
CHAPTER 1

The Celestial Sphere

1.1 From Fig. 1.7, Earth makes S=P˚ orbits about the Sun during the time required for another planet to make
S=P orbits. If that other planet is a superior planet then Earth must make one extra trip around the Sun to
overtake it, hence

S

P˚
D S

P
C 1:

Similarly, for an inferior planet, that planet must make the extra trip, or

S

P
D S

P˚
C 1:

Rearrangement gives Eq. (1.1).

1.2 For an inferior planet at greatest elongation, the positions of Earth (E), the planet (P ), and the Sun (S) form
a right triangle (∠EPS D 90ı). Thus cos.∠PES/ D EP=ES .

From Fig. S1.1, the time required for a superior planet to go from opposition (point P1) to quadrature (P2) can
be combined with its sidereal period (from Eq. 1.1) to find the angle ∠P1SP2. In the same time interval Earth
will have moved through the angle ∠E1SE2. Since P1, E1, and S form a straight line, the angle ∠P2SE2 D
∠E1SE2 � ∠P1SP2. Now, using the right triangle at quadrature, P2S=E2S D 1= cos.∠P2SE2/.

P1
E1 S

P2

E2

Figure S1.1: The relationship between synodic and sidereal periods for superior planets, as discussed in Problem 1.2.

1.3 (a) PVenus D 224:7 d, PMars D 687:0 d

(b) Pluto. It travels the smallest fraction of its orbit before being “lapped” by Earth.

1.4 Vernal equinox: ˛ D 0h, ı D 0ı
Summer solstice: ˛ D 6h, ı D 23:5ı
Autumnal equinox: ˛ D 12h, ı D 0ı
Winter solstice: ˛ D 18h, ı D �23:5ı
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2 Chapter 1 The Celestial Sphere

1.5 (a) .90ı � 42ı/ C 23:5ı D 71:5ı

(b) .90ı � 42ı/ � 23:5ı D 24:5ı

1.6 (a) 90ı � L < ı < 90ı

(b) L > 66:5ı

(c) Strictly speaking, only at L D ˙90ı. The Sun will move along the horizon at these latitudes.

1.7 (a) Both the year 2000 and the year 2004 were leap years, so each had 366 days. Therefore, the number of
days between January 1, 2000 and January 1, 2006 is 2192 days. From January 1, 2006 to July 14, 2006
there are 194 days. Finally, from noon on July 14, 2006 to 16:15 UT is 4.25 hours, or 0.177 days. Thus,
July 14, 2006 at 16:15 UT is JD 2453931.177.

(b) MJD 53930.677.

1.8 (a) �˛ D 9m53:55s D 2:4731ı, �ı D 2ı9016:200 D 2:1545ı. From Eq. (1.8), �� D 2:435ı.
(b) d D r �� D 1:7 � 1015 m D 11,400 AU.

1.9 (a) From Eqs. (1.2) and (1.3), �˛ D 0:193628ı D 0:774512m and �ı D �0:044211ı D �2:652660. This
gives the 2010.0 precessed coordinates as ˛ D 14h30m29:4s, ı D �62ı43025:2600.

(b) From Eqs. (1.6) and (1.7), �˛ D �5:46s and �ı D 7:98400.
(c) Precession makes the largest contribution.

1.10 In January the Sun is at a right ascension of approximately 19h. This implies that a right ascension of roughly
7h is crossing the meridian at midnight. With about 14 hours of darkness this would imply observations of
objects between right ascensions of 0 h and 14 h would be crossing the meridian during the course of the
night (sunset to sunrise).

1.11 Using the identities, cos.90ı � t/ D sin t and sin.90ı � t/ D cos t , together with the small-angle approxima-
tions cos �� � 1 and sin�� � 1, the expression immediately reduces to

sin.ı C �ı/ D sin ı C �� cos ı cos �:

Using the identity sin.a C b/ D sina cos b C cos a sin b, the expression now becomes

sin ı cos �ı C cos ı sin�ı D sin ı C �� cos ı cos �:

Assuming that cos �ı � 1 and sin�ı � �ı, Eq. (1.7) is obtained.



