
0
4

1
CA,

0
B@
−3

9
1

1
CA = −3

0
B@

1
−3

0

1
CA+ 1

4

0
B@

0
0
4

1
CA.

2.5.24.
(i) rank = 1; dim rng A = dim corng A = 1, dim ker A = dim coker A = 1;

kernel basis:

 
−2

1

!
; cokernel basis:

 
2
1

!
; compatibility conditions: 2b1 + b2 = 0;

example: b =

 
1

−2

!
, with solution x =

 
1
0

!
+ z

 
−2

1

!
.

(ii) rank = 1; dim rng A = dim corng A = 1, dimker A = 2, dim coker A = 1; kernel basis:0
B@

1
3

1
0

1
CA,

0
B@

2
3

0
1

1
CA; cokernel basis:

 
2
1

!
; compatibility conditions: 2b1 + b2 = 0;

example: b =

 
3

−6

!
, with solution x =

0
B@

1
0
0

1
CA+ y

0
B@

1
3

1
0

1
CA+ z

0
B@

2
3

0
1

1
CA.

(iii) rank = 2; dim rng A = dim corng A = 2, dimker A = 0, dim coker A = 1;

kernel: {0}; cokernel basis:

0
BBB@

− 20
13
3
13

1

1
CCCA; compatibility conditions: − 20

13 b1 + 3
13 b2 + b3 = 0;

example: b =

0
B@

1
−2

2

1
CA, with solution x =

0
B@

1
0
0

1
CA.

(iv) rank = 2; dim rng A = dim corng A = 2, dimker A = dim coker A = 1;

kernel basis:

0
B@
−2
−1

1

1
CA; cokernel basis:

0
B@
−2

1
1

1
CA; compatibility conditions:

−2b1 + b2 + b3 = 0; example: b =

0
B@

2
1
3

1
CA, with solution x =

0
B@

1
0
0

1
CA+ z

0
B@
−2
−1

1

1
CA.

(v) rank = 2; dim rng A = dim corng A = 2, dim ker A = 1, dim coker A = 2; kernel
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basis:

0
B@
−1
−1

1

1
CA; cokernel basis:

0
BBBBB@

− 9
4

1
4

1

0

1
CCCCCA

,

0
BBBBB@

1
4

− 1
4

0

1

1
CCCCCA

; compatibility: − 9
4 b1 + 1

4 b2 + b3 = 0,

1
4 b1 − 1

4 b2 + b4 = 0; example: b =

0
BBB@

2
6
3
1

1
CCCA, with solution x =

0
B@

1
0
0

1
CA+ z

0
B@
−1
−1

1

1
CA.

(vi) rank = 3; dim rng A = dim corng A = 3, dimker A = dim coker A = 1; kernel basis:
0
BBBBB@

13
4
13
8

− 7
2

1

1
CCCCCA

; cokernel basis:

0
BBB@

−1
−1

1
1

1
CCCA; compatibility conditions: −b1 − b2 + b3 + b4 = 0;

example: b =

0
BBB@

1
3
1
3

1
CCCA, with solution x =

0
BBBBB@

1

0

0

0

1
CCCCCA

+ w

0
BBBBB@

13
4
13
8

− 7
2

1

1
CCCCCA

.

(vii) rank = 4; dim rng A = dim corng A = 4, dimker A = 1, dim coker A = 0; kernel basis:0
BBBBB@

−2
1
0
0
0

1
CCCCCA

; cokernel is {0}; no conditions;

example: b =

0
BBB@

2
1
3

−3

1
CCCA, with x =

0
BBBBB@

1
0
0
0
0

1
CCCCCA

+ y

0
BBBBB@

−2
1
0
0
0

1
CCCCCA

.

