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1.1 Vector algebra 1

A = (2 î − 3 ĵ + 7 k̂) B = (5 î + ĵ + 2 k̂)

(a) A + B = (2 + 5) î + (−3 + 1) ĵ + (7 + 2) k̂ = 7 î − 2 ĵ + 9 k̂

(b) A − B = (2 − 5) î + (−3 − 1) ĵ(7 − 2) k̂ = −3 î − 4 ĵ + 5 k̂

(c) A · B = (2)(5) + (−3)(1) + (7)(2) = 21

(d) A × B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
2 −3 7
5 1 2

∣∣∣∣∣∣∣∣∣∣
= −13 î + 31 ĵ + 17 k̂

1.2 Vector algebra 2

A = (3 î − 2 ĵ + 5 k̂) B = (6 î − 7 ĵ + 4 k̂)

(a) A2 = A · A = 32 + (−2)2 + 52 = 38

(b) B2 = B · B = 62 + (−7)2 + 42 = 101

(c) (A · B)2 = [(3)(6) + (−2)(−7) + (5)(4)]2 = [18 + 14 + 20]2 = 522 = 2704
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1.3 Cosine and sine by vector algebra

A = (3 î + ĵ + k̂) B = (−2 î + ĵ + k̂)

(a)

A · B = A B cos (A,B)

cos (A,B) =
A · B
A B

=
(−6 + 1 + 1)

√
(9 + 1 + 1)

√
4 + 1 + 1)

=
−4
√

11
√

6
≈ 0.492

(b) method 1:

|A × B| = A B sin (A,B)

sin (A,B) =
|A × B|

A B

A × B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
3 1 1
−2 1 1

∣∣∣∣∣∣∣∣∣∣
= (1 − 1) î − (3 + 2) ĵ + (3 + 2) k̂ = −5 ĵ + 5 k̂

|A × B| =
√

52 + 52 = 5
√

2

sin (A,B) =
|A × B|

A B
=

5
√

2
√

11
√

6
≈ 0.870

(c) method 2 (simpler) – use:

sin2 θ + cos2 θ = 1

sin (A,B) =
√

1 − cos2 (A,B)

=
√

1 − (0.492)2 from (a) ≈ 0.871

1.4 Direction cosines

Note that here α, β, γ stand
for direction cosines, not for
the angles shown in the figure:
θx = cos−1 α,

θy = cos−1 β,

θz = cos−1 γ.

continued next page =⇒



VECTORS AND KINEMATICS 3

A = Ax î + Ay ĵ + Az k̂

Ax = A · î = A cos (A, î) ≡ Aα

α = cos (A, î) = cos θx.

Similarly,

Ay = A cos (A, ĵ) ≡ A β

β = cos (A, ĵ) = cos θy

Az = A cos (A, k̂) ≡ A γ

γ = cos (A, k̂) = cos θz

Using these results,

A2 = A2
x + A2

y + A2
z

= A2 (α2 + β2 + γ2)

from which it follows that

α2 + β2 + γ2 = 1

Another way to see this is

A2 = ρ2 + A2
z = A2

x + A2
y + A2

z = A2 (α2 + β2 + γ2)

and it follows as before that

α2 + β2 + γ2 = 1.

1.5 Perpendicular vectors

Given |A−B| = |A+B|with A and B nonzero. Evaluate the magnitudes by squaring.

A2 − 2 A · B + B2 = A2 + 2 A · B + B2

−2 A · B = +2 A · B.

A · B = 0

and it follows that A ⊥ B.
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1.6 Diagonals of a parallelogram

The parallelogram is
equilateral, so A = B.

D1 = A + B

D2 = B − A

D1 · D2 = (A + B) · (B − A) = A2 − B2 = 0.

Hence D1 · D2 = 0 and it follows that D1 ⊥ D2.

1.7 Law of sines

The areaA of the triangle is

A =
1
2

A h =
1
2

A B sin γ =
1
2
|A × B|

Similarly,

A =
1
2
|B × C| =

1
2

BC sinα

A =
1
2
|C × A| =

1
2

AC sin β.

