
An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-1

Chapter 1

An Overview of Computer Programming

At a Glance

Instructor’s Manual Table of Contents

• Overview

• Objectives

• Teaching Tips

• Quick Quizzes

• Class Discussion Topics

• Additional Projects

• Additional Resources

• Key Terms

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-2

Lecture Notes

Overview

General programming concepts are introduced in Chapter 1. This material provides a
foundation for the remaining chapters in the book. Several topics are covered, beginning
with a review of computer components, both hardware and software, and their operations.
This is followed by a general discussion of program logic. Next, the chapter reviews the
evolution of programming models and introduces object-oriented programming, followed
by an introduction to the steps in the programming process. A presentation on flowcharts
and pseudocode statements will be featured along with an explanation of how these tools
greatly improve the planning stage. The chapter concludes with material describing
programming tools and user environments.

Chapter Objectives

In this chapter, your students will learn about:

• Computer components and operations
• Simple program logic
• The evolution of programming models
• The steps in the programming process
• Pseudocode and flowcharts
• Program comments
• Programming and user environments

Teaching Tips

Understanding Computer Components and Operations

1. Outline the two major components of any computer system: hardware and software.
Provide students with a brief introduction to each component.

Teaching
Tip

Remind students that software can be classified as application software or system
software. Application software comprises all of the programs you apply to a task:
word-processing programs, spreadsheets, payroll and inventory programs, and
even games. System software comprises the programs that you use to manage
your computer, including operating systems such as Windows or UNIX, and
other utility programs not used directly by end-users.

2. Outline the three major operations computer hardware and software accomplish (input,

processing, and output).

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-3

3. Discuss the input operation in more detail. Explain the purpose of input devices.
Provide examples of input devices (e.g. mice, keyboards), and explain how they differ.

4. Discuss the processing operation in more detail and the three tasks involved. Explain

the piece of hardware that performs the sorting of processing tasks (central processing
unit (CPU)).

5. Discuss the output operation in more detail. Explain the use of output devices to view,

interpret, and use the results. Describe common data storage devices such as disks and
flash media.

Teaching
Tip

Be sure students understand the difference between data and information. Data
includes text, numerical information, or other information that is processed by a
computer. However, many computer professionals reserve the term information
for data that has been processed.

6. Explain how computer instructions are written using a computer programming

language. Provide examples of various types of languages such as Visual Basic, C#,
C++, or Java. Point out that some programmers work exclusively in one language, while
others know several languages and use the one that seems most appropriate for the
given task.

7. Discuss programming language syntax (e.g. correct spelling and punctuation). Explain

that the syntax must be perfect for a computer to interpret the instructions.

8. Explain how computer memory (RAM) stores a program and how it is usually desirable
to store the program on a permanent storage device so that it can be loaded into memory
later.

9. Explain that when a program runs, or executes, it carries out its instructions.

10. Discuss machine language and the need to translate programming languages into the
computer’s on/off circuitry language.

11. Discuss the purpose of compilers and interpreters, and explain the differences between

them. Compilers create and store machine instructions, and these instructions are
reusable. Interpreters interpret the programming language at run-time and must do so
each time the program runs. Briefly introduce the topic of scripting languages, and
explain that they use interpreters.

Teaching
Tip

Find a list of links to “Free Compilers and Interpreters for Programming
Languages” at the following Web site:
www.thefreecountry.com/compilers/index.shtml.

http://www.thefreecountry.com/compilers/index.shtml�

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-4

Understanding Simple Program Logic

1. Explain the difference between syntax and logic errors, emphasizing that the compiler
or interpreter identifies syntax errors; however, logic errors are found when the program
runs and may be difficult to identify.

2. Explain the concept of programming logic. Use the cake-mixing example on Page 4 to

clarify the concept. Point out that programs may only be executed or run after the
program is compiled successfully without syntax errors.

3. Use the program instruction example on Page 5 that takes a number (an input step),

doubles it (processing), and provides the answer (output) to demonstrate writing code
using statements resembling the English language. Discuss the three computer
operations available in the example, and stress that they are independent of hardware.