2.5.25. (a) dim = 2; basis:

0
B@

1
2

−1

1
CA,

0
B@

2
2
0

1
CA; (b) dim = 1; basis:

0
B@

1
1

−1

1
CA;

(c) dim = 3; basis:

0
BBB@

1
0
1
0

1
CCCA,

0
BBB@

1
0
0
1

1
CCCA,

0
BBB@

2
2
1
0

1
CCCA; (d) dim = 3; basis:

0
BBB@

1
0

−3
2

1
CCCA,

0
BBB@

0
1
2

−3

1
CCCA,

0
BBB@

1
−3
−8

7

1
CCCA;

(e) dim = 3; basis:

0
BBBBB@

1
1

−1
1
1

1
CCCCCA

,

0
BBBBB@

2
−1

2
2
1

1
CCCCCA

,

0
BBBBB@

1
3

−1
2
1

1
CCCCCA

.

2.5.26. It’s the span of

0
BBB@

1
1
0
0

1
CCCA,

0
BBB@

−3
0
1
0

1
CCCA,

0
BBB@

0
2
3
1

1
CCCA,

0
BBB@

0
4

−1
−1

1
CCCA; the dimension is 3.

2.5.27. (a)

0
BBB@

2
0
1
0

1
CCCA,

0
BBB@

0
−1

0
1

1
CCCA; (b)

0
BBB@

1
1
1
0

1
CCCA,

0
BBB@

0
−1

0
1

1
CCCA; (c)

0
BBB@

−1
3
0
1

1
CCCA.
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2.5.28. First method:

0
BBB@

1
0
2
1

1
CCCA,

0
BBB@

2
3

−4
5

1
CCCA; second method:

0
BBB@

1
0
2
1

1
CCCA,

0
BBB@

0
3

−8
3

1
CCCA. The first vectors are the

same, while

0
BBB@

2
3

−4
5

1
CCCA = 2

0
BBB@

1
0
2
1

1
CCCA+

0
BBB@

0
3

−8
3

1
CCCA;

0
BBB@

0
3

−8
3

1
CCCA = −2

0
BBB@

1
0
2
1

1
CCCA+

0
BBB@

2
3

−4
5

1
CCCA.

2.5.29. Both sets are linearly independent and hence span a three-dimensional subspace of R4.
Moreover, w1 = v1 + v3,w2 = v1 + v2 + 2v3,w3 = v1 + v2 + v3 all lie in the span of
v1,v2,v3 and hence, by Theorem 2.31(d) also form a basis for the subspace.

2.5.30.
(a) If A = AT , then ker A = {Ax = 0} = {AT x = 0} = coker A, and rng A = {Ax} =

{AT x} = corng A.

(b) ker A = coker A has basis ( 2,−1, 1 )T ; rng A = corng A has basis ( 1, 2, 0 )T , ( 2, 6, 2 )T .
(c) No. For instance, if A is any nonsingular matrix, then ker A = coker A = {0} and

rng A = corng A = R3.

2.5.31.
(a) Yes. This is our method of constructing the basis for the range, and the proof is out-

lined in the text.

(b) No. For example, if A =

0
BBB@

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

1
CCCA, then U =

0
BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1
CCCA and the first three

rows of U form a basis for the three-dimensional corng U = corng A. but the first three
rows of A only span a two-dimensional subspace.

(c) Yes, since ker U = ker A.
(d) No, since coker U 6= coker A in general. For the example in part (b), coker A has basis

(−1, 1, 0, 0 )T while coker A has basis ( 0, 0, 0, 1 )T .

2.5.32. (a) Example:

 
0 0
1 0

!
. (b) No, since then the first r rows of U are linear combina-

tions of the first r rows of A. Hence these rows span corng A, which, by Theorem 2.31c,
implies that they form a basis for the corange.