CHAPTER 2

Celestial Mechanics

2.1 From Fig. 2.4, note that

r 2 D .x � ae/2 C y2 and r 02 D .x C ae/2 C y2:

Substituting Eq. (2.1) into the second expression gives

r D 2a �
q

.x C ae/2 C y2

which is now substituted into the first expression. After some rearrangement,

x2

a2
C y2

a2.1 � e2/
D 1:

Finally, from Eq. (2.2),
x2

a2
C y2

b2
D 1:

2.2 The area integral in Cartesian coordinates is given by

A D
Z a

�a

Z b
p

1�x2=a2

�b
p

1�x2=a2

dy dx D 2b

a

Z a

�a

p
a2 � x2 dx D �ab:

2.3 (a) From Eq. (2.3) the radial velocity is given by

vr D dr

dt
D a.1 � e2/

.1 C e cos �/2
e sin �

d�

dt
: (S2.1)

Using Eqs. (2.31) and (2.32)
d�

dt
D 2

r 2

dA

dt
D L

�r 2
:

The angular momentum can be written in terms of the orbital period by integrating Kepler’s second law.
If we further substitute A D �ab and b D a.1 � e2/1=2 then

L D 2��a2.1 � e2/1=2=P :

Substituting L and r into the expression for d�=dt gives

d�

dt
D 2�.1 C e cos �/2

P .1 � e2/3=2
:

This can now be used in Eq. (S2.1), which simplifies to

vr D 2�ae sin �

P .1 � e2/1=2
:

Similarly, for the transverse velocity

v� D r
d�

dt
D 2�a.1 C e cos �/

.1 � e2/1=2P
:
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4 Chapter 2 Celestial Mechanics

(b) Equation (2.36) follows directly from v2 D v2
r C v2

�
, Eq. (2.37) (Kepler’s third law), and Eq. (2.3).

2.4 The total energy of the orbiting bodies is given by

E D 1

2
m1v2

1 C 1

2
m2v2

2 � G
m1m2

r

where r D jr2 � r1j. Now,

v1 D Pr1 D � m2

m1 C m2

Pr and v2 D Pr2 D m1

m1 C m2

Pr :

Finally, using M D m1 C m2, � D m1m2= .m1 C m2/, and m1m2 D �M , we obtain Eq. (2.25).

2.5 Following a procedure similar to Problem 2.4,

L D m1r1 � v1 C m2r2 � v2

D m1

�
� m2

m1 C m2

�
r �

�
� m2

m1 C m2

�
v

Cm2

�
m1

m1 C m2

�
r �

�
m1

m1 C m2

�
v

D �r � v D r � p

2.6 (a) The total orbital angular momentum of the Sun–Jupiter system is given by Eq. (2.30). Referring to the
data in Appendicies A and C, Mˇ D 1:989 � 1030 kg, MJ D 1:899 � 1027 kg, M D MJ C Mˇ D
1:991 � 1030 kg, and � D MJ Mˇ= .MJ C Mˇ/ D 1:897 � 1027 kg. Furthermore, e D 0:0489,
a D 5:2044 AU D 7:786 � 1011 m. Substituting,

Ltotal orbit D �

q
GMa

�
1 � e2

� D 1:927 � 1043 kg m2 s�1:

(b) The distance of the Sun from the center of mass is aˇ D �a=Mˇ D 7:426 � 108 m. The Sun’s orbital
speed is vˇ D 2�aˇ=PJ D 12:46 m s�1, where PJ D 3:743 � 108 s is the system’s orbital period.
Thus, for an assumed circular orbit,

LSun orbit D Mˇaˇvˇ D 1:840 � 1040 kg m2 s�1:

(c) The distance of Jupiter from the center of mass is aJ D �a=MJ D 7:778 � 1011 m, and its orbital
speed is vJ D 2�aJ =PJ D 1:306 � 104 m s�1. Again assuming a circular orbit,

LJupiter orbit D MJ aJ vJ D 1:929 � 1043 kg m2 s�1:

This is in good agreement with

Ltotal orbit � LSun orbit D 1:925 � 1043 kg m2 s�1:

(d) The moment of inertia of the Sun is approximately

Iˇ � 2

5
MˇR2

ˇ � 3:85 � 1047 kg m2

and the moment of inertia of Jupiter is approximately

IJ � 2

5
MJ R2

J � 3:62 � 1042 kg m2:
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(Note: Since the Sun and Jupiter are centrally condensed, these values are overestimates; see Sec-
tion 23.2.) Using ! D 2�=P ,

LSun rotate D 1:078 � 1042 kg m2 s�1

LJupiter rotate D 6:312 � 1038 kg m2 s�1:

(e) Jupiter’s orbital angular momentum.

