Revised Answers Manual to an Introduction to Measure-Theoretic Probability

George G. Roussas

University of California, Davis, United States

Chapter 1

Certain Classes of Sets, Measurability, Pointwise Approximation

- **1.** (i) $x \in \underline{\lim}_{n \to \infty} A_n$ if and only if $x \in \bigcup_{n \ge 1} \bigcap_{j \ge n} A_j$, so that $x \in \bigcap_{j \ge n_0} A_j$ for some $n_0 \ge 1$, and then $x \in \underline{A_j}$ for all $j \ge n_0$, or $x \in \bigcup_{j \ge n} A_j$ for all $n \ge 1$, so that $x \in \bigcap_{n \ge 1} \bigcup_{j \ge 1} A_j \overline{\lim}_{n \to \infty} A_n$.
 - (ii) $\left(\underline{\lim}_{n\to\infty}A_n\right)^c = \left(\bigcup_{n\geq 1}\bigcap_{j\geq n}A_j\right)^c = \bigcap_{n\geq 1}\bigcup_{j\geq n}A_j^c = \overline{\lim}_{n\to\infty}A_n^c,$ $\left(\overline{\lim}_{n\to\infty}A_n\right)^c = \left(\bigcap_{n\geq 1}\bigcup_{j\geq n}A_j\right)^c = \bigcup_{n\geq 1}\bigcap_{j\geq n}A_j^c = \underline{\lim}_{n\to\infty}A_n^c.$ Let $\lim_{n\to\infty}A_n = A$. Then $\underline{\lim}_{n\to\infty}A_n^c = \left(\overline{\lim}_{n\to\infty}A_n\right)^c = \left(\lim_{n\to\infty}A_n\right)^c = A^c$, and $\overline{\lim}_{n\to\infty}A_n = \left(\underline{\lim}_{n\to\infty}A_n\right)^c = \left(\underline{\lim}_{n\to\infty}A_n\right)^c = A^c$, so that $\lim_{n\to\infty}A_n^c$ exists and is A^c .
 - (iii) To show that $\underline{\lim}_{n\to\infty}(A_n\cap B_n)=(\underline{\lim}_{n\to\infty}A_n)\cap(\underline{\lim}_{n\to\infty}B_n)$. Equivalently,

$$\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} (A_j \cap B_j) = \left(\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j\right) \cap \left(\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_j\right).$$

Indeed, let x belong to the left-hand side. Then $x \in \bigcap_{j=n_0}^{\infty} (A_j \cap B_j)$ for some $n_0 \ge 1$, hence $x \in (A_j \cap B_j)$ for all $j \ge n_0$, and then $x \in A_j$ and $x \in B_j$ for all $j \ge n_0$. Hence $x \in \bigcap_{j=n_0}^{\infty} A_j$ and $x \in \bigcap_{j=n_0}^{\infty} B_j$, so that $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j$ and $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_j$; i.e., x belongs to the right-hand side. Next, let x belong to the right-hand side. Then $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j$ and $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_j$, so that $x \in \bigcap_{j=n_1}^{\infty} A_j$ and $x \in \bigcap_{j=n_2}^{\infty} B_j$ for some $n_1, n_2 \ge 1$. Then $x \in \bigcap_{j=n_0}^{\infty} A_j$ and $x \in \bigcap_{j=n_0}^{\infty} A_j$ and $x \in \bigcap_{j=n_0}^{\infty} A_j$ and $x \in A_j$ and $x \in A_j$ and $x \in A_j$ for all $x \in A_j$ and $x \in A_j$ and hence $x \in A_j$ and $x \in A_j$ and hence $x \in A_j$

Next, $\overline{\lim}_{n\to\infty}(A_n \cup B_n) = \overline{\lim}_{n\to\infty}(A_n^c \cap B_n^c)^c = [\underline{\lim}_{n\to\infty}(A_n^c \cap B_n^c)]^c$ (by part (ii)), and this equals to $[(\underline{\lim}_{n\to\infty}A_n^c) \cap (\underline{\lim}_{n\to\infty}B_n^c)]^c$ (by what we just proved), and this equals $[(\overline{\lim}_{n\to\infty}A_n)^c \cap (\overline{\lim}_{n\to\infty}B_n)^c]^c = (\overline{\lim}_{n\to\infty}A_n) \cup (\overline{\lim}_{n\to\infty}B_n)$, as was to be seen.

(iv) To show that: $\overline{\lim}_{n\to\infty}(A_n\cap B_n)\subseteq (\overline{\lim}_{n\to\infty}A_n)\cap (\overline{\lim}_{n\to\infty}B_n)$ and $\underline{\lim}_{n\to\infty}(A_n\cup B_n)\supseteq (\underline{\lim}_{n\to\infty}A_n)\cup (\underline{\lim}_{n\to\infty}B_n).$ Suffices to show: $\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}(A_j\cap B_j)\subseteq \left(\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}A_j\right)\cap \left(\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}B_j\right).$

Indeed, let x belong to the left-hand side. Then $x \in \bigcup_{j=n}^{\infty} (A_j \cap B_j)$ for all $n \ge 1$, so that $x \in (A_j \cap B_j)$ for some $j \ge n$ and all $n \ge 1$. Then $x \in A_j$ and $x \in B_j$ for some $j \ge n$ and all $n \ge 1$, hence $x \in \bigcup_{j=n}^{\infty} A_j$ and $x \in \bigcup_{j=n}^{\infty} B_j$ for all $n \ge 1$, so that $x \in \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j$ and $x \in \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} B_j$, and hence $x \in \left(\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j\right) \cap \left(\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} B_j\right)$; i.e., $x \in \mathbb{N}$ belongs to the right-hand side. So, the above inclusion is correct.

Also, to show that : $\left(\bigcup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_j\right) \cup \left(\bigcup_{n=1}^{\infty} \cap_{j=n}^{\infty} B_j\right) \subseteq \bigcup_{n=1}^{\infty} \cap_{j=n}^{\infty} (A_j \cup B_j)$.

Indeed, let x belong to the left-hand side. Then $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j$ or $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_j$ or to both. Let $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j$. Then $x \in \bigcap_{j=n_0}^{\infty} A_j$ for some $n_0 \ge 1$, hence $x \in A_j$ for all $j \ge n_0$, and then $x \in (A_j \cup B_j)$ for all $j \ge n_0$, so that $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} (A_j \cup B_j)$; i.e., x belongs to the right-hand side. Similarly if $x \in \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_j$.

An alternative proof of the second part is as follows:

$$\underline{\lim}(A_n \cup B_n) = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} (A_k \cup B_k) = \left[\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} (A_k^c \cap B_k^c)\right]^c$$

$$= \left[\overline{\lim}(A_k^c \cap B_k^c)\right]^c \supseteq \left[\left(\overline{\lim}A_k^c\right) \cap \left(\overline{\lim}B_k^c\right)\right]^c$$
(by the previous part)
$$= \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \right)^c \cup \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} B_k^c\right)^c$$

$$= \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right) \cup \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} B_k\right) = (\underline{\lim}A_n) \cup (\underline{\lim}B_n).$$

(v) That the inverse inclusions in part (iv) need not hold is demonstrated by the following

Counterexample:

Let $A_{2j-1}=A$, $A_{2j}=A_0$ and $B_{2j-1}=B$, $B_{2j}=B_0$, $j \ge 1$, for some events A, A_0 , B and B_0 . Then: $\varliminf_{n\to\infty}A_n=A\cap A_0$, $\varlimsup_{n\to\infty}A_n=A\cap A_0$, $\varlimsup_{n\to\infty}A_n=A\cap A_0$, $\varlimsup_{n\to\infty}B_n=B\cap B_0$, $\varlimsup_{n\to\infty}B_n=B\cup B_0$, $\varlimsup_{n\to\infty}B_n=B\cup B_0$, $\varlimsup_{n\to\infty}A_n=A\cap B_n$) $=(A\cap B)\cup(A_0\cap B_0)$, $\varliminf_{n\to\infty}(A_n\cup B_n)=(A\cup B)\cap(A_0\cup B_0)$. Therefore $(A\cup B)\cap(A_0\cup B_0)$ need not contain $(A\cup A_0)\cap(B\cup B_0)$, and $(A\cap A_0)\cup(B\cap B_0)$ need not contain $(A\cup B)\cap(A_0\cup B_0)$. As a concrete example, take $\Omega=\Re$, A=(0,1], $A_0=[2,3]$,

 $B = [1, 2], B_0 = [3, 4].$ Then: $(A \cup B) \cap (A_0 \cup B_0) = (0, 2], (A \cup A_0) \cap$

- $(B \cup B_0) = ((0, 1] \cup [2, 3]) \cap ([1, 2] \cup [3, 4]) = \{1\} \cup \{3\} = \{1, 3\} \not\supseteq (0, 2], \text{ and } (A \cap A_0) \cup (B \cap B_0) = \emptyset \cup \emptyset = \emptyset, (A \cup B) \cap (A_0 \cup B_0) = (0, 2] \cap [2, 4] = \{2\} \text{ not contained in } \emptyset.$
- (vi) If $\lim_{n\to\infty} A_n = A$ and $\lim_{n\to\infty} B_n = B$, then by parts (iii) and (iv): $\overline{\lim}_{n\to\infty} (A_n\cap B_n)\subseteq A\cap B$ and $\underline{\lim}_{n\to\infty} (A_n\cap B_n)=A\cap B$. Thus, $A\cap B=\underline{\lim}_{n\to\infty} (A_n\cap B_n)\subseteq \overline{\lim}_{n\to\infty} (A_n\cap B_n)\subseteq A\cap B$, so that $\underline{\lim}_{n\to\infty} (A_n\cap B_n)=A\cap B$. Likewise: $A\cup B\subseteq \underline{\lim}_{n\to\infty} (A_n\cup B_n)\subseteq \overline{\lim}_{n\to\infty} (A_n\cup B_n)=A\cup B$, so that $\underline{\lim}_{n\to\infty} (A_n\cup B_n)=A\cup B$.
- (vii) Since $A_n \triangle B = (A_n B) + (B A_n) = (A_n \cap B^c) + (B \cap A_n^c)$, we have $\lim_{n \to \infty} (A_n \cap B^c) = (\lim_{n \to \infty} A_n) \cap B^c = A \cap B^c$ by part (vi), and $\lim_{n \to \infty} (B \cap A_n^c) = B \cap (\lim_{n \to \infty} A_n^c) = B \cap A^c$ by parts (vi) and (ii). Therefore, by part (vi) again, $\lim_{n \to \infty} (A_n \triangle B) = \lim_{n \to \infty} [(A_n \cap B^c) + (B \cap A_n^c)] = \lim_{n \to \infty} (A_n \cap B^c) + \lim_{n \to \infty} (B \cap A_n^c) = (A \cap B^c) + (B \cap A^c) = A \triangle B$.
- **(viii)** $A_{2j-1} = B$, $A_{2j} = C$, $j \ge 1$. Then, as in part (v), $\underline{\lim}_{n \to \infty} A_n = B \cap C$ and $\overline{\lim}_{n \to \infty} A_n = B \cup C$. The $\lim_{n \to \infty} A_n$ exists if and only if $B \cap C = B \cup C$, or $B \cup C = (B \cap C^c) + (B^c \cap C) + (B \cap C) = B \cap C$. Then, by the pairwise disjointness of $B \cap C^c$, $B^c \cap C$ and $B \cap C$, we have $B \cap C^c = B^c \cap C = \emptyset$. From $B \cap C^c = \emptyset$, it follows that $B \subseteq C$, and from $B^c \cap C = \emptyset$, it follows that $C \subseteq B$. Therefore $C \in B$. Thus, $C \in B$.
- 2. (i) All three sets \underline{A} , \overline{A} , and A (if it exists) are in A, because they are expressed in terms of A_n , $n \ge 1$, by means of countable operations.
 - (ii) Let $A_n \uparrow$. Then $\varliminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j = \bigcup_{n=1}^{\infty} A_n$, and $\varlimsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j = \bigcup_{j=n}^{\infty} A_j = \bigcup_{j=1}^{\infty} A_j = \bigcup_{n=1}^{\infty} A_n$, so that $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$.