2.5.33. Examples: any symmetric matrix; any permutation matrix since the row echelon form is

the identity. Yet another example is the complex matrix

0
B@

0 0 1
1 i i
0 i i

1
CA.

♦ 2.5.34. The rows r1, . . . , rm of A span the corange. Reordering the rows — in particular inter-
changing two — will not change the span. Also, multiplying any of the rows by nonzero
scalars, eri = ai ri, for ai 6= 0, will also span the same space, since

v =
nX

i=1

ci ri =
nX

i=1

ci

ai

eri.

2.5.35. We know rng A ⊂ Rm is a subspace of dimension r = rank A. In particular, rng A = Rm

if and only if it has dimension m = rank A.

2.5.36. This is false. If A =

 
1 1
1 1

!
then rng A is spanned by

 
1
1

!
whereas the range of its

62

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced,

in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Applied Linear Algebra, by Peter J. Olver and Cheri Shakiban. ISBN 0-13-147382-4.



row echelon form U =

 
1 1
0 0

!
is spanned by

 
1
0

!
.

♦ 2.5.37.
(a) Method 1: choose the nonzero rows in the row echelon form of A. Method 2: choose the

columns of AT that correspond to pivot columns of its row echelon form.

(b) Method 1:

0
B@

1
2
4

1
CA,

0
B@

3
−1

5

1
CA,

0
B@

2
−4

2

1
CA. Method 2:

0
B@

1
2
4

1
CA,

0
B@

0
−7
−7

1
CA,

0
B@

0
0
2

1
CA. Not the same.

♦ 2.5.38. If v ∈ ker A then Av = 0 and so BAv = B0 = 0, so v ∈ ker(BA). The first statement
follows from setting B = A.

♦ 2.5.39. If v ∈ rng AB then v = ABx for some vector x. But then v = Ay where y = Bx, and
so v ∈ rng A. The first statement follows from setting B = A.

2.5.40. First note that BA and AC also have size m × n. To show rank A = rank BA, we prove
that ker A = ker BA, and so rank A = n − dim ker A = n − dimker BA = rank BA.
Indeed, if v ∈ ker A, then Av = 0 and hence BAv = 0 so v ∈ ker BA. Conversely, if v ∈
ker BA then BAv = 0. Since B is nonsingular, this implies Av = 0 and hence v ∈ ker A,
proving the first result. To show rank A = rank AC, we prove that rng A = rng AC, and
so rank A = dim rng A = dim rng AC = rank AC. Indeed, if b ∈ rng AC, then b = AC x
for some x and so b = Ay where y = C x, and so b ∈ rng A. Conversely, if b ∈ rng A
then b = Ay for some y and so b = AC x where x = C−1y, so b ∈ rng AC, proving the
second result. The final equality is a consequence of the first two: rank A = rank BA =
rank(BA)C.

♦ 2.5.41. (a) Since they are spanned by the columns, the range of ( A B ) contains the range of
A. But since A is nonsingular, rng A = Rn, and so rng ( A B ) = Rn also, which proves
rank ( A B ) = n. (b) Same argument, using the fact that the corange is spanned by the
rows.

2.5.42. True if the matrices have the same size, but false in general.

♦ 2.5.43. Since we know dim rng A = r, it suffices to prove that w1, . . . ,wr are linearly indepen-
dent. Given

0 = c1w1 + · · · + cr wr = c1 Av1 + · · · + cr Avr = A(c1v1 + · · · + cr vr),

we deduce that c1v1 + · · ·+ cr vr ∈ ker A, and hence can be written as a linear combination
of the kernel basis vectors:

c1v1 + · · · + cr vr = cr+1vr+1 + · · · + cn vn.

But v1, . . . ,vn are linearly independent, and so c1 = · · · = cr = cr+1 = · · · = cn = 0, which
proves linear independence of w1, . . . ,wr.