2.7 (a) vesc D p
2GMJ =RJ D 60:6 km s�1

(b) vesc D p
2GMˇ=1 AU D 42:1 km s�1.

2.8 (a) From Kepler’s third law (Eq. 2.37) with a D R˚ C h D 6:99 � 106 m, P D 5820 s D 96:9 min.

(b) The orbital period of a geosynchronous satellite is the same as Earth’s sidereal rotation period, or P D
8:614�104 s. From Eq. (2.37), a D 4:22�107 m, implying an altitude of h D a�R˚ D 3:58�107 m D
5:6 R˚.

(c) A geosynchronous satellite must be “parked” over the equator and orbiting in the direction of Earth’s
rotation. This is because the center of the satellite’s orbit is the center of mass of the Earth–satellite
system (essentially Earth’s center).

2.9 The integral average of the potential energy is given by

hU i D 1

P

Z P

0

U.t/ dt D � 1

P

Z P

0

GM�

r .t/
dt:

Using Eqs. (2.31) and (2.32) to solve for dt in terms of d� , and making the appropriate changes in the limits
of integration,

hU i D � 1

P

Z 2�

0

GM�2r

L
d�:

Writing r in terms of � via Eq. (2.3) leads to

hU i D �GM�2a
�
1 � e2

�
PL

Z 2�

0

d�

1 C e cos �

D �2�GM�2a
�
1 � e2

�1=2

PL
:

Using Eq. (2.30) to eliminate the total orbital angular momentum L, and Kepler’s third law (Eq. 2.37) to
replace the orbital period P , we arrive at

hU i D �G
M�

a
:

2.10 Using the integral average from Problem 2.9

hr i D 1

P

Z P

0

r .t/ dt:

Using substitutions similar to the solution of Problem 2.9 we eventually arrive at

hr i D a

2�

�
1 � e2

�5=2
Z 2�

0

d�

.1 C e cos �/3
: (S2.2)

It is evident that for e D 0, hr i D a, as expected for perfectly circular motion. However, hr i deviates from
a for other values of e. This function is most easily evaluted numerically. Employing a simple trapezoid
method with 106 intervals, gives the results shown in Table S2.1.
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Table S2.1: Results of the numerical evaluation of Eq. (S2.2) for Problem 2.10.

e hr i =a

0.00000 1.000000
0.10000 1.005000
0.20000 1.020000
0.30000 1.045000
0.40000 1.080000
0.50000 1.125000
0.60000 1.180000
0.70000 1.245000
0.80000 1.320000
0.90000 1.405000
0.95000 1.451250
0.99000 1.490050
0.99900 1.499001
0.99990 1.499900
0.99999 1.499990
1.00000 0.000000

2.11 Since planetary orbits are very nearly circular (except Mercury and Pluto), the assumption of perfectly circular
motion was a good approximation. Furthermore, since a geocentric model maintains circular motion, it was
very difficult to make any observational distinction between geocentric and heliocentric universes. (Parallax
effects are far too small to be noticeable with the naked eye.)

2.12 (a) The graph of log10 P vs. log10 a for the Galilean moons is given in Fig. S2.1.

(b) Using the data for Io and Callisto, we find a slope of 1.5.

(c) Assuming that the mass of Jupiter is much greater than the masses of any of the Galilean moons, Kepler’s
third law can be written as

logM C 2 logP D log

�
4�2

G

	
C 3 loga;

or

logP D 3

2
loga C 1

2
log

�
4�2

G

	
� 1

2
logM:

D m loga C b

where the y-intercept is

b D 1

2
log

�
4�2

G

	
� 1

2
logM:

Solving for logM we have

logM D log

�
4�2

G

	
� 2b:

Taking the slope as m D 3=2 and using the data for any of the Galilean moons we find b D �7:753 (in
SI units). Solving gives M D 1:900 � 1027 kg, in good agreement with the value given in Appendix C
and Problem 2.6.
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Figure S2.1: log10 P vs. log10 a for the Galilean moons.