Hence AB sin γ = BC sinα = AC sin β, from which it follows

sin γ
C

=
sinα

A
=

sin β
B

Introducing the cross product makes the notation convenient, and emphasizes the
relation between the cross product and the area of the triangle, but it is not essential
for the proof.
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1.8 Vector proof of a trigonometric identity

Given two unit vectors â = cos θ î+sin θ ĵ and b̂ = cos φ î+sin φ ĵ, with a = 1, b = 1.
First evaluate their scalar product using components:

a · b = ab cos θ cos φ + ab sin θ sin φ

= cos θ cos φ + sin θ sin φ

then evaluate their scalar product geometrically.

a · b = ab cos (a,b) = ab cos (φ − θ) = cos (φ − θ)

Equating the two results,

cos (φ − θ) = cos φ cos θ + sin φ sin θ

1.9 Perpendicular unit vector

Given A = (î+ ĵ−k̂) and B = (2 î+ ĵ−3 k̂), find C such that A · C = 0 and B · C = 0.

C = Cx î + Cy ĵ + Cz k̂

= Cx(î + (Cy/Cx) ĵ + (Cz/Cx) k̂)

A · C = Cx(1 + (Cy/Cx) − (Cz/Cx)) = 0

B · C = Cx(2 + (Cy/Cx) − 3(Cz/Cx)) = 0

We have two equations for the two unknowns (Cy/Cx) and (Cz/Cx).

1 + (Cy/Cx) − (Cz/Cx) = 0

2 + (Cy/Cx) − 3(Cz/Cx) = 0.

The solutions are (Cy/Cx) = −1
2 and (Cz/Cx) = 1

2 , so that C = Cx(î − 1
2 ĵ + 1

2 k̂). To
evaluate Cx, apply the condition that C is a unit vector.

C2 =
3
2

C2
x = 1

Cx = ±
√

(2/3)

Ĉ = ±
√

(2/3) (î −
1
2

ĵ +
1
2

k̂)

continued next page =⇒



6 VECTORS AND KINEMATICS

which can be written

Ĉ = ±
1
√

6
(2 î − ĵ + k̂)

Geometrically, C can be perpendicular to both A and B only if C is perpendicular
to the plane determined by A and B. From the standpoint of vector algebra, this
implies that C ∝ A × B. To prove this, evaluate A × B.

A × B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
1 1 −1
2 1 −3

∣∣∣∣∣∣∣∣∣∣
= −2 î + ĵ − k̂

∝ C.

1.10 Perpendicular unit vectors

Given A = 3î + 4ĵ − 4k̂, find a unit vector B̂ perpendicular to A.

(a)

B = Bx î + Byĵ = Bx[î + (By/Bx)ĵ]

A · B = Bx[3 + 4(By/Bx)] = 0

By/Bx = −3/4

B = Bx[î −
3
4

ĵ]

To evaluate Bx, note that B is a unit vector, B2 = 1.

1 = B2
x

(1)2 +

(
3
4

)2 =

(
25
16

)
B2

x

which gives

Bx = ±(4/5)

B̂ = ±(4/5)(î − (3/4)ĵ) = ±
1
5

(4 î − 3 ĵ)

continued next page =⇒
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(b)

C = Cx î + Cy ĵ + Cz k̂

= Cx[î + (Cy/Cx) ĵ + (Cz/Cx) k̂]

A · C = 0 ⇒ Cx[3 + 4(Cy/Cx) − 4(Cz/Cx)] = 0

B · C = 0 ⇒
1
5

Cx[4 − 3(Cy/Cx)] = 0

Cy/Cx = 4/3 Cz/Cx = 25/12

To make C a unit vector,

C2 = C2
x

(1)2 +

(
4
3

)2

+

(
25
12

)2 = 1

Cx ≈ ±0.348

(c) The vector B × C is perpendicular (normal) to the plane defined by B and C, so
we want to prove

A ∝ B × C

B × C = Cx

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
4
5 −3

5 0
1 4

3
25
12

∣∣∣∣∣∣∣∣∣∣
= Cx

[
−

(
75
60

)
î −

(
100
60

)
ĵ +

(
25
15

)
k̂
]

=

(
5
12

)
Cx(−3 î − 4 ĵ + 4 k̂) ∝ A.