♦ 2.5.44.
(a) Since they have the same kernel, their ranks are the same. Choose a basis v1, . . . ,vn of

Rn such that vr+1, . . . ,vn form a basis for ker A = ker B. Then w1 = Av1, . . . ,wr =
Avr form a basis for rng A, while y1 = Bv1, . . . ,yr = Bvr form a basis for rng B.
Let M be any nonsingular m × m matrix such that M wj = yj , j = 1, . . . , r, which

exists since both sets of vectors are linearly independent. We claim M A = B. Indeed,
M Avj = Bvj , j = 1, . . . , r, by design, while M Avj = 0 = Bvj , j = r + 1, . . . , n,

since these vectors lie in the kernel. Thus, the matrices agree on a basis of Rn which is
enough to conclude that M A = B.

(b) If the systems have the same solutions x? + z where z ∈ ker A = ker B, then B x =
M Ax = M b = c. Since M can be written as a product of elementary matrices, we

conclude that one can get from the augmented matrix
“

A | b
”

to the augmented matrix
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“
B | c

”
by applying the elementary row operations that make up M .

♦ 2.5.45. (a) First, W ⊂ rng A since every w ∈ W can be written as w = Av for some v ∈
V ⊂ Rn, and so w ∈ rng A. Second, if w1 = Av1 and w2 = Av2 are elements of W , then
so is cw1 + dw2 = A(cv1 + dv2) for any scalars c, d because cv1 + dv2 ∈ V , proving
that W is a subspace. (b) First, using Exercise 2.4.25, dim W ≤ r = dim rng A since it is
a subspace of the range. Suppose v1, . . . ,vk form a basis for V , so dim V = k. Let w =
Av ∈ W . We can write v = c1v1 + · · · + ck vk, and so, by linearity, w = c1 Av1 + · · · +
ck Avk. Therefore, the k vectors w1 = Av1, . . . ,wk = Avk span W , and therefore, by
Proposition 2.33, dim W ≤ k.

♦ 2.5.46.
(a) To have a left inverse requires an n×m matrix B such that BA = I . Suppose dim rng A =

rank A < n. Then, according to Exercise 2.5.45, the subspace W = {Bv |v ∈ rng A }
has dim W ≤ dim rng A < n. On the other hand, w ∈ W if and only if w = Bv where
v ∈ rng A, and so v = Ax for some x ∈ Rn. But then w = Bv = BAx = x, and
therefore W = Rn since every vector x ∈ Rn lies in it; thus, dim W = n, contradicting
the preceding result. We conclude that having a left inverse implies rank A = n. (The
rank can’t be larger than n.)

(b) To have a right inverse requires an m×n matrix C such that AC = I . Suppose dim rng A =
rank A < m and hence rng A ( Rm. Choose y ∈ Rm \ rng A. Then y = AC y = Ax,
where x = C y. Therefore, y ∈ rng A, which is a contradiction. We conclude that having
a right inverse implies rank A = m.

(c) By parts (a–b), having both inverses requires m = rank A = n and A must be square
and nonsingular.

2.6.1. (a) (b) (c)

(d) (e) or, equivalently,

2.6.2. (a)

(b) ( 1, 1, 1, 1, 1, 1, 1 )T is a basis for the kernel. The cokernel is trivial, containing only the
zero vector, and so has no basis. (c) Zero.
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2.6.3. (a)

0
BBB@

−1 0 1 0
0 −1 1 0
0 1 0 −1
0 0 1 −1

1
CCCA; (b)

0
BBBBB@

−1 1 0 0
−1 0 0 1

1 0 −1 0
0 1 0 −1
0 0 −1 1

1
CCCCCA

; (c)

0
BBBBBBB@

−1 0 1 0 0
−1 1 0 0 0

0 −1 0 1 0
0 −1 0 0 1
0 0 1 −1 0
0 0 0 1 −1

1
CCCCCCCA

;

(d)

0
BBBBBBBBBB@

1 −1 0 0 0
1 0 −1 0 0
0 −1 0 1 0
0 −1 0 0 1
0 0 1 −1 0
0 0 −1 0 1
0 0 0 1 −1

1
CCCCCCCCCCA

; (e)

0
BBBBBBB@

−1 0 0 1 0 0
1 0 0 0 −1 0
0 1 −1 0 0 0
0 −1 0 0 0 1
0 0 1 0 0 −1
0 0 0 −1 1 0

1
CCCCCCCA

;

(f )

0
BBBBBBBBBBBB@

1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0

−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1

1
CCCCCCCCCCCCA

.