If $A_n \downarrow$, then $A_n^c \uparrow$ and hence $\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j^c = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j^c = \bigcup_{n=1}^{\infty} A_n^c$, so that, by taking the complements, $\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j = \bigcap_{n=1}^{\infty} A_n$, so that $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$. #

- **3.** (i) $\cap_{j \in I} \mathcal{F}_j \neq \emptyset$ since, e.g., $\Omega \in \mathcal{F}_j$, $j \in I$. Next, if $A \in \cap_{j \in I} \mathcal{F}_j$ for all $j \in I$, and hence $A^c \in \mathcal{F}_j$ for all $j \in I$, so that $A^c \in \cap_{j \in I} \mathcal{F}_j$. Finally, if $A, B \in \cap_{j \in I} \mathcal{F}_j$, then $A, B \in \mathcal{F}_j$ for all $j \in I$, and hence $A \cup B \in \mathcal{F}_j$ for all $j \in I$, so that $A \cup B \in \cap_{j \in I} \mathcal{F}_j$.
 - (ii) If $A_i \in \bigcap_{j \in I} A_j$, i = 1, 2, ..., then $A_i \in A_j$, i = 1, 2, ..., for all $j \in I$, and hence $\bigcup_{i=1}^{\infty} A_i \in A_j$ for all $j \in I$, so that $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{j \in I} A_j$. #
- **4.** Let $\Omega = \Re$, $\mathcal{F} = \{A \subseteq \Re$; either A or A^c is finite}, and let $A_j = \{1, 2, ..., j\}$, $j \ge 1$. Then \mathcal{F} is a field and $A_j \in \mathcal{F}$, $j \ge 1$, but $\bigcup_{j=1}^{\infty} A_j = \{1, 2, ...\} \notin \mathcal{F}$, because neither this set nor its complement is finite.

Also, if $B_j = \{j+1, j+2, \ldots\}$, then $B_j \in \mathcal{F}_j$ since B_j^c is finite, whereas $\bigcap_{j=1}^{\infty} B_j = \bigcap_{j=1}^{\infty} A_j^c = \left(\bigcup_{j=1}^{\infty} A_j\right)^c \notin \mathcal{F}$, as it has been seen already. #

- 5. Clearly, C is $\neq \emptyset$, every member of C is a countable union of members of \mathcal{P} , and C is the smallest σ -field containing \mathcal{P} , if indeed, is a σ -field. If $B \in C$, then $B = \bigcup_{i \in I} A_i$ for some $I \subseteq \mathbb{N} = \{1, 2, \ldots\}$, and then $B^c = \bigcup_{j \in J} A_j$, where $J = \mathbb{N} I$, so that $B^c \in C$. Finally, if $B_j \in C$, $j = 1, 2, \ldots$, then $B_j = \bigcup_{i \in I_j} A_{ji}$, where $I_j \subseteq \mathbb{N}$ and $I_i \cap I_j = \emptyset$. Then $\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} \bigcup_{i \in I_j} A_{ji}$, the union of members of P, so that $\bigcup_{j=1}^{\infty} B_j$ belongs in C. #
- **6.** Since C_j and $C'_j \subseteq C_0$, j = 1, ..., 8, it follows that $\sigma(C_j)$ and $\sigma(C'_j) \subseteq \sigma(C_0) = \mathcal{B}$, so that it suffices to show that $\mathcal{B} \subseteq \sigma(C_j)$ and $\mathcal{B} \subseteq \sigma(C'_j)$, which are implied, respectively, by $C_0 \subseteq \sigma(C_j)$ and $C_0 \subseteq \sigma(C'_j)$, j = 1, ..., 8. As an example, consider the classes mentioned in the hint.

So, to show that $C_0 \subseteq \sigma(C_1)$. In all that follows, all limits are taken as $n \to \infty$. Indeed, for $y_n \downarrow y$, we have $(x, y_n) \in C_1$ and $\bigcap_{n=1}^{\infty} (x, y_n) = (x, y] \in \sigma(C_1)$. Likewise, for $x_n \uparrow x$, we have $(x_n, y) \in C_1$ and $\bigcap_{n=1}^{\infty} (x_n, y) = [x, y) \in \sigma(C_1)$. Next, with x_n and y_n as above, $(x_n, y_n) \in C_1$ and $\bigcap_{n=1}^{\infty} (x_n, y_n) = [x, y] \in \sigma(C_1)$. Also, for $x_n \downarrow -\infty$, we have $(x_n, a) \in C_1$ and $\bigcap_{n=1}^{\infty} (x_n, a) = (-\infty, a) \in \sigma(C_1)$, and likewise $(x_n, a] \in C_1$ and $\bigcup_{n=1}^{\infty} (x_n, a] = (-\infty, a] \in \sigma(C_1)$. Finally, $(b, \infty) = (-\infty, b)^c \in \sigma(C_1)$, and $[b, \infty) = (-\infty, b)^c \in \sigma(C_1)$. It follows that $C_0 \subseteq \sigma(C_1)$.

That $C_0 \in \sigma(C_1')$ is seen as follows. For (x, y), there exist x_n and y_n rationals with $x_n \downarrow x$ and $y_n \uparrow y$, so that $(x, y) = \bigcup_{n=1}^{\infty} \in \sigma(C_j')$. Also, for $y_n \downarrow y$, we have $(x, y_n) \in \sigma(C_1')$, as was just proved, and then $\bigcap_{n=1}^{\infty} (x, y_n) = (x, y] \in \sigma(C_1')$. Likewise, with $x_n \uparrow x$, we have $(x_n, y) \in \sigma(C_1')$ and then $\bigcap_{n=1}^{\infty} (x_n, y) = [x, y) \in \sigma(C_1')$. Also, with $x_n \uparrow x$ and $y_n \downarrow y$, we have $(x_n, y_n) \in \sigma(C_1')$, and $\bigcap_{n=1}^{\infty} (x_n, y_n) = [x, y] \in \sigma(C_1')$. Likewise, with $x_n \downarrow -\infty$, we have $(x_n, a) \in \sigma(C_1')$ and $\bigcup_{n=1}^{\infty} (x_n, a) = (-\infty, a) \in \sigma(C_1')$, whereas $(x_n, a] \in \sigma(C_1')$, so that $\bigcup_{n=1}^{\infty} (x_n, a) = (-\infty, a] \in \sigma(C_1')$. Finally, $(b, \infty) = (-\infty, b]^c \in \sigma(C_1')$ since $(-\infty, b] \in \sigma(C_1')$, and $[b, \infty) = (-\infty, b)^c \in \sigma(C_1')$ since $(-\infty, b) \in \sigma(C_1')$. It follows that $C_0 \subseteq \sigma(C_1')$.

A slightly alternative version of the proof follows. We will show (a) $\sigma(C_1) = \mathcal{B}$ and (b) $\sigma(C_1') = \mathcal{B}$.

- (a) $\sigma(\mathcal{C}_1) = \mathcal{B}$.
 - That $\sigma(\mathcal{C}_1) \subseteq \mathcal{B}$ is clear; to show $\mathcal{B} \subseteq \sigma(\mathcal{C}_1)$ it suffices to show that $\mathcal{C}_0 \subseteq \sigma(\mathcal{C}_1)$. To this end, we show that $(x, y] \in \sigma(\mathcal{C}_1)$. Indeed, $(x, y + \frac{1}{n}) \in \mathcal{C}_1$, so that $\bigcap_{n=1}^{\infty} \left(x, y + \frac{1}{n}\right) = (x, y] \in \sigma(\mathcal{C}_1)$. Next, $\left(x \frac{1}{n}, y\right) \in \mathcal{C}_1$, so that $\bigcap_{n=1}^{\infty} \left(x \frac{1}{n}, y\right) = [x, y] \in \sigma(\mathcal{C}_1)$. Also, $\left(x \frac{1}{n}, y + \frac{1}{n}\right) \in \mathcal{C}_1$, so that $\bigcap_{n=1}^{\infty} \left(x \frac{1}{n}, y + \frac{1}{n}\right) = [x, y] \in \sigma(\mathcal{C}_1)$. Next, $(-n, x) \in \mathcal{C}_1$, so that $\bigcap_{n=1}^{\infty} \left(-n, x\right) = (-\infty, x) \in \sigma(\mathcal{C}_1)$. Also, $\left(-\infty, x + \frac{1}{n}\right] \in \mathcal{C}_1$, so that $\bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right] = (-\infty, x] \in \sigma(\mathcal{C}_1)$. Likewise, $(x, n) \in \mathcal{C}_1$, so that $\bigcup_{n=1}^{\infty} (x, n) = (x, \infty) \in \sigma(\mathcal{C}_1)$; and $\left(x \frac{1}{n}, \infty\right) \in \sigma(\mathcal{C}_1)$, so that $\bigcap_{n=1}^{\infty} \left(x \frac{1}{n}, \infty\right) = [x, \infty) \in \sigma(\mathcal{C}_1)$. The proof is complete.
- **(b)** $\sigma(\mathcal{C}'_1) = \mathcal{B}$.