1.11 Volume of a parallelepiped

With reference to the sketch, the height is A cosα,
so the frontal area is AB cosα. The depth is
C sin β, so the volume V is

V = (AB cosα)(C sin β) = (A cosα)(BC sin β) = A · (B × C)

The same approach can be used starting with a different face.

V = C · (A × B) V = B · (C × A)

Note that A, B, C are arbitrary vectors. This proves the vector identity

A · (B × C) = C · (A × B) = B · (C × A)



8 VECTORS AND KINEMATICS

1.12 Constructing a vector to a point

Applying vector addition to the lower triangle
in the sketch,

A = r1 + x(r2 − r1)

= (1 − x)r1 + xr2

1.13 Expressing one vector in terms of another

We will express vector A in terms of a unit vector
n̂. As shown in the sketch, we can write
A as the vector sum of a vector A‖ parallel to n̂
and a vector A⊥ perpendicular to n̂,
so that A = A‖ + A⊥.

|A‖| = A cosα

The direction of A‖ is along n̂, so it follows that

A‖ = (A · n̂)n̂.

|A⊥| = A sinα = |n̂ × A|

The direction of (n̂ ×A) is into the paper, so taking its cross product with n̂ gives a
vector (n̂ × A) × n̂ along A⊥ and with the correct magnitude. Hence

A = (A · n̂)n̂ + (n̂ × A) × n̂

1.14 Two points

S = r2 − r1 B = xS A = r1 + B

x = 0 at t = 0; x = 1 at t = T
so that x = t/T , linear in t

A = r1 + xS = r1 +
t
T

(r2 − r1) =

(
1 −

t
T

)
r1 +

t
T

r2
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1.15 Great circle

Consider vectors R1 and R2 from the center
of a sphere of radius R to points on the surface.
To avoid complications, the sketch shows the geometry
of a generic vector Ri (i = 1 or 2) making angles λi and φi.
The magnitude of Ri is R, so R1 = R2 = R.
The coordinates of a point on the surface are

Ri = R cos λi cos φi î + R cos λi sin φi ĵ + R sin λi k̂

The angle between two points can be found using the dot product.

θ(1, 2) = arccos
(
R1 · R2

R1R2

)
= arccos

(
R1 · R2

R2

)
Note that θ(1, 2) is in radians.

The great circle distance between R1 and R2 is S = Rθ(1, 2).

R1 · R2 = R2(cos λ1 cos φ1 cos λ2 cos φ2 + cos λ1 sin φ1 cos λ2 sin φ2 + sin λ1 sin λ2)

Hence

S = R θ(1, 2)

= R arccos [cos λ1 cos λ2(cos φ1 cos φ2 + sin φ1 sin φ2) + sin λ1 sin λ2]

= R arccos
{

1
2

cos (λ1 + λ2)
[
cos (φ1 − φ2) − 1

]
+

1
2

cos (λ1 − λ2)
[
cos (φ1 − φ2) + 1

]}
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1.16 Measuring g

The motion is free fall with uniform
acceleration, so the trajectory is a
parabola, as shown in the sketch. Take
the initial conditions at T=0 to be
z = zA and v = vA. The height z is then

z = zA + vAT −
1
2

gT 2

The height is again zA when T = TA.

zA = zA + vATA −
1
2

gT 2
A

so that

0 = vATA −
1
2

gT 2
A ⇒ vA =

1
2

gTA

By the symmetry of the trajectory, the body reaches height zB for the second time
at T = 1

2 (TA + TB).

h = zB − zA

=

[
zA +

1
2

vA(TA + TB) −
1
2

g[
1
2

(TA + TB)]2
]
−

[
zA + vATA −

1
2

gT 2
A

]
=

(
1
2

) (
1
2

)
gTA(TA + TB) −

1
8

g(TA + TB)2

=
1
8

g(T 2
A − T 2

B)

g =
8h

T 2
A − T 2

B
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1.17 Rolling drum

The drum rolls without slipping, so that when it has rotated through an angle θ, it
advances down the plane by a distance x equal to the arc length s = Rθ laid down.

x = Rθ

a = ẍ = Rθ̈ = Rα

so that

α =
a
R

1.18 Elevator and falling marble

Starting at t = 0, the elevator moves upward
with uniform speed v0, so its height above the ground
at time t is z = v0t.