2.6.4. (a) 1 circuit:

0
BBB@

0
−1
−1

1

1
CCCA; (b) 2 circuits:

0
BBBBB@

−1
1
0
1
0

1
CCCCCA

,

0
BBBBB@

0
−1
−1

0
1

1
CCCCCA

; (c) 2 circuits:

0
BBBBBBB@

−1
1
1
0
1
0

1
CCCCCCCA

,

0
BBBBBBB@

0
0

−1
1
0
1

1
CCCCCCCA

;

(d) 3 circuits:

0
BBBBBBBBBB@

−1
1
1
0
1
0
0

1
CCCCCCCCCCA

,

0
BBBBBBBBBB@

1
−1

0
−1

0
1
0

1
CCCCCCCCCCA

,

0
BBBBBBBBBB@

0
0

−1
1
0
0
1

1
CCCCCCCCCCA

; (e) 2 circuits:

0
BBBBBBB@

0
0
1
1
1
0

1
CCCCCCCA

,

0
BBBBBBB@

1
1
0
0
0
1

1
CCCCCCCA

;

(f ) 3 circuits:

0
BBBBBBBBBBBB@

1
0
1
1
0
0
0
0

1
CCCCCCCCCCCCA

,

0
BBBBBBBBBBBB@

−1
1

−1
0
1
0
1
0

1
CCCCCCCCCCCCA

,

0
BBBBBBBBBBBB@

0
0
0
0
1
1
0
1

1
CCCCCCCCCCCCA

.

♥ 2.6.5. (a)

0
BBBBB@

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

1
CCCCCA

; (b) rank = 3; (c) dim rng A = dim corng A = 3,

dim ker A = 1, dim coker A = 2; (d) kernel:

0
BBB@

1
1
1
1

1
CCCA; cokernel:

0
BBBBB@

1
−1

0
1
0

1
CCCCCA

,

0
BBBBB@

1
0

−1
0
1

1
CCCCCA

;
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(e) b1 − b2 + b4 = 0, b1 − b3 + b5 = 0; (f ) example: b =

0
BBBBB@

1
1
1
0
0

1
CCCCCA

; x =

0
BBB@

1 + t
t
t
t

1
CCCA.

♦ 2.6.6.
(a)

0
BBBBBBBBBBBBBBBBBBBBBB@

1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 −1 0 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

1
CCCCCCCCCCCCCCCCCCCCCCA

Cokernel basis: v1 =

0
BBBBBBBBBBBBBBBBBBBBBB@

−1
1
0

−1
0
1
0
0
0
0
0
0

1
CCCCCCCCCCCCCCCCCCCCCCA

,v2 =

0
BBBBBBBBBBBBBBBBBBBBBB@

−1
0
1
0

−1
0
0
1
0
0
0
0

1
CCCCCCCCCCCCCCCCCCCCCCA

,v3 =

0
BBBBBBBBBBBBBBBBBBBBBB@

0
−1

1
0
0
0

−1
0
1
0
0
0

1
CCCCCCCCCCCCCCCCCCCCCCA

,v4 =

0
BBBBBBBBBBBBBBBBBBBBBB@

0
0
0

−1
1
0
0
0
0

−1
1
0

1
CCCCCCCCCCCCCCCCCCCCCCA

,v5 =

0
BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
0

−1
1
0
0

−1
0
1

1
CCCCCCCCCCCCCCCCCCCCCCA

.

These vectors represent the circuits around 5 of the cube’s faces.

