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VECTORS
AND
KINEMATICS

1.1 Vector algebra 1
A=Q2i-3j+7k) B=Gi+j+2k)
@ A+B=Q2+5i+B3+Dj+T+2k=71-2]+9k
G A-B=Q2-5i+(-3-1Dj7-2k=-31-4j+5k
© A-B=(2)5)+(=3)(1)+(N(2) =21
i j) Kk
2 -3 7
5 1 2
=-131+31j+17k

(d AxB=

1.2 Vector algebra 2

A=(@i-2j+5k B=(6i-7j+4k)
(@) A=A A=3+(-2+5 =38

(b) B =B-B =6+ (=77 +4 = 101

(©) (A-B)’ =[(3)6) + (-2)(=7) + (S)@)I* = [18 + 14 + 201> = 52* = 2704



2 VECTORS AND KINEMATICS

1.3 Cosine and sine by vector algebra
A=GBi+j+k B=(2i+]j+k
(a)

A-B=ABcos(A,B)

A-B
cos(A,B) = ——

AB
_ (-6+1+1) _ -4 ~ 0.492
VO+1+DVA+1+1) V116

(b) method 1:
|A X B| = ABsin(A,B)

AxB

sin(A,B) = A Bl

AB
i jk
AxB=|3 1 1
2011

=1-Di-G+2)j+3B+2)k =-5j+5k
AxB|l= V32452 =512

AxB| 52
sin(A.B) = | AXB |- «/1_1\/_\/8 ~ 0.870

(c) method 2 (simpler) — use:

sin6 + cos’ 9 =1
sin (A, B) = /1 —cos? (A, B)
= 41 -(0.492)> from (a) ~ 0.871

1.4 Direction cosines

Note that here a, S, v stand F

for direction cosines, not for

the angles shown in the figure: [ T T T

0, = cos” ! a, A’b @% IN

6, = cos™' B,

6, = cos™!y. Ay
N, L8y

continued next page — B, P~



VECTORS AND KINEMATICS 3

A=A i+Aj+Ak
Ax:A-f =A cos(A,i)EAa/

@ = COoS (A,'i\) = cosb,.
Similarly,

A, =Acos(A,]) =AB
B = cos (A,j) = cos 6,
A, =Acos(Ak) =Ay
y = cos (A, K) = cosé.

Using these results,

AP = AT+ A+ A
=A@ +p+7)
from which it follows that
A +p+y =1
Another way to see this is
A =p’+ A = AT+ A+ A =A@+ B +Y)
and it follows as before that

a? + Byt =1,

1.5 Perpendicular vectors

Given |A—B| = |A+B| with A and B nonzero. Evaluate the magnitudes by squaring.

A2—2A -B+B>=A>+2A-B+ B
—2A-B=+2A-B.
A-B=0

and it follows that A 1 B.
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VECTORS AND KINEMATICS

1.6 Diagonals of a parallelogram

The parallelogram is

equilateral, so A = B.

B
D;=A+B
D,=B-A
D;-D,=(A+B)-(B-A) =A>-B*> =0.
/

Hence D; - D, = 0 and it follows that D; L D,.

1.7 Law of sines

The area A of the triangle is

1 1 1
ﬂZEAh :EAB smy :§|AXB|

Similarly,

1 1
A= ElB xC| = EBCsinoz

1 1
A= EIC XAl = EAC sin 3.

Hence AB siny = BC sina = AC sin S, from which it follows
siny sina _ sinf
C A B
Introducing the cross product makes the notation convenient, and emphasizes the

relation between the cross product and the area of the triangle, but it is not essential
for the proof.
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1.8 Vector proof of a trigonometric identity

Given two unit vectors & = cos §i+sin6j and b = cos ¢i+sin¢j, witha = 1,b = 1.
First evaluate their scalar product using components:

¢
a-b=abcosfcos¢ +ab sinfsin¢ ) 1
= cos 6 cos ¢ + sinfsin @
then evaluate their scalar product geometrically. ) “
9
6

~>
A 4

a-b=abcos(a,b) =abcos(¢p—6)=cos(¢p—0)
Equating the two results,

cos (¢ — 0) = cos¢pcosb + singsind

1.9 Perpendicular unit vector

Given A = (i+j—k)and B = (2i+j—3Kk), find C such that A - C = 0and B - C = 0.