Teaching
Tip

See the “How Stuff Works” Web site for more information on Understanding
Computer Components and Operations: http://computer.howstuffworks.com.

Understanding the Evolution of Programming Models

1. Discuss characteristics of the oldest programming languages. These languages required
programmers to work with memory addresses and to memorize awkward codes
associated with machine languages. Point out that the earliest language dates back to the
1940s.

2. Discuss characteristics of the modern programming languages. For example, they look

much more like natural language and are easier for programmers to use.

3. Point out the reasons for the ease of use in modern programming languages. For
example, they allow programmers to give meaningful names to memory locations
instead of using awkward memory addresses. Newer programming languages also allow
the creation of self-contained modules or program segments that may be pieced together
in a variety of ways.

4. Describe the two major program development techniques (procedural programming and

object-oriented programming, or OOP). Identify the focus of each, and highlight that
the differences are in the earliest planning stages of a project.

5. Discuss the two application types originally used with object-oriented programming:

computer simulations and graphical user interfaces (GUI). Briefly explain each type.

http://computer.howstuffworks.com/�

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-5

Teaching
Tip

Alan Turing proposed the basis for most modern software in 1935. Visit the
following Web site for more information on Alan Turing: www.alanturing.net.

Teaching
Tip

To see “The Evolution of Object-Oriented Languages” article, visit the following
Web site: www.developer.com/design/article.php/10925_3493761_1.

Teaching
Tip

To see an interesting timeline of some of the key events of components and
object-oriented programming in the last 50 years, see “History-making
components: Tracing the roots of components from OOP through WS” at the
following Web site:
www.ibm.com/developerworks/webservices/library/co-tmline.

Quick Quiz 1

1. What are the three major operations accomplished by hardware and software?
Answer: input, processing, and output

2. True or False: Syntax does not have to be perfect in order for the computer to execute
the program in a production environment.
Answer: False

3. Two major program development techniques are ____ and ____.
Answer: procedural programming, object-oriented programming or OOP

4. Which of the following best describes a syntax error?

A. Syntax errors are found during user data input processing.
B. Syntax errors are identified by the compiler or interpreter.
C. Syntax errors are found when the program is run.
D. Syntax errors may be identified by the hardware device driver code.

Answer: B

5. Which of the following best describes a logic error?

A. Logic errors are found during user data input processing.
B. Logic errors are identified by the compiler or interpreter.
C. Logic errors are found when the program is run.
D. Logic errors may be identified by the hardware device driver code.

Answer: C

http://www.alanturing.net/�
http://www.developer.com/design/article.php/10925_3493761_1�
http://www.ibm.com/developerworks/webservices/library/co-tmline�

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-6

6. When you use a(n) ____, an entire program is translated before it can execute.
Answer: compiler

7. When you use a(n) ____, each instruction is translated prior to execution.

Answer: interpreter

Understanding the Steps in the Programming Process

1. Introduce the three steps in developing an object-oriented programming application

system. First, the program or system is analyzed. Second, the overall design of the
system is created. The third step is writing the program. Explain that writing the
program has several substeps: planning the logic, coding the program, translating the
code into machine language, and testing. Note that there are other tasks associated with
putting the program into production and maintaining it.

Analyzing the Program or System

1. Describe the purpose of programming, which is to meet the needs of the user.
Emphasize that thoroughly understanding a problem may be one of the most difficult
aspects of programming for several reasons.

• Vague description of what the user needs
• Users may not even really know what they want
• Users who think they know what they want frequently change their minds after

seeing sample output

Teaching
Tip

Read the following article on “Recommended Requirements Gathering
Practices:"
http://www.clearspecs.com/downloads/ClearSpecs58V01_Recommended Reqts
Gathering Practices_Young.pdf

Designing the Program or System

1. Describe how to design a system using an object-oriented approach, starting by
envisioning the objects that will be needed, their attributes (characteristics), and their
relationships to each other. Mention that this process is called object-oriented design
(OOD).