2.13 (a) Since the velocity and position vectors are perpendicular at perihelion and aphelion, conservation of
angular momentum leads to rpvp D rava. Thus

vp

va

D ra

rp
D 1 C e

1 � e
;

where the last relation is obtained from Eqs. (2.5) and (2.6).

(b) Conservation of energy at perihelion and aphelion gives

1

2
�v2

a � G
M�

ra

D 1

2
�v2

p � G
M�

rp
:

Making use of Eqs. (2.5) and (2.6), and using the result of part (a) to replace vp leads to

1

2
v2

a � GM

a.1 C e/
D 1

2
v2

a

�
1 C e

1 � e

	2

� GM

1.1 � e/
:

After some manipulation, we obtain Eq. (2.34); Eq. (2.33) follows immediately.

(c) The orbital angular momentum can now be obtained from

L D �rpvp D �a.1 � e/

s
GM

a

�
1 C e

1 � e

	
:

Equation (2.30) follows directly.

2.14 (a) From Kepler’s third law in the form P 2 D a3 (P in years and a in AU), a D 17:9 AU.

(b) Since mcomet � Mˇ, Kepler’s third law in the form of Eq. (2.37) gives

Mˇ ' 4�2a3

GP 2
D 1:98 � 1030 kg:

(c) From Example 2.1.1, at perihelion rp D a.1�e/ D 0:585 AU and at aphelion ra D a.1Ce/ D 35:2 AU.
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(d) At perihelion, Eq. (2.33) gives vp D 55 km s�1, and at aphelion, Eq. (2.34) gives va D 0:91 km s�1.
When the comet is on the semiminor axis r D a, and Eq. (2.36) gives

v D
r

GMˇ
a

D 7:0 km s�1:

(e) Kp=Ka D �
vp=va

�2 D 3650.

2.15 Using 50,000 time steps, r D
q

x2 C y2 ' 1 AU when t ' 0:105 yr. (Note: Orbit can be downloaded

from the companion web site at http://www.aw-bc.com/astrophysics.)

2.16 The data are plotted in Fig. S2.2. (Note: Orbit can be downloaded from the companion web site at
http://www.aw-bc.com/astrophysics.)

−2 −1 0 1 2
−2

−1

0

1

2

x (AU)

y 
(A

U
)

0.00.40.9

Figure S2.2: Results for Problem 2.16.

2.17 (Note: Orbit can be downloaded from the companion web site at http://www.aw-bc.com/astrophysics.)

(a) See Fig. S2.3.

(b) See Fig. S2.3.

(c) Figure S2.3 shows that the orbit of Mars is very close to a perfect circle, with the center of the circle
slightly offset from the focal point of the ellipse. Kepler’s early attempts at developing a model of the
solar system based on perfect circles were not far off.

2.18 A modified Fortran 95 version of Orbit that works for this problem is given below.

(a) The orbits generated by the modified Orbit are shown in Fig. S2.4.

(b) The calculation indicates S D 2:205 yr.

(c) Eq. (1.1) yields a value of S D 2:135 yr. The results do not agree exactly because the derivation of
Eq. (1.1) assumes constant speeds throughout the orbits.

(d) No, because the relative speeds during the partially-completed orbits are different.

(e) Since the orbits are not circular, Mars is at different distances from Earth during different oppositions.
The closest opposition occurs when Earth is at aphelion and Mars is at perihelion, as in the start of this
calculation.
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Figure S2.3: Results for Problem 2.17. The dots designate the elliptical orbit of Mars, and the principal focus of the
ellipse is indicated by the circle at .x; y/ D .0; 0/. The dashed line is for a perfect circle of radius r D a D 1:5237 AU
centered at x D �ae D �0:1423 AU (marked by the �).