C= Cxi+Cyj+CZlA<
= i+ (C,/CHj + (C./CHk)
A-C=C(1+(Cy/Cy)—(C,/Cy)) =0
B-C = Cu2+(C,/C)—3(C./C)) = 0

We have two equations for the two unknowns (C,/Cy) and (C,/Cy).

I+ (Cy/cx) - (Cz/cx) =0
2+ (Cy/cx) - 3(Cz/cx) =0.

The solutions are (C,/C,) = -1 and (C,/C,) = 1, so that C = C4(i - £j + 1k). To
evaluate C,, apply the condition that C is a unit vector.

2_§ 2
=3¢ =1
C. = +2/3)
RN Y YR S

continued next page —



6 VECTORS AND KINEMATICS

which can be written
~ 1 A A A
C=x—Qi-j+k)
V6
Geometrically, C can be perpendicular to both A and B only if C is perpendicular

to the plane determined by A and B. From the standpoint of vector algebra, this
implies that C o« A X B. To prove this, evaluate A x B.

ij k
AxB=|1 1 -1
2 1 -3
=2i+j-k

1.10 Perpendicular unit vectors

Given A = 3i + 4j — 4k, find a unit vector B perpendicular to A.

(a)
B=Bi+Bj =Bli+(B/B]l
A-B=B,[3+4(B,/B,)] =0
B,/B, = -3/4

A 34
B=B,i——]j
[i 1 J]

To evaluate B,, note that B is a unit vector, B> = 1.

Coole 3V _(25)
rfor ] -

which gives

B, = +(4/5)
. . . 1 o~ s
B =+(4/5)1-G/4)) ==+z(4i-3))

continued next page —



VECTORS AND KINEMATICS 7

(b)
C=C,i+Cj+C.k
= Cii+(C,/CJ + (C./CK]
A-C=0 = C[3+4(Cy/C,)—4C,/CHI=0
B-C=0 = %Cx[4 -3(C,/CHI =0
C,/C,=4/3 C,/C,=25/12

To make C a unit vector,

2 ale L (AY L (25
ccfors (3 (3] -

C, ~ £0.348

(c) The vector B x C is perpendicular (normal) to the plane defined by B and C, so

we want to prove

AxBxC
i j Kk
BxC=C|? -2 0
1 4 2
3 12
[ (75\: (100\. (25).
=Col-|=)1- (= ]i+|=]k
(o) i<(5)¢
el

lz)cx(—si—4j+4f<) « A.

1.11 Volume of a parallelepiped

With reference to the sketch, the height is A cos «,
so the frontal area is AB cos a. The depth is
C sin S, so the volume V is

V =(ABcosa)(CsinB) = (Acosa)(BCsinB) =A-(B xC)

The same approach can be used starting with a different face.

V=C-(AxB) V=B-(CxA)
Note that A, B, C are arbitrary vectors. This proves the vector identity

A-BxC)=C-(AxB)=B-(CxA)
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1.12 Constructing a vector to a point

Applying vector addition to the lower triangle
in the sketch,

'\1?= (7 -7)

A:I'1+)C(I'2—I'1)

=(1—-x)r; +xr;

1.13 Expressing one vector in terms of another

We will express vector A in terms of a unit vector m
. As shown in the sketch, we can write 1‘
A as the vector sum of a vector A parallel to fi
and a vector A, perpendicular to fi,

sothat A = Ay +A,.

Ayl = Acosa

The direction of A is along , so it follows that
A= (A-h)h.
A, | =Asina = [fixA|

The direction of (fi X A) is into the paper, so taking its cross product with fi gives a
vector (i X A) x fi along A, and with the correct magnitude. Hence

A=A -hHh+(MxA)xin

1.14 Two points

S:I'Z—I‘l B =xS A:I'1+B

x=0atr=0;x=1ater=T
so that x = ¢/T, linear in ¢
t

t t
A=r+xS =r; + =(r; - :(1——) + =
r; + X I T(rz ry) T Iy Trz




VECTORS AND KINEMATICS 9

1.15 Great circle

Consider vectors R; and R, from the center 7
of a sphere of radius R to points on the surface.