2. Provide examples of entities, attributes, and relationships in a product ordering system

as described on Page 9.

3. Briefly introduce the term class— a general category that describes entities. Note that
classes that already exist can be reused or modified.

http://www.clearspecs.com/downloads/ClearSpecs58V01_Recommended%20Reqts%20Gathering%20Practices_Young.pdf�
http://www.clearspecs.com/downloads/ClearSpecs58V01_Recommended%20Reqts%20Gathering%20Practices_Young.pdf�

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-7

Writing and Testing Programs

1. Discuss the task of writing the program. Explain that this task involves four steps:
developing the program’s logic, coding the program, translating it into machine
language, and testing the program.

2. Explain that planning the program’s logic is the heart of the programming process. The
programmer must decide which steps to include and how to order them.

3. Briefly touch on the two most common planning tools: flowcharts and pseudocode.

Explain the common feature of both tools (writing the program steps in English). These
will be covered more thoroughly later in the chapter.

4. Point out that the programmer is not concerned about programming language syntax at

this point.

5. Define the term desk-checking, which is reviewing a program’s logic on paper.

Teaching
Tip

Inform students that programmers often refer to planning a program as
“developing an algorithm.” An algorithm is the sequence of steps necessary to
solve any problem.

Coding the Program

1. Explain that a programmer codes the statements needed using a programming language.
Briefly name some common object-oriented programming languages. Discuss their
similarity, namely that each language can handle creating objects and establishing
communication between them.

2. Point out that syntax (e.g. correct spelling and punctuation) becomes a concern only

after the programming language is selected.

3. Explain that sometimes programmers can successfully combine the planning and the
actual instruction writing (coding) of the program into one step. Use the example of
writing a postcard to a friend, as described on Page 11, to illustrate that this applies to
simple programs.

4. Point out that planning the program is most often more challenging than coding it.

Using Software to Translate the Program into Machine Language

1. Review with students that there are many programming languages, but each computer
knows only one language: its machine language, which consists of many 1s and 0s.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-8

2. Discuss how translator programs (compilers and interpreters) change high-level
programming language that resembles the English language, into low-level machine
language that the computer understands. Point out that the compiler or interpreter
identifies any syntax errors in the code. Note that all syntax errors must be corrected
before the program becomes executable.

3. Use Figure 1-1 on Page 11 to explain the cycle of syntax error detection and correction.

Testing the Program

1. Explain that testing for logical errors occurs after the program is free of syntax errors.
Point out that a program that is free of syntax errors is not necessarily free of logical
errors.

2. Explain that testing usually requires entering sample data to see whether the results are

logically correct. Point out that selecting a proper set of test data is critical to thoroughly
test the program.

3. Return to the number-doubling example presented on Page 12, discussing the choice of

appropriate sample data to test the program and the different types of errors that could
be discovered.

After the Program is Written and Tested

1. Explain that once the program has been tested adequately, it is ready for the
organization to use.

2. Discuss additional tasks that may be necessary:

• Preparing manuals
• Training users
• Converting existing data to a format that is usable by the new system

3. Describe that conversion is the entire set of actions an organization must take to switch

over to using a new program or set of programs, and it can sometimes take months or
years to accomplish.

4. Explain that maintenance is the process of making required changes after a program has
been put into production. Point out that maintenance is necessary for many reasons,
including fixing errors, updating values, changing the format of input data, and adding
functionality. Provide some examples of these, found on Page 13.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-9

Using Pseudocode and Flowcharts

1. Introduce the use of pseudocode and flowcharts as tools to plan programs. Explain that
pseudocode is an English-like representation of program steps and that a flowchart is a
pictorial representation of the same thing.

Writing Pseudocode

1. Show the example of pseudocode on Page 14. Discuss how pseudocode might look very

much like a programming language, except without the strict rules of syntax. Note that
starting and ending statements are usually used.