Since, clearly, $\sigma(\mathcal{C}_1') \subseteq \sigma(\mathcal{C}_1)$, it suffices to show that $\sigma(\mathcal{C}_1) \subseteq \sigma(\mathcal{C}_1')$. For $x, y \in \Re$ with x < y, there exist $x_n \downarrow x$ and $y_n \uparrow y$ with x_n, y_n rational numbers and $x_n < y_n$ for each n. Since $(x_n, y_n) \in \mathcal{C}_1'$, it follows that $\bigcup_{n=1}^{\infty} (x_n, y_n) = (x, y) \in \sigma(\mathcal{C}_1')$. So $\mathcal{C}_1 \subseteq \sigma(\mathcal{C}_1')$, and hence $\sigma(\mathcal{C}_1) \subseteq \sigma(\mathcal{C}_1')$. The proof is complete. #

- 7. (i) Let $A \in \mathcal{C}$. Then there are the following possible cases:
 - (a) $A = \sum_{i=1}^{m} I_i, I_i = (\alpha_i, \beta_i], i = 1, ..., m.$

Then $A^c = (-\infty, \alpha_1] + (\beta_1, \alpha_2] + \ldots + (\beta_{m-1}, \alpha_m] + (\beta_m, \infty)$ and this is in C.

- **(b)** A consists only of intervals of the form $(-\infty, \alpha]$. Then there can be only one such interval; i.e., $A = (-\infty, \alpha]$ and hence $A^c = (\alpha, \infty)$ which is in C.
- (c) A consists only of intervals of the form (β, ∞) . Then there can only be one such interval; i.e., $A = (\beta, \infty)$ so that $A^c = (-\infty, \beta]$ which is in C.
- (d) A consists only of intervals of the form $(-\infty, \alpha]$ and (β, ∞) . Then A will be as follows: $A = (-\infty, \alpha] + (\beta, \infty)$ $(\alpha < \beta)$, so that $A^c = (\alpha, \infty) \cap (-\infty, \beta] = (\alpha, \beta]$ which is in C.
- (e) Finally, let A consist of intervals of all forms. Then A is as below:

Then, clearly,

$$A^{c} = (\alpha, \alpha_{1}] + (\beta_{1}, \alpha_{2}] + \ldots + (\beta_{m-1}, \alpha_{m}] + (\beta_{m}, \beta]$$

which is in \mathcal{C} . So, \mathcal{C} is closed under complementation. It is also closed under the union of two sets A and B in \mathcal{C} , because, clearly, the union of two such sets is also a member of \mathcal{C} . Thus, \mathcal{C} is a field. Next, let $\mathcal{C}_2 = \{(\alpha, \beta]; \ \alpha, \beta \in \Re, \alpha < \beta\}$. Then, by Exercise 6, $\sigma(\mathcal{C}_2) = \mathcal{B}$. Also, $\mathcal{C}_2 \subset \mathcal{C}$, so that $\mathcal{B} = \sigma(\mathcal{C}_2) \subseteq \sigma(\mathcal{C})$. Furthermore, $\mathcal{C} \subseteq \sigma(\mathcal{C}_0) = \mathcal{B}$ and hence $\sigma(\mathcal{C}) \subseteq \mathcal{B}$. It follows that $\sigma(\mathcal{C}) = \mathcal{B}$.

(ii) If $A \in \mathcal{C}$, then $A = \sum_{i=1}^{m} I_i$, where I_i s are of the forms: (α, β) , $(\alpha, \beta]$, $[\alpha, \beta)$, $[\alpha, \beta]$, $(-\infty, \alpha)$, $(-\infty, \alpha]$, (β, ∞) , $[\beta, \infty)$. But $(\alpha, \beta)^c = (-\infty, \alpha] + [\beta, \infty)$, $(\alpha, \beta]^c = (-\infty, \alpha] + (\beta, \infty)$, $[\alpha, \beta)^c = (-\infty, \alpha) + (\beta, \infty)$, $[\alpha, \beta]^c = (-\infty, \alpha) + (\beta, \infty)$, $[\alpha, \beta]^c = (-\infty, \alpha) + (\beta, \infty)$, $(-\infty, \alpha)^c = [\alpha, \infty)$, $(-\infty, \alpha)^c = (\alpha, \infty)$, $(\beta, \infty)^c = (-\infty, \beta]$, and $[\beta, \infty)^c = (-\infty, \beta)$. Then, considering all possibilities as in part (i), we conclude that $A^c \in \mathcal{C}$ in all cases. Next, for A as above and $B = \sum_{j=1}^{n} J_j$ with J_j being from among the above intervals, it follows that $A \cup B$ is a finite sum of intervals as above,

and hence $A \cup B \in \mathcal{C}$. Thus, \mathcal{C} is a field. Finally, from $\mathcal{C}_0 \subset \mathcal{C} \subset \mathcal{B}$, it follows that $\mathcal{B} = \sigma(\mathcal{C}_0) \subseteq \sigma(\mathcal{C}) \subseteq \mathcal{B}$, so that $\sigma(\mathcal{C}) = \mathcal{B}$. #

- **8.** Clearly, \mathcal{F}_A is $\neq \emptyset$ since, for example, $A = A \cap \Omega$ and hence $A \in \mathcal{F}_A$. Next, for $B \in \mathcal{F}_A$, it follows that $B = A \cap C$, $C \in \mathcal{F}$, and B_A^c (=complement of B with respect to A)= $A \cap C^c \in \mathcal{F}_A$ since $C^c \in \mathcal{F}$. Finally, for $B_1, B_2 \in \mathcal{F}_A$, it follows that $B_i = A_i \cap C_i$, $C_i \in \mathcal{F}$, i = 1, 2, and then $B_1 \cup B_2 = A \cap (C_1 \cup C_2) \in \mathcal{F}_A$, since $C_1 \cup C_2 \in \mathcal{F}$. #
- **9.** That $A_A \neq \emptyset$ and that it is closed under complementation is as in Exercise 8. For $B_i \in \mathcal{A}_A$, i = 1, 2, ..., it follows that $B_i = A \cap C_i$ for some $C_i \in \mathcal{A}$, $i \geq 1$, and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} (A \cap C_i) = A \cap (\bigcup_{i=1}^{\infty} C_i) \in \mathcal{A}_A$ since $\bigcup_{i=1}^{\infty} C_i \in \mathcal{A}$. Thus, A_A is a σ -field. Since $\mathcal{F} \subseteq A$, it follows that $\mathcal{F}_A \subseteq A_A$ and hence $\sigma(\mathcal{F}_A) \subseteq \mathcal{A}_A$. Since for every $\mathcal{F} \subseteq \mathcal{A}_i$, $i \in I$, it follows $\mathcal{F}_A \subseteq \mathcal{A}_{i,A}$, $i \in I$, then $\sigma(\mathcal{F}_A) \subseteq \bigcap_{i \in I} \mathcal{A}_{i,A}$. Also, $\sigma(\mathcal{F}_A) = \bigcap_{j \in J} \mathcal{A}_j^*$ for all σ -fields of subsets of A with $\mathcal{A}_i^* \supseteq \mathcal{F}_A$. In order to show that $\sigma(\mathcal{F}_A) = \mathcal{A}_A$, it must be shown that for every σ field \mathcal{A}^* of subsets of A with $\mathcal{A}^* \supseteq \mathcal{F}_A$, we have $\mathcal{A}^* \supseteq \mathcal{A}_A$. That this is, indeed, the case is seen as follows. Define the class \mathcal{M} by : $\mathcal{M} = \{C \in \mathcal{A}; A \cap C \in \mathcal{A}^*\}$. Then, clearly, $\mathcal{F} \subseteq \mathcal{M} \subseteq \mathcal{A}$ and $\mathcal{M}_A (= \mathcal{M} \cap A) \subseteq \mathcal{A}^*$. This is so because, for $C \in \mathcal{F}$, it follows that $C \cap A \in \mathcal{F}_A$ and hence $C \cap A \in \mathcal{A}^* (\supseteq \mathcal{F}_A)$. Also, with $\mathcal{M}_A = \{C \subseteq A; C = M \cap A, M \in \mathcal{M}\}, \text{ it follows that } \mathcal{M}_A \subseteq \mathcal{A}^* \text{ from the }$ definition of \mathcal{M} . We assert that \mathcal{M} is a monotone class. Indeed, let $C_n \in \mathcal{M}$ with $C_n \uparrow \text{ or } C_n \downarrow$. Then, for the case that $C_n \uparrow$, $A \cap (\lim_{n \to \infty} C_n) = A \cap (\bigcup_{n=1}^{\infty} C_n) =$ $\cup_{n=1}^{\infty} (A \cap C_n) \in \mathcal{A}^* \text{ since } A \cap C_n \in \mathcal{A}^*, n \geq 1, \text{ so that } \lim_{n \to \infty} C_n \in \mathcal{M}.$ Likewise, for $C_n \downarrow$, $A \cap (\lim_{n \to \infty} C_n) = A \cap (\bigcap_{n=1}^{\infty} C_n) = \bigcap_{n=1}^{\infty} (A \cap C_n) \in \mathcal{A}^*$ since $A \cap C_n \in \mathcal{A}^*$, $n \geq 1$, so that $\lim_{n \to \infty} C_n \in \mathcal{M}$. So \mathcal{M} is a monotone class $\supseteq \mathcal{F}$, and hence $\mathcal{M} \supseteq \text{minimal monotone class } \mathcal{M}_0, \text{ say, } \supseteq \mathcal{F}$. Since \mathcal{F} is a field, it follows that \mathcal{M}_0 is a σ -field and indeed $\mathcal{M}_0 = \mathcal{A}$ (by Theorem 6). Finally, $\mathcal{A} = \mathcal{M}_0 \subseteq \mathcal{M}$ implies $\mathcal{A}_A = \mathcal{M}_{0,A} \subseteq \mathcal{M}_A \subseteq \mathcal{A}^*$, as was to be seen. #
- **10.** Set $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$, and let $A \in \mathcal{F}$. Then $A \in \mathcal{A}_n$ for some n, so that $A^c \in \mathcal{A}_n$ and hence $A \in \mathcal{F}$. Next, let $A, B \in \mathcal{F}$. Then $A \in \mathcal{A}_{n_1}$, $B \in \mathcal{A}_{n_2}$ for some n_1 and n_2 , and let $n_0 = \max(n_1, n_2)$. Then $A, B \in \mathcal{A}_{n_0}$, so that $A \cup B \in \mathcal{A}_{n_0}$ and $A \cup B \in \mathcal{F}$. Then, $A^c \in \mathcal{F}$ and $A \cup B \in \mathcal{F}$, so that \mathcal{F} is a field. It need not be a σ -field.
 - Counterexample: Let $\Omega = \Re$ and let $\mathcal{A}_n = \{A \subseteq [-n, n]; \text{ either } A \text{ or } A^c \text{ is countable}\}$, $n \ge 1$. Then \mathcal{A}_n is a σ -field (by Example 8) and $\mathcal{A}_n \uparrow$. However, \mathcal{F} is not a σ -field because, if $A_n = \{\text{rationals in } [-n, n]\}$, $n \ge 1$, and if we set $A = \bigcup_{n=1}^{\infty} A_n$, then $A \notin \mathcal{F}$, because otherwise $A \in \mathcal{A}_n$ for some n, which cannot happen. #
- **11.** Set $\mathcal{M} \cap_{j \in I} \mathcal{M}_j$ and let $A_n \in \mathcal{M}, n \geq 1$, where the A_n s form a monotone sequence. Then $A_n \in \mathcal{M}_j$ for each $j \in I$ and all $n \geq 1$, so that $\lim_{n \to \infty} A_n$ is also in \mathcal{M}_j . Since this is true for all $j \in I$, it follows that $\lim_{n \to \infty} A_n$ is in \mathcal{M} , and \mathcal{M} is a monotone class. #
- **12.** Let $\Omega = \{1, 2, ...\}$, $\mathcal{M} = \{\emptyset, \{1, ..., n\}, \{n, n+1, ...\}, n \ge 1, \Omega\}$. Then \mathcal{M} is a monotone class, but not a field, because, e.g., if $A = \{1, ..., n\}$ and $B = \{n-2, n-1, ...\}$ $(n \ge 3)$, then $A, B \in \mathcal{M}$, but $A \cap B = \{n-2, n-1, n\} \notin \mathcal{M}$.