To avoid complications, the sketch shows the geometry

of a generic vector R; (i = 1 or 2) making angles A; and ¢;.
The magnitude of R; is R, so Ry = R, = R.

The coordinates of a point on the surface are

R; = Rcoslicos¢,~f+Rcos/li sind),-j +Rsin/lilA(

The angle between two points can be found using the dot product.

R; - R R;-R
6(1,2) = arccos L 2) = arccos | ———2
RiR, R?

Note that 6(1, 2) is in radians.

The great circle distance between Ry and R is § = RO(1, 2).

R; - R, = R*(cos A, cos @1 cos Ay cOS ¢y + cos Ay sin ¢y cos A, sin ¢, + sin A; sin A,)
Hence

S =R06(1,2)

= Rarccos [cos A cos A,(cos ¢y cos ¢, + sin ¢y sin@,) + sin A; sin A5 ]

= R arccos {% cos (A; + Ap) [cos (¢ — ¢pp) — 1] + %cos (A1 — ) [cos (¢ — o) + 1]}
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1.16 Measuring g

The motion is free fall with uniform
acceleration, so the trajectory is a
parabola, as shown in the sketch. Take
the initial conditions at 7=0 to be

7 = z4 and v = v4. The height z is then

I
Z:ZA+VAT—§gT
The height is again z4 when T = T4.

1
2a =24 +vals — EgTi

so that

1 1
0= val s — EgTi = Va4 = EgTA

Le.i.aht
B ™
S e— Ty —> ‘\\
A \
i A
A i \ time

By the symmetry of the trajectory, the body reaches height zp for the second time

at T = 2(T + Tp).
h =2 — <A

2/\2

1
= 38(Ti-Tp)
_8h
CTI-T3

8

1 1 1
Za + EVA(TA + Tp) — Eg[E(TA + TB)]Q] -

I\(1 1 2
=== gTA(TA + TB) - gg(TA + TB)

I
24 +valy — =gT;

2
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1.17 Rolling drum

The drum rolls without slipping, so that when it has rotated through an angle 6, it
advances down the plane by a distance x equal to the arc length s = R6 laid down.

x = R0
a=% =RO =Ra

so that

a
a=—
R

1.18 Elevator and falling marble

r 1

Starting at ¢ = 0, the elevator moves upward
with uniform speed vy, so its height above the ground * T
A

at time ¢ 1S z = vyt.

Attime T, h = voT, so that T = h/vy. At the instant T} L

/,/////// ////////

when the marble is released, the marble is at height &
and has an instantaneous speed vy. Its height z at a later time ¢ is then

1
z=h+vy(t-T)) - Eg(t -1
The marble hits the ground 4 = 0 at time # = 7.
1
O0=h+vo(T2—Ty) - Eg(Tz -7
=h+ h(T 7)) ! (T, — T))?
= T, 2 1 28 2 1
=h———g(T, - T
T 28( 2 1)
1T,

h=—-—g(T,-T))>*
2T28(2 1)
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1.19 Relative velocity

()
'a =TIp +R

ry=rg+R

(b)
R = 2/sin (wh)i R
R = 2lwcos (wi) 1 O
,Yh ‘s X
From the result of part (a) \
Va = Vi, + 2lw cos (wh) i
1.20 Sportscar

With reference to the sketch, the distance D traveled is the area under the plot of
speed vs. time. The goal is to minimize the time while keeping D constant. This
involves accelerating with maximum acceleration a, for time 7, and then braking
with maximum (negative) acceleration a, to bring the car to rest.

Vinax = Agly = ah(T - tO)
a,T mas

th =
a, + ap

p=l, L pp = L[ G )
= ZVmax = 4, ==
2 270 2\a, +a,

7o [Pt a)
a,ap

_ 100km/hr _(100km)(1000m)( 1 hr )( 1

gﬁ. e —— e e —
-

9= "33y hr 1km J{3600s/\355
a, =0.7g =0.7(9.80m/s*) ~ 6.86m/s>

) ~ 7.94m/s?