Drawing Flowcharts

1. Explain what a flowchart is and how it is used. Note that when you create a flowchart,
you write program steps in geometric shapes that you connect with arrows (flowlines)
to show the order and flow of the program logic.

2. Discuss the five types of flowchart symbols and their use. Use the flowcharts in Figure

1-2 on Page 16 and Figure 1-3 on Page 17 as examples. Note that top-to-bottom or left-
to-right flow is preferred.

3. Note that there are several software packages that have flowcharting tools, and some,
such as Visio, are designed specifically for creating flowcharts.

Teaching
Tip

Use a simple example, such as basic payroll processing, to create a flowchart
showing the input, checking the number of hours worked, multiplying hours
worked times the pay rate, and producing the output of the pay amount. Then use
the same example using pseudocode.

Understanding Program Comments

1. Explain the use of program comments (nonexecuting statements) to create
documentation. Note that double-forward slashes are used in several popular
programming languages to precede comments. Show the example of the annotation
symbol in Figure 1-4 on Page 18, used on flowcharts for comments.

Understanding Programming and User Environments

1. Discuss the different programming environments programmers can use during the
planning step. Explain that flowcharts can be written by hand or by using software, and
pseudocode can be typed into a text editor or in an integrated development environment
(IDE).

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-10

Understanding Programming Environments

1. Describe some advantages of using an IDE.
• Uses colors to display various language components
• Highlights syntax errors visually
• Automatic statement completion
• Can step through program execution to find errors

One disadvantage is that storing a program in an IDE requires more storage space than a
text editor.

Understanding User Environments

1. Explain that a user might execute the same program using a command line or a
graphical user interface (GUI) but that the programming process is the same regardless
of the user environment.

Quick Quiz 2

1. True or False: In object-oriented design, the programmer must first envision and create
the objects that a program will manipulate.
Answer: True

2. As discussed in this lecture, the heart of the programming process is:

A. analyzing the system
B. designing the system
C. planning the logic
D. coding the program
E. translating the program code

Answer: C

3. Compilers or interpreters are also known as:
A. translucent programs
B. transistor programs
C. translator programs
D. transgression programs

Answer: C

4. Two tools that programmers use to plan the logic of a solution to a programming
problem are ____ and ____.
Answer: flowcharts, pseudocode

5. True or False: Two forward slashes are used to precede comments in many
programming languages.
Answer: True

6. A text editor and a(n) ____ are two examples of programming environments.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-11

Answer: integrated development environment or IDE

7. A(n) ____ and ____ are two examples of user environments.
Answer: command line, GUI

Class Discussion Topics

1. Have students discuss the key features of the object-oriented design programming
process.

2. Have students discuss how different input devices vary in the types of data that they can

directly provide to the computer system. For example, numeric keypads provide only
numeric input; a stylus provides tap-selection or handwriting input. Discuss the impact
on programming with these devices as input or output media.

3. Have students discuss the differences between pseudocode and flowcharts, and why one

might be more suited to a given project or programmer. For example, a flowchart can
help visualize program flow in a large program with many decision points but may be
unnecessary for a simple program. Also, some programmers naturally think visually,
and others prefer more language-based code.

4. Discuss some of the costs involved in creating a large, complex application, and discuss

why good initial design and reusable components are important. How do they contribute
to the return on investment (ROI) for the business? How does good design help in
reducing the amount of maintenance required and in simplifying that maintenance?

Additional Projects

1. Have students create a list of Web sites that specifically relate to good techniques in
object-oriented programming. Compile these lists into a master list to be distributed to
the class.

2. Have students research and create a list of six object-oriented programming languages

available for use today. Students should create a table with the following information:
name of programming language, most current version, supporting vendor or
organization, cost, compiler or interpreter location (separate or included with language),
and a brief product description. They should then write a paragraph describing the
research experience and a paragraph indicating the language they would use from their
list, with reasons to back up their choice.