At time T1, h = v0T1, so that T1 = h/v0. At the instant T1

when the marble is released, the marble is at height h
and has an instantaneous speed v0. Its height z at a later time t is then

z = h + v0(t − T1) −
1
2

g(t − T1)2

The marble hits the ground h = 0 at time t = T2.

0 = h + v0(T2 − T1) −
1
2

g(T2 − T1)2

= h +
h
T1

(T2 − T1) −
1
2

g(T2 − T1)2

= h
T2

T1
−

1
2

g(T2 − T1)2

h =
1
2

T1

T2
g(T2 − T1)2
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1.19 Relative velocity

(a)

rA = rB + R

ṙA = ṙB + Ṙ

vB = vA − Ṙ

(b)

R = 2l sin (ωt) î

Ṙ = 2lω cos (ωt) î

From the result of part (a)

va = vb + 2lω cos (ωt) î

1.20 Sportscar

With reference to the sketch, the distance D traveled is the area under the plot of
speed vs. time. The goal is to minimize the time while keeping D constant. This
involves accelerating with maximum acceleration aa for time t0 and then braking
with maximum (negative) acceleration ab to bring the car to rest.

vmax = aat0 = ab(T − t0)

t0 =
abT

aa + ab

D =
1
2

vmaxT =
1
2

aat0T =
1
2

(
aaab

aa + ab

)
T 2

T =

√
2D(aa + ab)

aaab

aa =
100 km/hr

3.5 s
=

(
100 km

hr

) (
1000 m
1 km

) (
1 hr

3600 s

) (
1

3.5 s

)
≈ 7.94m/s2

ab = 0.7g = 0.7(9.80 m/s2) ≈ 6.86 m/s2

T =

√
(2000 m)(6.86 + 7.94) m/s2

(6.86 m/s2)(7.94 m/s2)
≈ 23.5s
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1.21 Particle with constant radial velocity

(a)

v = ṙ r̂ + rθ̇ θ̂ = (4.0 m/s) r̂ + (3.0 m)(2.0 rad/s) θ̂

(Note that radians are dimensionless.)

v = (4.0 r̂ + 6.0 θ̂) m/s v =
√

vr
2 + vθ2 =

√
16.0 + 36.0 ≈ 7.2 m/s

(b)

a = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂

r̈ = 0 and θ̈ = 0

ar = −rθ̇2 = −(3.0 m)(2.0 rad/s)2 = −12.0 m/s2

aθ = 2ṙθ̇ = 2(4.0 m/s)(2.0 rad/s) = 16.0 m/s2

a =

√
a2

r + a2
θ =

√
144.0 + 256.0 = 20.0 m/s2

1.22 Jerk

Refer to the Appendix for a corrected solution.
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1.23 Smooth elevator ride

(a) Let a(t) ≡ acceleration

a(t) =
1
2

am[1 − cos(2πt/T )] 0 ≤ t ≤ T

a(t) = −
1
2

am[1 − cos(2πt/T )] T ≤ t ≤ 2T

Let j(t) ≡ jerk

j(t) =
da
dt

j(t) = am(π/T ) sin (2πt/T ) 0 ≤ t ≤ T

j(t) = −am(π/T ) sin (2πt/T ) T ≤ t ≤ 2T

Let v(t) ≡ speed

v(t) = v(0) +

∫ t

0
a(t′)dt′ 0 ≤ t ≤ T

=
1
2

am[t − (T/2π) sin(2πt/T )]

v(t) = v(T ) +

∫ t

T
a(t′)dt′ T ≤ t ≤ 2T

=
1
2

amT −
1
2

am[(t − T ) − (T/2π) sin(2πt/T )]