As another example, let $\Omega = (0, 1)$ and $\mathcal{M} = \{(0, 1 - \frac{1}{n}], n \ge 1, \Omega\}$. Then \mathcal{M} is a monotone class and $(0, \frac{1}{2}] \in \mathcal{M}$, but $(0, \frac{1}{2}]^c = (\frac{1}{2}, 1) \notin \mathcal{M}$.

Still as a third example, let $\Omega = \Re$ and let $\mathcal{M} = \{ \emptyset, (0, n), (-n, 0), n \ge 1, (0, \infty), (-\infty, 0) \}$. Then \mathcal{M} is a monotone class, but not a field since, for A = (-1, 0) and B = (0, 1), we have $A, B, \in \mathcal{M}$, but $A \cup B = (-1, 1) \notin \mathcal{M}$. #

- 13. (i) For $\omega = (\omega_1, \omega_2) \in E^c$, we have $\omega \notin E = A \times B$, so that either $\omega_1 \notin A$ or $\omega_2 \notin B$ or both. Let $\omega_1 \notin A$. Then $\omega_1 \in A^c$ and $(\omega_1, \omega_2) \in A^c \times \Omega_2$, whether or not $\omega_2 \in B$. Hence $E^c \subseteq (A \times B^c) + (A^c \times \Omega_2)$. If $\omega_1 \in A$, then $\omega_2 \notin B$, so that $(\omega_1, \omega_2) \in A \times B^c$ and $E^c \subseteq (A \times B^c) + (A^c \times \Omega_2)$. Next, if $(\omega_1, \omega_2) \in A \times B^c$, then $\omega_1 \in A$ and $\omega_2 \notin B$, so that $(\omega_1, \omega_2) \notin E$ and hence $(\omega_1, \omega_2) \in E^c$. If $(\omega_1, \omega_2) \in A^c \times \Omega_2$, then $\omega_1 \notin A$ and hence $(\omega_1, \omega_2) \notin A \times B = E$ whether or not $\omega_2 \in B$. Thus $(\omega_1, \omega_2) \in E^c$. In both cases, $(A \times B^c) + (A^c \times \Omega_2) \supseteq E^c$ and equality follows. The second equality is entirely symmetric.
 - (ii) Let $(\omega_1, \omega_2) \in E_1 \cap E_2$, so that $(\omega_1, \omega_2) \in E_1$ and $(\omega_1, \omega_2) \in E_2$ and hence $\omega_1 \in A_1, \omega_2 \in B_1$, and $\omega_1 \in A_2, \omega_2 \in B_2$. It follows that $\omega_1 \in A_1 \cap A_2, \omega_2 \in B_1 \cap B_2$ and hence $(\omega_1, \omega_2) \in (A_1 \cap A_2) \times (B_1 \cap B_2)$. Next, $(\omega_1, \omega_2) \in (A_1 \cap A_2) \times (B_1 \cap B_2)$, so that $\omega_1 \in A_1 \cap A_2$ and $\omega_2 \in B_1 \cap B_2$. Thus, $\omega_1 \in A_1, \omega_1 \in A_2$ and $\omega_2 \in B_1, \omega_2 \in B_2$, so that $(\omega_1, \omega_2) \in A_1 \cap B_1$ and $(\omega_1, \omega_2) \in A_2 \cap B_2$, or $(\omega_1, \omega_2) \in E_1 \cap E_2$, so that equality occurs. The second conclusion is immediate.
 - (iii) Indeed, $E_1 \cap F_1 = (A_1 \cap A'_1) \times (B_1 \cap B'_1)$ and $E_2 \cap F_2 = (A_2 \cap A'_2) \times (B_2 \cap B'_2)$, by part (ii), and the first equality follows. Next, again by part (ii), and replacing E_1 by $(A_1 \cap A'_1) \times (B_1 \cap B'_1)$ and E_2 by $(A_2 \cap A'_2) \times (B_2 \cap B'_2)$, we obtain the second equality. The third equality is immediate. Finally, the last conclusion is immediate. #
- **14.** (i) Either by the inclusion process or as follows:

$$(A_1 \times B_1) - (A_2 \times B_2)$$

$$= (A_1 \times B_1) \cap (A_2 \times B_2)^c$$

$$= (A_1 \times B_1) \cap [(A_2 \times B_2^c) + (A_2^c \times \Omega_2)] \text{ (by Lemma 2)}$$

$$= (A_1 \times B_1) \cap (A_2 \times B_2^c) + (A_1 \times B_1) \cap (A_2^c \times \Omega_2)$$

$$= (A_1 \cap A_2) \times (B_1 \cap B_2^c) + (A_1 \cap A_2^c) \times (B_1 \cap \Omega_2) \text{ (clearly)}$$

$$= (A_1 \cap A_2) \times (B_1 - B_2) + (A_1 - A_2) \times B_1.$$

- (ii) Let $A \times B = \emptyset$. Then $(x, y) \in A \times B$, so that $x \in A$ and $y \in B$. Also, $(x, y) \in \emptyset$ and this can happen only if at least one of A or B is $A \otimes B \otimes A$ other, then, the
- (iii) Let $A_1 \times B_1 \subseteq A_2 \times B_2$. Then $(x, y) \in A_1 \times B_1$, so that $x \in A_1$ and $y \in B_1$. Also, $(x, y) \in A_2 \times B_2$ implies $x \in A_2$ and $y \in B_2$. Thus, $A_1 \subseteq A_2$ and $B_1 \subseteq B_2$. Next, let $A_1 \subseteq A_2$ and $B_1 \subseteq B_2$. Then $A_1 \times B_1 \subseteq A_2 \times B_2$ since $(x, y) \in A_1 \times B_1$ if and only if $x \in A_1$ and $y \in B_1$. Hence, $x \in A_2$ and $y \in B_2$ or $(x, y) \in A_2 \times B_2$.

(iv) $A_1 \times B_1 \neq \emptyset$ and $A_2 \times B_2 \neq \emptyset$. Then $A_1 \times B_1 = A_2 \times B_2$ or $A_1 \times B_1 \subseteq A_2 \times B_2$ and then (by (iii)), $A_1 \subseteq A_2$ and $B_1 \subseteq B_2$. Also, $A_2 \times B_2 = A_1 \times B_1$ or $A_2 \times B_2 \subseteq A_1 \times B_1$, and then (by (iii) again), $A_2 \subseteq A_1$ and $B_2 \subseteq B_1$.

So, both $A_1 \subseteq A_2$ and $A_2 \subseteq A_1$, and therefore $A_1 = A_2$. Likewise, $B_1 \subseteq B_2$ and $B_2 \subseteq B_1$ so that $B_1 = B_2$.

(v)

$$A \times B = (A_1 \times B_1) + (A_2 \times B_2) \tag{*}$$

From $\emptyset = (A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$ and part (ii), we have that at least one of $A_1 \cap A_2$, $B_1 \cap B_2$ is \emptyset . Let $A_1 \cap A_2 = \emptyset$. Then the claim is that $A = A_1 + A_2$. In fact, $(x, y) \in A \times B$ implies $x \in A$ (and $y \in B$). Also, (x, y) belonging to the right-hand side of (*) implies $(x, y) \in A_1 \times B_1$ or $(x, y) \in A_2 \times B_2$. Let $(x, y) \in A_1 \times B_1$. Then $x \in A_1$ (and $y \in B_1$), so that $A \subseteq A_2$. On the other hand, $(x, y) \in A_2 \times B_2$ implies $x \in A_2$ (and $y \in B_2$), so that $A \subseteq A_2$. Thus, $A \subseteq A_1 + A_2$. Next, let again (x, y) belong to the right-hand side of (*). Then $(x, y) \in A_1 \times B_1$ or $(x, y) \in A_2 \times B_2$. Now $(x, y) \in A_1 \times B_1$ implies that $x \in A_1$ (and $y \in B_1$). Also, (x, y) belonging to the left-hand side of (*) implies $(x, y) \in A \times B$, so that $x \in A$ (and $y \in B$). Hence $A_1 \subseteq A$. Likewise, $(x, y) \in A_2 \times B_2$ implies $A_2 \subseteq A$, so that $A_1 + A_2 \subseteq A$, and hence $A = A_1 + A_2$. Next, let $A = A_1 + A_2$. Then $A \times B = (A_1 + A_2) \times B = A_1 + A_2$. $(A_1 \times B) + (A_2 \times B)$. Also, $A \times B = (A_1 \times B_1) + (A_2 \times B_2)$. Thus, $(A_1 \times B) + (A_2 \times B) = (A_1 \times B_1) + (A_2 \times B_2)$. (x, y) belonging to the left-hand side of (*) implies $(x, y) \in A_1 \times B$ or $(x, y) \in A_2 \times B$. $(x, y) \in$ $A_1 \times B$ yields $y \in B$ (and $x \in A_1$). Same if $(x, y) \in A_2 \times B$. Also, (x, y) belonging to the right-hand side of (*) implies $(x, y) \in A_1 \times B_1$ or $(x, y) \in A_2 \times B_2$. For $(x, y) \in A_1 \times B_1$, we have $y \in B_1$ (and $x \in A_1$), so that $B \subseteq B_1$. For $(x, y) \in A_2 \times B_2$, we have $B \subseteq B_2$ likewise. Next, let again (x, y) belong to the right-hand side of (*). Then $(x, y) \in A_1 \times B_1$ or $(x, y) \in A_2 \times B_2$. For $(x, y) \in A_1 \times B_1$, we have $y \in B_1$ (and $x \in A_1$). Thus $B_1 \subseteq B$. For $(x, y) \in A_2 \times B_2$, we have $B_2 \subseteq B$. It follows that $B = B_1 = B_2$.