3. Have students create a flowchart to represent an everyday task, such as washing a car.

With an open-ended instruction such as this, they will realize the importance of the
requirements gathering step. Remind them to use the appropriate flowchart symbols.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-12

Additional Resources

1. Pseudocode standards:
www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

2. Sun JAVA site:

http://java.sun.com

3. Sun JAVA Tutorial: Lesson: Object-Oriented Programming Concepts:
http://java.sun.com/docs/books/tutorial/java/concepts

4. Microsoft Visual Basic Developer Center:

http://msdn2.microsoft.com/en-us/vbasic/default.aspx

5. Microsoft Visual C# Developer Center:
http://msdn2.microsoft.com/en-us/vcsharp/default.aspx

6. A High-Level Introduction to C Programming:
http://computer.howstuffworks.com/c.htm

7. An Introduction to Object-Oriented Programming Using C++ – online tutorial:

http://gd.tuwien.ac.at/languages/c/c++oop-pmueller/

Key Terms

 An algorithm is the sequence of steps necessary to solve any problem.
 An annotation symbol is a flowchart symbol that is used to hold comments; it is

represented by a three-sided box connected with a dashed line to the step it explains.
 Application software comprises all the programs you apply to a task.
 Attributes are the characteristics of entities.
 The attributes of an object are the features it “has.”
 The behaviors of an object are the things it “does.”
 Binary language consists of 1s and 0s; it is machine language.
 Black box tests are software tests in which the tester does not know how the software

works internally but verifies that correct output is derived from various input values.
 The central processing unit, or CPU, is the hardware component that processes data.
 A class is a general category of objects.
 Coding the program is the act of writing program instructions.
 A command line is a location on your computer screen at which you type text entries to

communicate with the computer’s operating system.
 A compiler translates a high-level language into machine language and tells you if you

have used a programming language incorrectly. A compiler translates an entire program
at once.

 Computer memory is a computer’s temporary, internal storage.
 Computer simulations attempt to mimic real-world activities so that their processes

can be improved or so that users can better understand how the real-world processes
operate.

http://www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html�
http://java.sun.com/�
http://java.sun.com/docs/books/tutorial/java/concepts�
http://msdn2.microsoft.com/en-us/vbasic/default.aspx�
http://msdn2.microsoft.com/en-us/vcsharp/default.aspx�
http://computer.howstuffworks.com/c.htm�
http://gd.tuwien.ac.at/languages/c/c++oop-pmueller/�

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-13

 Conventions are standards of format and style that are selected for consistency, while

acknowledging that other customs might be used by others and be equally as correct.
 Conversion is the entire set of actions an organization must take to switch over to using

a new program or set of programs.
 Data items include all the text, numbers, and other information that are processed by a

computer.
 Data modeling is the act of identifying all the objects you want to manipulate and how

they relate to each other.
 A decision symbol in a flowchart holds a question that allows program logic to follow

divergent paths and is represented by a diamond.
 Desk-checking is the process of walking through a program’s logic on paper without

using a computer.
 Entity types describe the broad categories of data items in a system.
 To execute a program is to carry out a program’s instructions.
 Executable statements are the statements that carry out a program’s actions.
 A flowchart is a pictorial representation of the logical steps it takes to solve a problem.
 Flowlines are the arrows in a flowchart that show the sequence of steps carried out.
 A graphical user interface, or GUI (pronounced “gooey”), allows users to interact

with a program in a graphical environment.
 Hardware is the set of physical devices associated with a computer.
 High-level describes programming languages that resemble the English language.
 Information is data that has been processed and is ready for output.
 Input is the process of entering data into a system using hardware devices such as

keyboards and mice.
 An input symbol in a flowchart contains an input statement and is represented by a

parallelogram.
 An input/output symbol, or I/O symbol, is a parallelogram used to diagram both input

and output operations.
 An integrated development environment (IDE) is a software package that provides

an editor, compiler, and other programming tools.
 An interpreter translates a high-level language into machine language and tells you if

you have used a programming language incorrectly. An interpreter translates a program
one instruction at a time.