=
1
2

am[(2T − t) + (T/2π) sin 2πt/T ]

The sketch (in color) shows the jerk j(t) (red), the acceleration a(t) (green), and
the speed v(t) (black) versus time t.

continued next page =⇒
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(b) The speed v(t) is the area under the curve of a(t). As the sketch indicates, v(t)
increases with time up to t = T , and then decreases. The maximum speed vmax

therefore occurs at t = T , so that vmax = v(T ).

vmax = v(0) +

∫ T

0
a(t′)dt′ =

1
2

am

∫ T

0
[1 − cos (2πt′/T )]dt′

=
1
2

am [t′ − (T/2π) sin (2πt′/T )]|T0 =
1
2

amT

(c) For t � T , we can use the small angle approximation:

sin θ = [θ −
1
3!
θ3 + . . .]

v(t) =

∫ t

0
a(t′)dt′ =

1
2

am[t − (T/2π) sin (2πt/T )]

=
am

2
{t − (T/2π)[(2πt/T ) −

1
3!

(2πt/T )3 + . . .}

≈
am

2
{

1
3!

(2π/T )2t3} ≈ am

(
π2

3

) (
t3

T 2

)
(d) direct method:

Let the distance at time t be x(t).

x(t) =

∫
v(t′)dt′

where

v(t) =
1
2

∫ t

0
a(t′)dt′ 0 ≤ t ≤ T

=
am

2
[t − (T/2π) sin (2πt/T )] 0 ≤ t ≤ T

v(t) =

∫ T

0
a(t′)dt′ +

∫ t

T
a(t′)dt′ T ≤ t ≤ 2T

=
am

2
[T − t + T + (T/2π) sin (2πt/T )] T ≤ t ≤ 2T

(Note that v(2T ) = 0.) Then

D = x(2T )

=
am

2

∫ T

0
[t′ − (T/2π) sin (2πt′/T )]dt′ +

am

2

∫ 2T

T
[2T − t′ + (T/2π) sin (2πt′/T )]dt′

=
am

2
T 2

continued next page =⇒
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(e) symmetry method:

By symmetry, the distance from x(0) to x(T ) and the distance from x(T ) to
x(2T ) are equal. The distance from x(0) to x(T ) is

x(T ) =

∫ T

0
v(t′)dt′

=
am

2

∫ T

0
[t − (T/2π) sin (2πt′/T )]dt′

=
am

2
[t′2/2 + (T/2π)2 cos (2πt′/T )]

∣∣∣T
0

=
am

4
T 2

By symmetry

D = 2x(T ) =
1
2

amT 2

as before.

1.24 Rolling tire

Let x, y be the coordinates of the pebble measured
from the stationary origin. Let ρ be the vector
from the stationary origin to the center of the
rolling tire, and let R′ be the vector
from the center of the tire to the pebble.

ρ = Rθ î + R ĵ

R′ = −R sin θ î − R cos θ ĵ

From the diagram, the vector from the origin to the pebble is

x î + y ĵ = ρ + R′ = Rθ î + R ĵ − R sin θ î − R cos θ ĵ

x = Rθ − R sin θ ẋ = R θ̇ − R cos θ θ̇

y = R − R cos θ ẏ = R sin θ θ̇

The tire is rolling at constant speed without slipping: θ = ωt = (V/R)t.

continued next page =⇒
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ẋ = Rω − Rω cos θ ẍ = Rω2 sin θ

ẏ = Rω sin θ ÿ = Rω2 cos θ

Note that

ẍ î + ÿ ĵ = ρ̈ + R̈′ = R̈′

The pebble on the tire experiences an inward radial acceleration V2/R, and from
the results for ẍ and ÿ√

ẍ2 + ÿ2 = Rω2

=
V2

R

as expected.

This result shows that the acceleration measured in the stationary system is the
same as measured in the system moving uniformly along with the tire.