To summarize: $A_1 \cap A_2 = \emptyset$ implies $A = A_1 + A_2$ and $B = B_1 = B_2$. Likewise, $B_1 \cap B_2 = \emptyset$ implies $B = B_1 + B_2$ and $A = A_1 = A_2$. Furthermore, $A_1 \cap A_2 = \emptyset$ and $B_1 \cap B_2 = \emptyset$ cannot happen simultaneously. Indeed, $A_1 \cap A_2 = \emptyset$ implies $A = A_1 + A_2$, and $B_1 \cap B_2 = \emptyset$ implies $B = B_1 + B_2$. Then $A \times B = (A_1 + A_2) \times (B_1 + B_2) = (A_1 \times B_1) + (A_2 \times B_2) + (A_1 \times B_2) + (A_2 \times B_1)$. Also, $A \times B = (A_1 \times B_1) + (A_2 \times B_2)$, so that : $(A_1 \times B_1) + (A_2 \times B_2) + (A_1 \times B_2) + (A_2 \times B_1) = \emptyset$ implies $(A_1 \times B_1) + (A_2 \times B_1) = \emptyset$, so that at least one of A_1 , A_2 , B_1 , $B_2 = \emptyset$ (by part (ii)). However, this is not possible by the fact that $A_1 \times B_1 \neq \emptyset$, $A_2 \times B_2 \neq \emptyset$. #

- **15.** (i) If either A or $B = \emptyset$, then, clearly, $A \times B = \emptyset$. Next, if $A \times B = \emptyset$, and $A \neq \emptyset$ and $B \neq \emptyset$, then there exist $\omega_1 \in A$ and $\omega_2 \in B$, so that $(\omega_1, \omega_2) \in A \times B$, a contradiction.
 - (ii) Both directions of the first assertion are immediate. Without the assumption E_1 and $E_2 \neq \emptyset$, the result need not be true. Indeed, let $\Omega_1 = \Omega_2$, $A_1 \neq \emptyset$, $B_1 = A_2 = B_2 = \emptyset$. Then $E_1 = E_2 = \emptyset$, but $A_1 \nsubseteq A_2$. #
- **16.** (i) If at least one of A_1, \ldots, A_n is $= \emptyset$, then, clearly, $A_1 \times \ldots \times A_n = \emptyset$. Next, let $E = \emptyset$ and suppose that $A_i \neq \emptyset, i = 1, \ldots, n$. Then there exists $\omega_i \in A_i, i = 1, \ldots, n$, so that $(\omega_1, \ldots, \omega_n) \in E$, a contradiction.
 - (ii) Let $\omega = (\omega_1, \ldots, \omega_n) \in E \cap F$, or $(\omega_1, \ldots, \omega_n) \in (A_1 \times \ldots \times A_n) \cap (B_1 \times \ldots \times B_n)$. Then $(\omega_1, \ldots, \omega_n) \in A_1 \times \ldots \times A_n$ and $(\omega_1, \ldots, \omega_n) \in B_1 \times \ldots \times B_n$. It follows that $\omega_i \in A_i$ and $\omega_i \in B_i$, $i = 1, \ldots, n$, so that $\omega_i \in A_i \cap B_i$, $i = 1, \ldots, n$, and hence $(\omega_1, \ldots, \omega_n) \in (A_1 \cap B_1) \times \ldots \times (A_n \cap B_n)$. Next, let $(\omega_1, \ldots, \omega_n) \in (A_1 \cap B_1) \times \ldots \times (A_n \cap B_n)$. Then $\omega_i \in A_i \cap B_i$, $i = 1, \ldots, n$, so that $\omega_i \in A_i$ and $\omega_i \in B_i$, $i = 1, \ldots, n$. It follows that $(\omega_1, \ldots, \omega_n) \in A_1 \times \ldots \times A_n$ and $(\omega_1, \ldots, \omega_n) \in B_1 \times \ldots \times B_n$, so that $(\omega_1, \ldots, \omega_n) \in (A_1 \times \ldots \times A_n) \cap (B_1 \times \ldots \times B_n)$. #
- 17. We have E = F + G and E, F, G are all $\neq \emptyset$. This implies that A_i, B_i , and $C_i, i = 1, ..., n$ are all $\neq \emptyset$; this is so by Exercise 16(i). Furthermore, by Exercise 16(ii):

$$F \cap G = (B_1 \times \ldots \times B_n) \cap (C_1 \times \ldots \times C_n) = (B_1 \cap C_1) \times \ldots \times (B_n \cap C_n),$$

whereas $F \cap G = \emptyset$. It follows that $B_j \cap C_j = \emptyset$ for at least one $j, 1 \le j \le n$. Without loss of generality, suppose that $B_1 \cap C_1 = \emptyset$. Then we shall show that $A_1 = B_1 + C_1$ and $A_i = B_i = C_i$, $i = 2, \ldots, n$. To this end, let $\omega_j \in A_j$, $j = 1, \ldots, n$. Then $(\omega_1, \ldots, \omega_n) \in A_1 \times \ldots \times A_n$ or $(\omega_1, \ldots, \omega_n) \in E$ or $(\omega_1, \ldots, \omega_n) \in (F + G)$. Hence $(\omega_1, \ldots, \omega_n) \in F$ or $(\omega_1, \ldots, \omega_n) \in G$. Let $(\omega_1, \ldots, \omega_n) \in F$. Then $(\omega_1, \ldots, \omega_n) \in B_1 \times \ldots \times B_n$ and hence $\omega_1 \in B_1$ or $\omega_1 \in (B_1 \cup C_1)$, so that $A_1 \subseteq B_1 \cup C_1$. Likewise if $(\omega_1, \ldots, \omega_n) \in G$. Next, let $\omega_j \in B_j$, $j = 1, \ldots, n$. Then $(\omega_1, \ldots, \omega_n) \in B_1 \times \ldots \times B_n$ or $(\omega_1, \ldots, \omega_n) \in F$ or $(\omega_1, \ldots, \omega_n) \in E$ or $(\omega_1, \ldots, \omega_n) \in (A_1 \times \ldots \times A_n)$, hence $\omega_1 \in A_1$, which implies that $B_1 \subseteq A_1$. By taking $\omega_j \in C_j$, $j = 1, \ldots, n$ and arguing as before, we conclude that $C_1 \subseteq A_1$. From $B_1 \subseteq A_1$ and $C_1 \subseteq A_1$, we obtain $B_1 \cup C_1 \subseteq A_1$. Since also $A_1 \subseteq B_1 \cup C_1$, we get $A_1 = B_1 \cup C_1$. Since $B_1 \cap C_1 = \emptyset$, we have then $A_1 = B_1 + C_1$.

It remains for us to show that $A_i = B_i = C_i$, i = 2, ..., n. Without loss of generality, it suffices to show that $A_2 = B_2 = C_2$, the remaining cases being treated symmetrically. As before, let $\omega_j \in A_j$, j = 1, ..., n. Then $(\omega_1, ..., \omega_n) \in (A_1 \times ... \times A_n)$ or $(\omega_1, ..., \omega_n) \in E$ or $(\omega_1, ..., \omega_n) \in (F+G)$. Hence either $(\omega_1, ..., \omega_n) \in F$ or $(\omega_1, ..., \omega_n) \in G$. Let $(\omega_1, ..., \omega_n) \in F$. Then $(\omega_1, ..., \omega_n) \in B_1 \times ... \times B_n$ and hence $\omega_2 \in B_2$, so that $A_2 \subseteq B_2$.

Likewise $A_2 \subseteq C_2$ if $(\omega_1, \ldots, \omega_n) \in G$. Next, let $(\omega_1, \ldots, \omega_n) \in B_1 \times \ldots \times B_n$ or $(\omega_1, \ldots, \omega_n) \in F$ or $(\omega_1, \ldots, \omega_n) \in (F + G)$ or $(\omega_1, \ldots, \omega_n) \in E$ or $(\omega_1, \ldots, \omega_n) \in (A_1 \times \ldots \times A_n)$ and hence $\omega_2 \in A_2$, so that $B_2 \subseteq A_2$. It follows that $A_2 = B_2$. We arrive at the same conclusion $A_2 = B_2$ if we take $(\omega_1, \ldots, \omega_n) \in G$. So, to sum it up, $A_1 = B_1 + C_1$, and $A_2 = B_2 = C_2$, and by symmetry, $A_i = B_i = C_i$, $i = 3, \ldots, n$.

A variation to the above proof is as follows.