 The logic of a computer program is developed when you give instructions to the
computer in a specific sequence, without leaving any instructions out or adding
extraneous instructions.

 Logical errors occur when incorrect instructions are performed or when instructions
are performed in the wrong order.

 Low-level describes languages that more closely reflect computer circuitry than high-
level languages; the lowest-level language is the set of 1s and 0s that a computer
understands.

 Machine language is a computer’s on/off circuitry language.
 Maintenance is the act of making changes to programs that are already finished and in

production.
 An object is an entity used in a program.
 Object code is machine language statements that have been translated from source

code.
 Object-oriented analysis, or OOA, is the process of analyzing a system using an

object-oriented approach.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-14

 Taking an object-oriented approach to a problem means defining the objects needed

to accomplish a task, and developing the objects so that each maintains its own data and
carries out tasks when another object requests them.

 Object-oriented design, or OOD, is the process of designing a system using an object-
oriented approach.

 Object-oriented programming (OOP) is a technique that focuses on objects, or
“things.” OOP describes the objects’ features, or attributes, and their behaviors.

 Output is the process of extracting information from a system through hardware such
as a monitor or printer so that people can view, interpret, and use the results.

 An output symbol in a flowchart contains an output statement and is represented by a
parallelogram.

 Procedural programming is a technique that focuses on procedures that programmers
create to manipulate data.

 Processing data items may involve organizing them, checking them for accuracy, or
performing mathematical operations on them.

 A processing symbol in a flowchart contains a processing statement and is represented
by a rectangle.

 Program code is written computer instructions.
 Program comments are nonexecuting statements that you add to a program for the

purpose of documentation.
 Programming is the act of writing software instructions.
 Programming languages, such as Visual Basic, C#, C++, and Java, are used to write

programs.
 Programs are sets of executable instructions written by programmers.
 Pseudocode is a representation of the logical steps it takes to solve a problem compiled

in a manner that closely resembles the English language.
 Random access memory (RAM) is internal computer memory.
 Relationships describe how entities communicate with and react to each other.
 To run a program is to carry out a program’s instructions.
 Scripting languages (also called scripting programming languages or script

languages) such as Python, Lua, Perl, and PHP are used to write programs that are
typed directly from a keyboard. Scripting languages are stored as text rather than as
binary executable files.

 Semantic errors are logical program errors.
 Software is the set of instructions written by programmers that tell the computer what

to do; software is a set of computer programs.
 Software testers are professionals who test programs for correctness.
 Source code is the set of statements you write in a programming language before they

are translated to object code.
 The state of an object is made up of its attributes’ values.
 Storage devices are hardware, such as disks or flash media, on which you can store

data.
 The syntax of a language consists of its rules.
 A syntax error is an error in language or grammar.
 System software comprises the programs that you use to manage your computer,

including operating systems such as Windows, UNIX, or other utility programs not
directly used by end users.

 A terminal symbol in a flowchart marks the beginning or end of a flowchart segment,
method, or program, and is represented by a lozenge.

An Object-Oriented Approach to Programming Logic and Design, Fourth Edition 1-15

 To test a program is to execute it on a computer to determine if the output is correct.
 A text editor is a program that you use to create simple text files; it is similar to a word

processor, but without as many features.
 Users (or end users) are the people or entities for whom programs are written, and who

will benefit from using them.
 White box tests are a type of software test in which the tester understands how the

software works internally.

	Chapter 1
	Instructor’s Manual Table of Contents

	At a Glance
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip

	Overview
	Chapter Objectives
	Teaching Tips
	Understanding Computer Components and Operations
	Understanding the Evolution of Programming Models
	Designing the Program or System
	Writing and Testing Programs
	Coding the Program
	Using Software to Translate the Program into Machine Language
	After the Program is Written and Tested
	Using Pseudocode and Flowcharts
	Understanding Program Comments
	Understanding Programming and User Environments
	Understanding Programming Environments

	Class Discussion Topics
	Additional Projects
	Additional Resources
	Key Terms