1.25 Spiraling particle

(a)

r =
θ

π
θ =

αt2

2

r =
αt2

2π

ṙ =
αt
π

θ̇ = αt

r̈ =
α

π
θ̈ = α

a = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂ =

(
α

π
−
α3t4

2π

)
r̂ +

(
5α2t2

2π

)
θ̂

(b)

ar =
α

π
−
α3t4

2π
= 0 at time t’

α

π
=
α3t′4

2π
=⇒ t′2 =

√
2
α

θ(t′) =
αt′2

2
=

1
√

2
rad

continued next page =⇒
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(c)

a = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂

Using the expression for θ from part (a),

a =

(
α

π

)
[(1 − 2θ2) r̂ + 5θ θ̂]

Setting |ar| = |aθ|, then |1 − 2θ2| = |5θ|

If θ < 1
√

2
, then 1 − 2θ2 = 5θ

Because θ ≥ 0, the only allowable root is

θ =
−5 +

√
33

4
≈ 0.186 rad ≈ 10◦

If θ > 1
√

2
, then 2θ2 − 1 = 5θ

θ =
5 +
√

33
4

≈ 2.69 rad ≈ 154◦

In the sketch, the velocity vectors are in scale to one another, as are the acceleration
vectors.

NOTE: The figure is an example of an Archimedean spiral. In polar coordinates, the
equation of an Archimedean spiral is r = A θ, where A is a constant. A fundamental
property of an Archimedean spiral is that the radial spacing between adjacent turns
is the same everywhere on the spiral. Consider a point (r, θ) on the spiral. The point
on the adjacent turn along the same radial line thus has coordinates (r′, θ + 2π).
Then

∆r = r′ − r = A (θ + 2π) − A θ)

= 2π A

a constant, the same at any point of the spiral.
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1.26 Range on a hill

The trajectory of the rock is described by coordinates x and y, as shown in the
sketch. Let the initial velocity of the rock be v0 at angle θ.

x = (v0 cos θ) t y = (v0 sin θ) t −
1
2

g t2

The locus of the hill is y = −x tan φ

Let the rock land on the hill at time t′.

t′ =
x

v0 cos θ

The locus of the hill and the trajectory of the rock intersect at t′.

−x tan φ = x tan θ −
1
2

(
g

v0
2

) (
x2

cos2 θ

)
Solving for x,

x =

(
2v2

0

g

) [
cos θ sin θ + (cos2 θ) tan φ

]
=

(
2v2

0

g

) [
1
2

sin 2θ + (cos2 θ) tan φ
]

The condition for maximum range is dx/dθ = 0. Note that φ is a constant.

dx
dθ

= 0 = cos 2θ − 2 sin θ cos θ tan φ = cos 2θ − (sin 2θ) tan φ

cot 2θ = tan φ

tan 2θ = tan
(
π

2
− φ

)
θ =

π

4
−
φ

2
for maximum range

The sketch is drawn for the case φ = 20◦ and v0 = 5.0 m/s.
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1.27 Peaked roof

Let the initial speed at t = 0 be v0. A straightforward way to solve this problem is
to write the equations of motion in a uniform gravitational field, as follows:

x = −h + v0xt y = v0yt −
1
2

gt2

vx = v0x vy = v0y − gt

At time T , the ball is at the peak, where y = h and vy = 0.

0 = v0y − gT ⇒ T =
v0y

g

h = v0yT −
1
2

gT 2 =
v2

0y

g
−

1
2

v2
0y

g

v2
0y = 2gh

At time T , x = 0.

0 = −h + v0xT ⇒ v0x =
h
T

=

√
gh
2

We then have

v0 =

√
v2

0x + v2
0y =

√
2 +

1
2

√
gh =

√
5
2

√
gh

A more physical approach is to note that the vertical speed needed to reach the peak
is the same as the speed v0y a mass acquires falling a distance h: v0y =

√
2gh. The

time T to fall that distance is T = v0y/g. The horizontal distance traveled in the
time T is

h = v0xT = v0x

(
v0y

g

)
= v0x

√
2h
g

v0x =

√
gh
2

The initial speed v0 is therefore

v0 =

√
v2

0x + v2
0y =

√
2 +

1
2

√
gh =

√
5
2

√
gh