Let E = F + G or $A_1 \times \ldots \times A_n = (B_1 \times \ldots \times B_n) + (C_1 \times \ldots \times C_n)$, and let $(\omega_1, \ldots, \omega_n) \in E$. Then $(\omega_1, \ldots, \omega_n) \in A_1 \times \ldots \times A_n$, so that $\omega_i \in A_i$, $i = 1, \ldots, n$. Then $\omega_i \in B_i$, $i = 1, \ldots, n$ or $\omega_i \in C_i$, $i = 1, \ldots, n$ (but not both). So, $A_i = B_i \cup C_i$, $i = 1, \ldots, n$ and $A_j = B_j + C_j$ for at least one j. Consider the case n = 2, and without loss of generality suppose that $A_1 = B_1 + C_1$, $A_2 = B_2 \cup C_2$. Then, clearly:

$$A_1 \times A_2 = (B_1 + C_1) \times (B_2 \cup C_2)$$

= $(B_1 \times B_2) \cup (C_1 \times C_2) \cup (B_1 \times C_2) \cup (C_1 \times B_2).$

However, $A_1 \times A_2 = (B_1 \times B_2) + (C_1 \times C_2)$, and this implies that $B_1 \times C_2 \subseteq B_1 \times B_2$ and $C_1 \times B_2 \subseteq B_1 \times C_2$, hence $C_2 \subseteq B_2$ and $B_2 \subseteq C_2$, so that $B_2 = C_2 (= A_2)$. Next, assume the assertion to be true for n and consider:

$$A_1 \times \ldots \times A_n \times A_{n+1} = (B_1 \times \ldots \times B_n \times B_{n+1}) + (C_1 \times \ldots \times C_n \times C_{n+1}),$$

or $A^n \times A_{n+1} = (B^n \times B_{n+1}) = (C^n \times C_{n+1})$, where $A^n = A_1 \times \ldots \times A_n$, $B^n = B_1 \times \ldots \times B_n$ and $C^n = C_1 \times \ldots \times C_n$. Apply the reasoning used in the case n = 2 by replacing A_1 by A^n and A_2 by A_{n+1} (so that B_1 , B_2 and C_1 , C_2 are replaced, respectively, by B^n , B_{n+1} and C^n , C_{n+1}) to get that:

$$A^{n} = B^{n} + C^{n}, A_{n+1} = B_{n+1} \cup C_{n+1}.$$

The first union is a "+" by the induction hypothesis. The second union may or may not be a "+" as of now. Then:

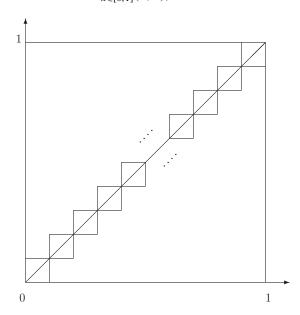
$$A^{n} \times A_{n+1} = (B^{n} \cup C^{n}) \times (B_{n+1} \cup C_{n+1})$$

= $(B^{n} \times B_{n+1}) \cup (C^{n} \times C_{n+1}) \cup (B^{n} \times C_{n+1}) \cup (C^{n} \times B_{n+1}).$

However, $A^n \times A_{n+1} = (B^n \times B_{n+1}) + (C^n \times C_{n+1})$. Therefore $B^n \times C_{n+1} \subseteq B^n \times B_{n+1}$ and $C^n \times B_{n+1} \subseteq C^n \times C_{n+1}$, so that $C_{n+1} \subseteq B_{n+1}$ and $B_{n+1} \subseteq C_{n+1}$, and hence $B_{n+1} = C_{n+1}$. The proof is completed. #

- 18. The only properties of the σ -fields A_1 and A_2 used in the proof of Theorem 7 is that A_i , i = 1, 2 are closed under the intersection of two sets in them and also closed under complementations. Since these properties hold also for the case that A_i , i = 1, 2 are fields, \mathcal{F}_i , i = 1, 2, the proof is completed. #
- **19.** C as defined here need not be a σ -field. Here is a Counterexample: $\Omega_1 = \Omega_2 = [0, 1]$. For $n \geq 2$, let $I_{n1} = [0, \frac{1}{n}]$, $I_{nj} = (\frac{j-1}{n}, \frac{j}{n}]$, $j = 2, \ldots, n$, and set $E_{nj} = I_{nj} \times I_{nj}$, $j = 1, \ldots, n$. Also, let

 $Q_n = \sum_{j=1}^n E_{nj}, n \ge 2$. Then Q_n belongs to the field of all finite sums of rectangles. Furthermore, it is clear that $\bigcap_{n=2}^{\infty} Q_n = D$, where D is the main diagonal determined by the origin and the point (1,1). (See picture below.) However, D is not in the class of all countable sums of rectangles, since it cannot be written as such. D is written as $D = \bigcup_{x \in [0,1]} (x,x)$, an uncountable union.



Note: In the picture, the first rectangle $E_{n1} = [0, \frac{1}{n}] \times [0, \frac{1}{n}]$, and the subsequent rectangles E_{nj} are: $E_{nj} = (\frac{j-1}{n}, \frac{j}{n}]$, j = 2, 3, ..., n. #

- **20.** That $C \neq \emptyset$ is obvious. For $A \in C$, there exists $A' \in \mathcal{A}'$ such that $A = X^{-1}(A')$. Then $A^c = [X^{-1}(A')]^c = X^{-1}[(A')^c]$ with $(A')^c \in \mathcal{A}'$. Thus $A^c \in C$. Finally, if $A_j \in C$, $j = 1, 2, \ldots$, then $A_j = X^{-1}(A'_j)$ with $A'_j \in \mathcal{A}'$, and hence $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} X^{-1}(A'_j) = X^{-1}\left(\bigcup_{j=1}^{\infty} A'_j\right)$ with $\bigcup_{j=1}^{\infty} A'_j \in \mathcal{A}'$, so that $\bigcup_{j=1}^{\infty} A_j \in C$, and C is a σ -field. #
- **21.** That $\mathcal{C}' \neq \emptyset$ is obvious. For $A' \in \mathcal{C}'$, there exists $A \in \mathcal{A}$ such that $A = X^{-1}(A')$. Then $X^{-1}[(A')^c] = [X^{-1}(A')]^c = A^c \in \mathcal{A}$, so that $(A')^c \in \mathcal{C}'$. Finally, for $A'_j \in \mathcal{C}'$, $j = 1, 2, \ldots$, there exists $A_j \in \mathcal{A}$ such that $A_j = X^{-1}(A'_j)$ and $X^{-1}\left(\bigcup_{j=1}^{\infty} A'_j\right) = \bigcup_{j=1}^{\infty} X^{-1}(A'_j) = \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$, so that $\bigcup_{j=1}^{\infty} A'_j \in \mathcal{C}'$. It follows that \mathcal{C}' is a σ -field. #
- **22.** A simple example is the following. Let $\Omega = \{a, b, c, d\}$, $\mathcal{A} = \{\emptyset, \{a\}, \{b, c, d\}, \Omega\}$, X(a) = X(b) = 1, X(c) = 2, X(d) = 3. Then $\Omega' = \{1, 2, 3\}$ and $X(\{a\}) = \{1\}$, $X(\{b, c, d\}) = \{1, 2, 3\}$, so that $\mathcal{C}' = \{\emptyset, \{1\}, \{1, 2, 3\}\}$ which is not a σ -field. #
- **23.** Let $X = \sum_{i=1}^{n} \alpha_i I_{A_i}$ and suppose that $A_i \in \mathcal{A}, i = 1, ..., n$. Then for any $B \in \mathcal{B}, X^{-1}(B) = \bigcup A_i$ where the union is taken over those is for which $\alpha_i \in B$.

Since this union is in \mathcal{A} , it follows that X is a r.v. Next, let X be a r.v. Then, by assuming without loss of generality that $\alpha_i \neq \alpha_j, i \neq j$, we have $X^{-1}(\{\alpha_i\}) = A_i \in \mathcal{A}$ since $\{\alpha_i\} \in \mathcal{B}, i = 1, \ldots, n$. Clearly, the same reasoning applies when $X = \sum_{i=1}^{\infty} \alpha_i I_{A_i}$. #

- **24.** Let ω belong to the right-hand side. Then $X(\omega) < r$ and $Y(\omega) < x r$ for some $r \in Q$, so that $X(\omega) + Y(\omega) < x$ and hence ω belongs to the left-hand side. Next, let ω belong to the left-hand side, so that $X(\omega) + Y(\omega) < x$ or $X(\omega) < x Y(\omega)$. But then there exists $r \in Q$ such that $X(\omega) < r < x Y(\omega)$ or $X(\omega) < r$ and $X(\omega) < r < x Y(\omega)$ or $X(\omega) < r$ and $X(\omega) < r < x Y(\omega)$ or $X(\omega) < r$ and $X(\omega) < x x$, so that $X(\omega) < x x$ belongs to the right-hand side. #
- **25.** If X is a r.v., then so is |X|, because for all $x \ge 0$, we have $|X|^{-1}((-\infty, x)) = (|X| < x) = (-x < X < x) \in \mathcal{A}$, since X is a r.v. That the converse is not necessarily true is seen by the following simple example. Take $\Omega = \{a, b, c, d\}$, $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$, and define X by: X(a) = -1, X(b) = 1, X(c) = -2, X(d) = 2. Then $\Omega' = \{-2, -1, 1, 2\}$, and let $\mathcal{A}' = \mathcal{P}(\Omega')$. We have $|X|^{-1}(\{1\}) = \{a, b\}, |X|^{-1}(\{2\}) = \{c, d\}, |X|^{-1}(\{-2\}) = |X|^{-1}(\{-1\}) = \{a\}$ and $X^{-1}(\{-2\}) = \{c\}$, none of which belongs in \mathcal{A} , so that X is not measurable.

As another example, let B be a non-Borel set in \Re , and define X by: $X(\omega) = 1$, $\omega \in B$, and $X(\omega) = -1$, $\omega \in B^c$. Then X is not \mathcal{B} -measurable as $X^{-1}(\{1\}) = B \notin \mathcal{B}$, but $|X|^{-1}(\{1\}) = \Re \in \mathcal{B}$. #

26. X + Y is measurable by Exercise 24. Next, $(-Y \le y) = (Y \ge -y) \in \mathcal{A}$, so that -Y is measurable. Then X + (-Y) = X - Y is measurable. Now, if Z is measurable, then so is Z^2 because, for $z \ge 0$, $(Z^2 \le z) = (-\sqrt{z} \le Z \le \sqrt{z}) \in \mathcal{A}$. Thus, if X, Y are measurable, then so are $(X + Y)^2$ and $(X - Y)^2$, and therefore so is: $(X + Y)^2 - (X - Y)^2$. But $(X + Y)^2 - (X - Y)^2 = 4XY$. Thus, 4XY is measurable, and then so is, clearly, XY.