~ 23.5s

/(2000 m)(6.86 + 7.94) m/s?
- (6.86 m/s2)(7.94 m/s?)
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1.21 Particle with constant radial velocity

(a)
v=it+r00 = 4.0m/s)t + (3.0m)(2.0rad/s) &

(Note that radians are dimensionless.)

v=40f+6.00)m/s v=2+v2 = V16.0+36.0 ~7.2m/s

(b)
a=@GF-réH)t+0+2i0)0

F=0and =0

a, = —rf* = —(3.0m)(2.0rad/s)> = —12.0m/s’
ag = 2i9 =2(4.0m/s)(2.0rad/s) = 16.0m/s’
a=4Ja>+a; = V144.0 + 256.0 =20.0m/s’

1.22 Jerk

Refer to the Appendix for a corrected solution.

13



14 VECTORS AND KINEMATICS

1.23 Smooth elevator ride

(a) Let a(t) = acceleration
1
a(t) = Eam[l —cosat/T)] 0<t<T
1
a(t) = —Eam[l —cos2at/T)] T <t<2T

Let j(t) = jerk

.. _da

Jj@) = ar

j() = an(n/T)sin 2at/T) 0<t<T
j(t) = —a,(x/T)sin Qnt/T) T <t<2T

Let v(t) = speed

v(t) = v(0) + f al)dt' 0<t<T
0

_ %am[t —(T/27) sinxt/T)]

v(t) =v(T) + f a(tydt' T <t<2T
T

= %amT - %am[(t — T) — (T/2n) sin(2nt/T)]

1
= Eam[(ZT — 1)+ (T/2m)sin2nt/T]
The sketch (in color) shows the jerk j(z) (red), the acceleration a(¢) (green), and

the speed v(#) (black) versus time ¢.

continued next page —

j
()
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VECTORS AND KINEMATICS 15

(b) The speed v(¢) is the area under the curve of a(f). As the sketch indicates, v(¢)
increases with time up to # = T, and then decreases. The maximum speed v,
therefore occurs at r = T, so that v,,,, = v(T).

T 1 T
Vimax = V(0) + f a(t)dt = Eamf [1 - cos(2nt' /T))dt
0 0

! 1
= 5 [t — (T/2x)sin2at' /Ty = EamT
(c) For t < T, we can use the small angle approximation:

. 1
51n9—[0—§9 +...]

v(t) = f a(@)dr = %am[t — (T /2r) sin 2rt/T)]
0

= %{t —(T2m|[2nt/T) — %(27U/T)3 + ...}

G 1 25 o (T
~ Z 5 Cn/T)r) ~am(3)(T2)

(d) direct method.:

Let the distance at time ¢ be x(7).

x(1) = f v(t')dt

where

1 f
v(t):—fa(t’)dt’ 0<t<T
2 Jo

_ %’"[; —(T/2m)sin@nt/T)] 0<t<T

T t
v(t) = f a(®)dt’ + f a(tydt T <t<2T
0 T

- %"[T —t+ T +(T/27)sin Qnt/T)] T <t<2T

(Note that v(2T') = 0.) Then

D = x(2T)
B a, T 2T

== [t = (T/2m)sin 2rt’/T)]dt" + %’" [2T — ¢ + (T /2n) sin 2nt’ /T)]dY
0 T

a
=272
2

continued next page —



16 VECTORS AND KINEMATICS

(e) symmetry method:

By symmetry, the distance from x(0) to x(7") and the distance from x(7) to
x(2T) are equal. The distance from x(0) to x(7) is

T
x(T):f v(t')dt
0

a T
== f [t — (T/27) sin nt’ | T)ldt’
0

= 27?2

= 2 [¢2)2 + (T/21)? cos 2nt' /T))] 0 =2

2
By symmetry

|T a,

1
D =2x(T) = 5a,,,T2

as before.

1.24 Rolling tire

Let x, y be the coordinates of the pebble measured Yy

from the stationary origin. Let p be the vector /4 .

from the stationary origin to the center of the Vol SO ~
rolling tire, and let R’ be the vector / <
from the center of the tire to the pebble.

p=ROi+R]) ~ 2 -
R’ = —Rsin#i—- Rcos6] ]

From the diagram, the vector from the origin to the pebble is

xi+yj=p+R =ROi+Rj—Rsinfi—Rcosbj
x=RO—-Rsinl x=R6O-Rcoshb
y=R-Rcosf y=Rsinho

The tire is rolling at constant speed without slipping: 8 = wt = (V/R)t.

continued next page —



VECTORS AND KINEMATICS 17

% =Rw—Rwcosf i=Rw’sind
y=Rwsinf ¥ = Rw*cosb
Note that

i+yj=p+R =R

The pebble on the tire experiences an inward radial acceleration V?/R, and from

the results for X and y

JETF = R
V2
“R

as expected.