Figure S2.4: The orbits of Earth and Mars including correct eccentricities. The positions of two successive oppositions
are shown. The first opposition occurs when Earth is at aphelion and Mars is at perihelion (the positions of closest
approach).
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PROGRAM Orbit
!
! General Description:
! ====================
! Orbit computes the orbit of a small mass about a much larger mass,
! or it can be considered as computing the motion of the reduced mass
! about the center of mass.
!
! "An Introduction to Modern Astrophysics", Appendix J
! Bradley W. Carroll and Dale A. Ostlie
! Second Edition, Addison Wesley, 2007
!
! Weber State University
! Ogden, UT
! modastro@weber.edu
!-------------------------------------------------------------------

! **************This version has been modified for Problem 2.17******************

USE Constants, ONLY : i1, dp, G, AU, M_Sun, pi, two_pi, yr, &
radians_to_degrees, eps_dp

IMPLICIT NONE
REAL(dp) :: t, dt, LoM_E, LoM_M, P_E, P_M
REAL(dp) :: Mstar, theta_E, dtheta_E, theta_M, dtheta_M, r_E, r_M
INTEGER :: n, k, kmax
INTEGER(i1) :: ios !I/O error flag
REAL(dp) :: delta !error range at end of period
CHARACTER :: xpause

REAL(dp), PARAMETER :: a_E = AU, a_M = 1.5236*AU, e_E = 0.0167, e_M = 0.0935

! Open the output file
OPEN (UNIT = 10, FILE = "Orbit.txt", STATUS = ’REPLACE’, ACTION = ’WRITE’, &

IOSTAT = ios)
IF (ios /= 0) THEN

WRITE (*,’(" Unable to open Orbit.txt. --- Terminating calculation")’)
STOP

END IF

! Convert entered values to conventional SI units
Mstar = M_Sun

! Calculate the orbital period of Earth in seconds using Kepler’s Third Law (Eq. 2.37)
! To be used to determine time steps

P_E = SQRT(4*pi**2*a_E**3/(G*Mstar))

! Enter the number of time steps and the time interval to be printed
n = 100000
n = n + 1 !increment to include t=0 (initial) point
kmax = 100

! Print header information for output file
WRITE (10,’("t, theta_E, r_E, x_E, y_E, theta_M, r_M, x_M, y_M")’)

! Initialize print counter, angle, elapsed time, and time step.
k = 1 !printer counter
theta_E = 0 !angle from direction to perihelion (radians)
theta_M = 0

t = 0 !elapsed time (s)
dt = P_E/(n-1) !time step (s)
delta = eps_dp !allowable error at end of period

! Start main time step loop
DO

! Calculate the distance from the principal focus using Eq. (2.3); Kepler’s First Law.
r_E = a_E*(1 - e_E**2)/(1 - e_E*COS(theta_E)) !Earth starts at aphelion
r_M = a_M*(1 - e_M**2)/(1 + e_M*COS(theta_M)) !Mars starts at perihelion

! If time to print, convert to cartesian coordinates. Be sure to print last point also.
IF (k == 1 .OR. (theta_E - theta_M)/two_pi > 1 + delta) &

WRITE (10, ’(9F10.4)’) t/yr, theta_E*radians_to_degrees, r_E/AU, &
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r_E*COS(theta_E)/AU, r_E*SIN(theta_E)/AU, &
theta_M*radians_to_degrees, r_M/AU, &
r_M*COS(theta_M)/AU, r_M*SIN(theta_M)/AU

! Exit the loop if Earth laps Mars.
IF ((theta_E - theta_M)/two_pi > 1 + delta) EXIT

! Prepare for the next time step: Update the elapsed time.
t = t + dt

! Calculate the angular momentum per unit mass, L/m (Eq. 2.30).
LoM_E = SQRT(G*Mstar*a_E*(1 - e_E**2))
LoM_M = SQRT(G*Mstar*a_M*(1 - e_M**2))

! Compute the next value for theta using the fixed time step by combining
! Eq. (2.31) with Eq. (2.32), which is Kepler’s Second Law.

dtheta_E = LoM_E/r_E**2*dt
theta_E = theta_E + dtheta_E

dtheta_M = LOM_M/r_M**2*dt
theta_M = theta_M + dtheta_M

! Reset the print counter if necessary
k = k + 1
IF (k > kmax) k = 1

END DO

WRITE (*,’(/,"The calculation is finished and the data are in Orbit.txt")’)

WRITE (*,’(//,"Enter any character and press <enter> to exit: ")’, ADVANCE = ’NO’)
READ (*,*) xpause

END PROGRAM Orbit