Finally, if $P(Y \neq 0) = 1$, then, for $y \neq 0$, $(\frac{1}{Y} \leq y) = (Y \geq \frac{1}{y}) \in \mathcal{A}$, so that $\frac{1}{Y}$ is measurable. Thus, X and Y are measurable, and $P(Y \neq 0) = 1$, so that X and $\frac{1}{Y}$ are measurable. Then $X \times \frac{1}{Y} = \frac{X}{Y}$ is measurable. #

- **27.** Since $\sigma(\mathcal{T}_m) = \mathcal{B}^m$, it suffices to show (by Theorem 2) that $f^{-1}(\mathcal{T}_m) \subseteq \mathcal{B}^m$ for f to be measurable. By continuity of f, $f^{-1}(\mathcal{T}_m) \subseteq \mathcal{T}_n \subseteq \mathcal{B}^n$, since $\sigma(\mathcal{T}_n) = \mathcal{B}^n$. Thus, f is measurable. Then, for $B \in \mathcal{B}^m$, $[f(X)]^{-1} = X^{-1}[f^{-1}(B)] \in \mathcal{A}$, since $f^{-1}(B) \in \mathcal{B}^n$ and X is measurable. #
- **28.** For any r.v. Z, it holds: $Z = Z^+ Z^-$ and $|Z| = Z^+ + Z^-$. Hence $Z^+ = \frac{1}{2}(|Z| + Z)$, $Z^- = \frac{1}{2}(|Z| Z)$. Applying this to X, Y and X + Y, we get:

$$X^{+} = \frac{1}{2}(|X| + X), \ Y^{+} = \frac{1}{2}(|Y| + Y), \ (X + Y)^{+} = \frac{1}{2}[|X + Y| + (X + Y)].$$

Hence

$$X^{+} + Y^{+} = \frac{1}{2}[(|X| + |Y|) + (X + Y)] \ge \frac{1}{2}[|X + Y| + (X + Y)] = (X + Y)^{+}.$$

Likewise,

$$X^{-} = \frac{1}{2}(|X| - X), \ Y^{-} = \frac{1}{2}(|Y| - Y), \ (X + Y)^{-} = \frac{1}{2}[|X + Y| - (X + Y)]$$

and hence

$$X^- + Y^- = \frac{1}{2}[(|X| + |Y|) - (X + Y)] \ge \frac{1}{2}[|X + Y| - (X + Y)] = (X + Y)^-.$$

Alternative proof:

Let $X + Y \le 0$. Then $(X + Y)^+ = 0 = 0 + 0 \le X^+ + Y^+$. Let X + Y > 0. Then $(X + Y)^+ = X + Y \le X^+ + Y^+$, because $X = X^+ - X^- \le X^+$ and $Y = Y^+ - Y^- \le Y^+$. Thus, $(X + Y)^+ \le X^+ + Y^+$. Again, let X + Y < 0. Then $(X + Y)^- = -(X + Y) = -X - Y \le X^- + Y^-$, because $X = X^+ - X^-$ or $-X = X^- - X^+ \le X^-$ and $Y = Y^+ - Y^-$ or $-Y = Y^- - Y^+ \le Y^-$. Next, let $X + Y \ge 0$. Then $(X + Y)^- = 0 = 0 + 0 \le X^- + Y^-$, so that $(X + Y)^- \le X^- + Y^-$. So, again: $(X + Y)^+ < X^+ + Y^+$ and $(X + Y)^- < X^- + Y^-$. #

- **29.** (i) From the definition of B_m , we have: $B_1 = A_1$, and for $m \ge 2$, $B_m = A_1^c \cap \ldots \cap A_{m-1}^c \cap A_m$.
 - (ii) For $i \neq j$ (e.g., i < j), B_i is either A_1 (for i = 1) or $B_i = A_1^c \cap \ldots \cap A_{i-1}^c \cap A_i$, whereas $B_j = A_1^c \cap \ldots \cap A_{j-1}^c \cap A_j$, and $B_i \cap B_j = \emptyset$, because B_i contains A_i and B_j contains A_i^c (since $i \leq j-1$).
 - (iii) Let $\omega = \sum_{m=1}^{\infty} B_m$. Then either $\omega \in B_1 = A_1$, and hence $\omega \in \bigcup_{n=1}^{\infty} A_n$, or $\omega \notin A_i$, $i = 1, \ldots, n-1$ and $\omega \in A_n$, so that $\omega \in \bigcup_{n=1}^{\infty} A_n$. Thus, $\sum_{m=1}^{\infty} B_m \subseteq \bigcup_{n=1}^{\infty} A_n$. Next, let $\omega \in \bigcup_{n=1}^{\infty} A_n$. Then either $\omega \in A_1 = B_1$, so that $\omega \in \sum_{m=1}^{\infty} B_m$, or $\omega \notin A_i$, $i = 1, \ldots, n-1$ and $\omega \in A_n$. Then $\omega \in B_n$, so that $\omega \in \sum_{m=1}^{\infty} B_m$. #
- **30.** (i) We have $\underline{\lim}_{n\to\infty}A_n=\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k$, so that $\omega\in(\underline{\lim}_{n\to\infty}A_n)$ or $\omega\in\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k$, therefore $\omega\in\bigcap_{k=n_0}^{\infty}A_k$ for some n_0 , and hence $\omega\in A_k$ for all $k\geq n_0$. Next, let $\omega\in A_n$ for all but finitely many ns; i.e., $\omega\in A_n$ for all $n\geq n_0$. Then $\omega\in\bigcap_{k=n_0}^{\infty}A_k$ and hence $\omega\in\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k$, which completes the proof.
 - (ii) Here $\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, and hence $\omega \in (\overline{\lim}_{n\to\infty} A_n)$ or $\omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ implies that $\omega \in \bigcup_{k=n}^{\infty} A_k$ for $n \geq 1$. From $\omega \in \bigcup_{k=1}^{\infty} A_k$, let k_1 be the first k for which $\omega \in A_{k_1}$. Next, consider $\bigcup_{k=k_1+1}^{\infty} A_k$, and from $\omega \in \bigcup_{k=k_1+1}^{\infty} A_k$, let k_2 be the first $k \in k_1 + 1$ for which $\omega \in A_{k_2}$. Continuing like this, we get that ω belongs to infinitely many A_n s. In the other way around, if ω belongs to infinitely many A_n s, that means that there exist $1 < k_1 < k_2 < \dots$ such that $\omega \in A_{k_j}$, $j = 1, 2, \dots$ Then $\omega \in \bigcup_{k=k_j}^{\infty} A_k$, $j \geq 1$, and hence $\omega \in \bigcup_{k=n}^{\infty} A_k$ for $1 \leq n \leq k_1$ and $k_j < n < k_{j+1}$, $j \geq 1$. Thus, $\omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ and the result follows. #
- **31.** From $A_k \subseteq B_k, k \ge 1$, we have $\bigcup_{k=n}^{\infty} A_k \subseteq \bigcup_{k=n}^{\infty} B_k, n \ge 1$, and hence $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \subseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} B_k$ or $\overline{\lim}_{n\to\infty} A_n \subseteq \overline{\lim}_{n\to\infty} B_n$ or $(A_n \text{ i.o.}) \subseteq (B_n \text{ i.o.})$ (by Exercise 2). #

- **32.** We have $\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ and $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=n}^{\infty} \{r \in (1 \frac{1}{k+1}, 1 + \frac{1}{k}); r \in Q\} = \{1\}$ for all n, so that $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{1\}$; i.e., $\underline{\lim}_{n\to\infty} A_n = \{1\}$. Next, $\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ and $\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=n}^{\infty} \{r \in (1 \frac{1}{k+1}, 1 + \frac{1}{k}); r \in Q\} = \{r \in (1 \frac{1}{n+1}, 1 + \frac{1}{n}); r \in Q\}$, so that $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} \{r \in (1 \frac{1}{n+1}, 1 + \frac{1}{n}); r \in Q\} = \{1\}$. Thus, $\underline{\lim}_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \{1\} = \lim_{n\to\infty} A_n$. #
- **33.** Here $\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$, and consider the $\bigcap_{k=n}^{\infty} A_k$ for n odd or even. Then

$$\bigcap_{k=2n-1}^{\infty} A_k = (\bigcap_{\substack{k \text{ odd} \\ \geq 2n-1}} A_k) \cap (\bigcap_{\substack{k \text{ even} \\ \geq 2n}} A_k),$$

and

 $A_{2n-1} \cap A_{2n+1} \cap \ldots = [-1, \frac{1}{2n-1}] \cap [-1, \frac{1}{2n+1}] \cap \ldots = [-1, 0], A_{2n} \cap A_{2n+2} \cap \ldots = [0, \frac{1}{2n}) \cap [0, \frac{1}{2n+2}) \cap \ldots = \{0\}, \text{ so that } \bigcap_{k=2n-1}^{\infty} A_k = [-1, 0] \cap \{0\} = \{0\}.$ Next,

$$\bigcap_{k=2n}^{\infty} A_k = (\bigcap_{\substack{k \text{ even} \\ \geq 2n}} A_k) \cap (\bigcap_{\substack{k \text{ odd} \\ \geq 2n+1}} A_k),$$

and

 $A_{2n} \cap A_{2n+2} \cap \ldots = [0, \frac{1}{2n}) \cap [0, \frac{1}{2n+2}) \cap \ldots = \{0\}, A_{2n+1} \cap A_{2n+3} \cap \ldots = [-1, \frac{1}{2n+1}] \cap [-1, \frac{1}{2n+3}] \cap \ldots = [-1, 0], \text{ so that } \bigcap_{k=2n}^{\infty} A_k = \{0\} \cap [-1, 0] = \{0\}.$ It follows that $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_n = \{0\} = \underline{\lim}_{n \to \infty} A_n.$

Next, $\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, and consider the $\bigcup_{k=n}^{\infty} A_k$ for odd and even values of n. We have

$$\bigcup_{k=2n-1}^{\infty} A_k = (\bigcup_{\substack{k \text{ odd} \\ \geq 2n-1}} A_k) \cup (\bigcup_{\substack{k \text{ even} \\ \geq 2n}} A_k),$$

and

 $A_{2n-1} \cup A_{2n+1} \cup \ldots = [-1, \frac{1}{2n-1}] \cup [-1, \frac{1}{2n+1}] \cup \ldots = [-1, \frac{1}{2n-1}], A_{2n} \cup A_{2n+2} \cup \ldots = [0, \frac{1}{2n}) \cup [0, \frac{1}{2n+2}) \cup \ldots = [0, \frac{1}{2n}), \text{ so that } \bigcup_{k=2n-1}^{\infty} A_k = [-1, \frac{1}{2n-1}] \cup [0, \frac{1}{2n}) = [-1, \frac{1}{2n-1}]. \text{ Next,}$

$$\bigcup_{k=2n}^{\infty} A_k = (\bigcup_{k \text{ even}} A_k) \cup (\bigcup_{k \text{ odd}} A_k),$$

$$\geq 2n \qquad \geq 2n+1$$

and

$$A_{2n} \cup A_{2n+2} \cup \ldots = [0, \frac{1}{2n}) \cup [0, \frac{1}{2n+2}) \cup \ldots = [0, \frac{1}{2n}), A_{2n+1} \cup A_{2n+3} \cup \ldots = [-1, \frac{1}{2n+1}] \cup [-1, \frac{1}{2n+3}] \cup \ldots = [-1, \frac{1}{2n+1}], \text{ so that } \bigcup_{k=2n}^{\infty} A_k = [0, \frac{1}{2n}) \cup [-1, \frac{1}{2n+2}]$$

 $[-1, \frac{1}{2n+1}] = [-1, \frac{1}{2n})$. It follows that

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = [-1, 1] \cap [-1, \frac{1}{2}) \cap [-1, \frac{1}{3}] \cap [-1, \frac{1}{4}) \cap \dots
= [-1, 0] = \overline{\lim}_{n \to \infty} A_n.$$

So, $\underline{\lim}_{n\to\infty} A_n = \{0\}$ and $\overline{\lim}_{n\to\infty} A_n = [-1,0]$, so that the $\lim_{n\to\infty} A_n$ does not exist. #

34. (i) We have:

$$\{[0,1),[1,2),\ldots,[n-1,n)\}\subset\{[0,1),[1,2),\ldots,[n-1,n),[n,n+1)\}$$

and hence $A_n \subseteq A_{n+1}$. That $A_n \subset A_{n+1}$ follows by the fact that, e.g., [n, n+1) cannot belong in A_n since all members of A_n are $\subseteq [0, n)$.