(b) Examples:

0
BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
0
0
0

−1
1
0

−1
1

1
CCCCCCCCCCCCCCCCCCCCCCA

= v1 − v2 + v3 − v4 + v5,

0
BBBBBBBBBBBBBBBBBBBBBB@

0
1

−1
−1

1
1
0

−1
0
0
0
0

1
CCCCCCCCCCCCCCCCCCCCCCA

= v1 − v2,

0
BBBBBBBBBBBBBBBBBBBBBB@

0
−1

1
1

−1
0

−1
0
1
1

−1
0

1
CCCCCCCCCCCCCCCCCCCCCCA

= v3 − v4.

♥ 2.6.7.

(a) Tetrahedron:

0
BBBBBBB@

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

1
CCCCCCCA
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number of circuits = dim coker A = 3, number of faces = 4;

(b) Octahedron: 0
BBBBBBBBBBBBBBBBBBBBBB@

1 −1 0 0 0 0
1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
0 1 −1 0 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 1 0 0 −1
0 0 0 1 −1 0
0 0 0 1 0 −1
0 0 0 0 1 −1

1
CCCCCCCCCCCCCCCCCCCCCCA

number of circuits = dim coker A = 7, number of faces = 8.

(c) Dodecahedron:
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

number of circuits = dim coker A = 11, number of faces = 12.
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(d) Icosahedron:

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 −1 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

number of circuits = dim coker A = 19, number of faces = 20.

♥ 2.6.8.

(a) (i)

0
B@
−1 1 0 0

0 1 −1 0
0 1 0 −1

1
CA, (ii)

0
BBB@

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 1 0 0 −1

1
CCCA,

(iii)

0
BBBBB@

−1 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1

1
CCCCCA

, (iv)

0
BBBBB@

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

1
CCCCCA

.

(b)

0
BBB@

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

1
CCCA,

0
BBB@

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 1 0 0 −1

1
CCCA,

0
BBB@

−1 1 0 0 0
0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1

1
CCCA.
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(c) Let m denote the number of edges. Since the graph is connected, its incidence matrix
A has rank n − 1. There are no circuits if and only if coker A = {0}, which implies
0 = dim coker A = m − (n − 1), and so m = n − 1.

♥ 2.6.9.

(a)

(b)

0
B@

1 −1 0
1 0 −1
0 1 −1

1
CA,

0
BBBBBBB@

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

1
CCCCCCCA

,

0
BBBBBBBBBBBBBBBBB@

1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1
0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1
0 0 1 −1 0
0 0 1 0 −1
0 0 0 1 −1

1
CCCCCCCCCCCCCCCCCA

.

(c) 1
2 n(n − 1); (d) 1

2 (n − 1)(n − 2).

♥ 2.6.10.

(a)

(b)

0
BBBBBBB@

1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1
0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1

1
CCCCCCCA

,

0
BBBBBBBBBBBB@

1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 −1 0 0 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1

1
CCCCCCCCCCCCA

,

0
BBBBBBBBBBBBBB@

1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 1 0 −1 0
0 0 1 0 0 −1

1
CCCCCCCCCCCCCCA

.

(c) m n; (d) (m − 1)(n − 1).
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♥ 2.6.11.

(a) A =

0
BBBBBBBBBB@

1 −1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0

0 −1 0 1 0 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 0 1 −1

1
CCCCCCCCCCA

.

(b) The vectors v1 =

0
BBBBBBBBBBBB@

1
1
0
1
0
0
0
0

1
CCCCCCCCCCCCA

, v2 =

0
BBBBBBBBBBBB@

0
0
1
0
0
1
0
0

1
CCCCCCCCCCCCA

, v3 =

0
BBBBBBBBBBBB@

0
0
0
0
1
0
1
1

1
CCCCCCCCCCCCA

form a basis for ker A.