This result shows that the acceleration measured in the stationary system is the

same as measured in the system moving uniformly along with the tire.

1.25 Spiraling particle

(a)
) p at?
r = — = —
b4 2
at?
r=—
2
o at
F=— 0=at
T
i*:g 0=a
T
; . A 34 50217\ A
a=G-rO)i+0i+2i0)0 = |- L) (22 ) 0
b4 2 2r
(b)
a ot o
a,=———=0attimet
Vg 2r
a_ott _ o V2
T 2 o
2
at’ 1
()= —— = —rad
2 2

continued next page —
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© T
a=@GF-réH)t+h+2i0)0 AN

Using the expression for 6 from part (a),

a= (;—”) [(1-26°)F +500]

)

Setting |a,| = |agl, then |1 — 26°| = |56)|

\
\ . /
If0 < L, then 1 —26% =560 \

\f’

Because 6 > 0, the only allowable root is

9= _5+T‘/§ ~0.186 rad ~ 10°

1 2 _ 1 —
If9>ﬁ,then29 1=56

5+ V33
o= T\/_ ~2.69 rad ~ 154°
In the sketch, the velocity vectors are in scale to one another, as are the acceleration

vectors.

NOTE: The figure is an example of an Archimedean spiral. In polar coordinates, the
equation of an Archimedean spiral is r = A 6, where A is a constant. A fundamental
property of an Archimedean spiral is that the radial spacing between adjacent turns
is the same everywhere on the spiral. Consider a point (7, 8) on the spiral. The point
on the adjacent turn along the same radial line thus has coordinates (1,6 + 2r).
Then

Ar=r —-r=A0+21)—A0)
=2rA

a constant, the same at any point of the spiral.
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1.26 Range on a hill

The trajectory of the rock is described by coordinates x and y, as shown in the
sketch. Let the initial velocity of the rock be v, at angle 6.

1
x = (vgcosb)t y:(vosine)z‘—igt2

The locus of the hill is y = —xtan ¢

Let the rock land on the hill at time ¢’.

X

’

Vo cos 6

The locus of the hill and the trajectory of the rock intersect at ¢'.

1({g x?
2 \vp?/)\cos20

—xtan¢ = xtan 6 — =

Solving for x,

2\/% ) 5 ZVS 1 . 5
x=|— [cos 6sin @ + (cos” 6) tan ¢] =(— 3 sin 26 + (cos” 0) tan ¢
8

8
The condition for maximum range is dx/d6 = 0. Note that ¢ is a constant.
d
d_z =0 =cos20 —2sinfcosftan¢ = cos?26 — (sin26)tan ¢
cot26 = tan ¢

tan 260 = tan(g - ¢)
n ¢

0= 1772 for maximum range

The sketch is drawn for the case ¢ = 20° and vy = 5.0 m/s.
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1.27 Peaked roof

Let the initial speed at t = 0 be v. A straightforward way to solve this problem is
to write the equations of motion in a uniform gravitational field, as follows:

1
X =—h+ vyt Y = vout — Egt2

Vi = Voyx Vy = Vo, — 81

At time T, the ball is at the peak, where y = h and v, = 0.

V
O=vy—gT = T=—
g
2 2
1 vOy 1‘}0},
h=voyT — =gT* = = — -—
2 g 2

Vg, = 2gh
Attime T, x = 0.

Vgh
2

h
O:_h+V0xT = V()x:? =

We then have

1 5
N RN RN N N

A more physical approach is to note that the vertical speed needed to reach the peak
is the same as the speed vy, a mass acquires falling a distance h: vy, = +/2gh. The
time 7' to fall that distance is T = v(,/g. The horizontal distance traveled in the
time 7T is

The initial speed vy is therefore

1 5
N R TN N