(c) The entries of each vi are indexed by the vertices. Thus the nonzero entries in v1 cor-
respond to the vertices 1,2,4 in the first connected component, v2 to the vertices 3,6 in
the second connected component, and v3 to the vertices 5,7,8 in the third connected
component.

(d) Let A have k connected components. A basis for ker A consists of the vectors v1, . . . ,vk
where vi has entries equal to 1 if the vertex lies in the ith connected component of the
graph and 0 if it doesn’t. To prove this, suppose Av = 0. If edge #` connects vertex a
to vertex b, then the `th component of the linear system is va − vb = 0. Thus, va = vb
whenever the vertices are connected by an edge. If two vertices are in the same con-
nected component, then they can be connected by a path, and the values va = vb = · · ·
at each vertex on the path must be equal. Thus, the values of va on all vertices in the
connected component are equal, and hence v = c1v1 + · · · + ckvk can be written as a
linear combination of the basis vectors, with ci being the common value of the entries

va corresponding to vertices in the ith connected component. Thus, v1, . . . ,vk span the
kernel. Moreover, since the coefficients ci coincide with certain entries va of v, the only
linear combination giving the zero vector is when all ci are zero, proving their linear in-
dependence.

♦ 2.6.12. If the incidence matrix has rank r, then # circuits

= dim coker A = n − r = dim ker A ≥ 1,

since ker A always contains the vector ( 1, 1, . . . , 1 )T .

2.6.13. Changing the direction of an edge is the same as multiplying the corresponding row of
the incidence matrix by −1. The dimension of the cokernel, being the number of indepen-
dent circuits, does not change. Each entry of a cokernel vector that corresponds to an edge
that has been reversed is multiplied by −1. This can be realized by left multiplying the
incidence matrix by a diagonal matrix whose diagonal entries are −1 is the corresponding
edge has been reversed, and +1 if it is unchanged.

♥ 2.6.14.
(a) Note that P permutes the rows of A, and corresponds to a relabeling of the vertices of

the digraph, while Q permutes its columns, and so corresponds to a relabeling of the
edges.

(b) (i),(ii),(v) represent equivalent digraphs; none of the others are equivalent.
(c) v = (v1, . . . , vm) ∈ coker A if and only if bv = P v = ( vπ(1) . . . vπ(m) ) ∈ coker B. Indeed,

bvT B = (P v)T P AQ = vT AQ = 0 since, according to Exercise 1.6.14, P T = P−1 is the
inverse of the permutation matrix P .
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2.6.15. False. For example, any two inequivalent trees, cf. Exercise 2.6.8, with the same num-
ber of nodes have incidence matrices of the same size, with trivial cokernels: coker A =
coker B = {0}. As another example, the incidence matrices

A =

0
BBBBB@

1 −1 0 0 0
0 1 −1 0 0

−1 0 1 0 0
1 0 0 −1 0
1 0 0 0 −1

1
CCCCCA

and B =

0
BBBBB@

1 −1 0 0 0
0 1 −1 0 0

−1 0 1 0 0
1 0 0 −1 0
0 1 0 0 −1

1
CCCCCA

both have cokernel basis ( 1, 1, 1, 0, 0 )T , but do not represent equivalent digraphs.

2.6.16.
(a) If the first k vertices belong to one component and the last n−k to the other, then there

is no edge between the two sets of vertices and so the entries aij = 0 whenever i =

1, . . . , k, j = k + 1, . . . , n, or when i = k + 1, . . . , n, j = 1, . . . , k, which proves that A has
the indicated block form.

(b) The graph consists of two disconnected triangles. If we use 1, 2, 3 to label the vertices in
one triangle and 4, 5, 6 for those in the second, the resulting incidence matrix has the in-

dicated block form

0
BBBBBBB@

1 −1 0 0 0 0
0 1 −1 0 0 0

−1 0 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 0 1

1
CCCCCCCA

, with each block a 3 × 3 submatrix.
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