- (ii) Let $A_1 \in \mathcal{A}_1$, $A_2 \in \mathcal{A}_2$ but not in $\mathcal{A}_1, \ldots, A_n \in \mathcal{A}_n$ but not in $\mathcal{A}_{n-1}, \ldots$, and set $A = \bigcup_{i=1}^{\infty} A_i$. Then $A \notin \bigcup_{n=1}^{\infty} \mathcal{A}_n$, because otherwise, $A \in \mathcal{A}_n$ for some n. However, this is not possible since $\bigcup_{i=n+1}^{\infty} A_i \notin \mathcal{A}_n$.
- (iii) $A_1 = \{\emptyset, [0, 1), [0, 1)^c = (-\infty, 0) \cup [1, \infty), \Re\}, A_2 = \{\emptyset, [0, 1), [1, 2), (-\infty, 0) \cup [1, \infty), (-\infty, 1) \cup [2, \infty), [0, 2), (-\infty, 0) \cup [2, \infty), \Re\}. \#$
- **35.** (i) First, observe that all intersections $A'_1 \cap \ldots \cap A'_n$ are pairwise disjoint, so that their unions are, actually, sums. Next, if A and B are in C, it is clear that $A \cup B$ is a sum of intersections $A'_1 \cap \ldots \cap A'_n$ (the sum of those intersections in A and those intersections in B), so that $A \cup B$ is in C. Now, if $A \in C$, then A^c is the sum of all those intersections $A'_1 \cap \ldots \cap A'_n$ which are not part of A. Hence A^c is also in C, and C is a field.
 - (ii) In forming $A'_1 \cap \ldots \cap A'_n$, we have 2 choices at each one of the n steps. Thus, there are 2^n sets of the form $A'_1 \cap \ldots \cap A'_n$. Next, in forming their sums, we select k of those members at a time, where $k = 0, 1, \ldots, 2^n$. Therefore the total number of sums is: $\binom{2^n}{0} + \binom{2^n}{1} + \ldots + \binom{2^n}{2^n} = 2^{2^n}$. #
- **36.** (i) If $\omega \in A$, then $f(\omega) \in f(A)$ and $\omega \in f^{-1}[f(A)]$. For a concrete example, take $f: \Re \to [0,1)$ where $f(x) = x^2$, and let A = [0,1). Then f(A) = f([0,1]) = [0,1), and $f^{-1}([0,1)) = (-1,1)$. It follows that $f^{-1}[f(A)] = f^{-1}([0,1)) = (-1,1) \supset [0,1) = A$.
 - (ii) Let $\omega' \in f[f^{-1}(B)]$ which implies that there exists $\omega \in f^{-1}(B)$ such that $f(\omega) = \omega'$. Also, $\omega \in f^{-1}(B)$ implies that $f(\omega) \in B$. Since also $f(\omega) = \omega'$, it follows that $\omega' \in B$. Thus $f[f^{-1}(B)] \subseteq B$.

For a concrete example, let $f: \Re \to \Re$ with f(x) = c. Take B = (c - 1, c + 1), so that $f^{-1}[(c - 1, c + 1)] = \Re$ and $f(\Re) = \{c\} \subset (c - 1, c + 1)$. That is, $f[f^{-1}(B)] = \{c\} \subset (c - 1, c + 1) = B$. #

37. (i) Since $X^{-1}(\{-1\}) = A_1, X^{-1}(\{1\}) = A_1^c \cap A_2$, and $X^{-1}(\{0\}) = A_1^c \cap A_2^c$, and $A_1, A_1^c \cap A_2, A_1^c \cap A_2^c$ are in A, X is a r.v.

- (ii) We have $X^{-1}(\{-1\}) = \{a, b\}, X^{-1}(\{1\}) = \{c\}, X^{-1}(\{2\}) = \{d\}$, and neither $\{c\}$ nor $\{d\}$ are in \mathcal{A} . Then X is not \mathcal{A} -measurable.
- (iii) We have $X^{-1}(\{-2\}) = \{-2\}$, $X^{-1}(\{-1\}) = \{-1\}$, $X^{-1}(\{0\}) = \{0\}$, $X^{-1}(\{1\}) = \{1\}$, $X^{-1}(\{2\}) = \{2\}$, so that $X^{-1}(\mathcal{B})$ is the field induced in Ω by the partition: $\{\{-2\}, \{-1\}, \{0\}, \{1\}, \{2\}\}\}$. The values taken on by X^2 are 0, 1, 4, and $(X^2)^{-1}(\{0\}) = \{0\}$, $(X^2)^{-1}(\{1\}) = \{-1, 1\}$, $(X^2)^{-1}(\{4\}) = \{-2, 2\}$, so that the field induced by X^2 is the one generated by the sets $\{0\}, \{-1, 1\}, \{-2, 2\}$, and it is, clearly, strictly contained in the one induced by X. #
- **38.** For a fixed k, let $\mathcal{A}_{k,n} = (X_k, \dots, X_{k+n-1})^{-1}(\mathcal{B})$. Then the σ -fields $\mathcal{A}_{k,n}$, $n \ge 1$, form a nondecreasing sequence and therefore $\mathcal{F}_k = \bigcup_{n=1}^{\infty} \mathcal{A}_{k,n}$ is a field (but it may fail to be a σ -field; see Exercise 10 in this chapter) and $\mathcal{B}_k = \sigma(\mathcal{F}_k)$. Likewise, $\mathcal{B}_l = \sigma(\mathcal{F}_l)$ where $\mathcal{F}_l = \bigcup_{n=1}^{\infty} \mathcal{A}_{l,n}$.

However, $\bigcup_{n=k}^{\infty} A_n \supseteq \bigcup_{n=l}^{\infty} \overline{A_n}$, so that $\mathcal{B}_k = \sigma(\bigcup_{n=k}^{\infty} A_n) \supseteq \sigma(\bigcup_{n=l}^{\infty} A_n) = \mathcal{B}_l$. This is so by the way the σ -fields \mathcal{B}_k and \mathcal{B}_l are generated (see Theorem 2(ii) in this chapter). #

- **39.** Since S_k is a function of the X_j s, $j=1,\ldots,k, k=1,\ldots,n$ it follows that $\sigma(S_k) \subseteq \sigma(X_1,\ldots,X_n), k=1,\ldots,n$. Hence $\bigcup_{k=1}^n \sigma(S_k) \subseteq \sigma(X_1,\ldots,X_n)$ and then $\sigma(\bigcup_{k=1}^n \sigma(S_k)) \subseteq \sigma(X_1,\ldots,X_n)$ or $\sigma(S_1,\ldots,S_n) \subseteq \sigma(X_1,\ldots,X_n)$. Next, $X_k = S_k S_{k-1}, k=1,\ldots,n$ ($S_0 = 0$), so that X_k is a function of the S_j s, $k=1,\ldots,n$. Then, as above, $\sigma(X_1,\ldots,X_n) \subseteq \sigma(S_1,\ldots,S_n)$, and equality follows. #
- **40.** Consider the function $f: \Re \to \Re$ defined by y = f(x) = x + c. Then, clearly, $f(B) = B_c$. The existing inverse of f, f^{-1} , is given by: $x = f^{-1}(y) = x c$, and it is clear that $(f^{-1})(B_c) = B$. By setting $g = f^{-1}$, so that $g^{-1} = f$, we have that $g^{-1}(B)(=f(B)) = B_c$. So, g^{-1} is continuous and hence measurable, and $g^{-1}(B) = B_c$. Since B is measurable then so is B_c . #
- **41.** (i) Clearly, $\mathcal{F} \neq \emptyset$. Next, to show that \mathcal{F} is closed under complementation. Indeed, if $A \in \mathcal{F}$, then

$$A = \bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \bigcap_{j=1}^{m_i} A_i^j$$

= $(A_1^1 \cap \ldots \cap A_n^{m_1}) \cup \ldots \cup (A_n^1 \cap \ldots \cap A_n^{m_n})$

with all $A_1^1, \ldots, A_1^{m_1}, \ldots, A_n^1, \ldots, A_n^{m_n}$ in \mathcal{F}_1 , so that

$$\begin{split} A^c &= [A_1^1 \cap \ldots \cap A_1^{m_1}) \cup \ldots \cup (A_n^1 \cap \ldots \cap A_n^{m_n})]^c \\ &= [(A_1^1)^c \cup \ldots \cup (A_1^{m_1})^c] \cap \ldots \cap [(A_n^1)^c \cup \ldots \cup (A_n^{m_n})^c] \\ &= \bigcup_{i_1=1}^{m_1} \ldots \bigcup_{i_n=1}^{m_n} [(A_1^{i_1})^c \cap \ldots \cap (A_n^{i_n})^c]. \end{split}$$

The fact that $A_1^{i_1}, \ldots, A_n^{i_n}$ are in \mathcal{F}_1 implies that $(A_1^{i_1})^c, \ldots, (A_n^{i_n})^c$ are also in \mathcal{F}_1 , as follows from the definition of \mathcal{F}_1 . So, A^c is a finite union of a finite intersection of members of \mathcal{F}_1 , and hence $A^c \in \mathcal{F}_3 (= \mathcal{F})$,

by the definition of \mathcal{F}_3 . Next, let $A, B \in \mathcal{F}$. To show that $A \cup B \in \mathcal{F}$. Indeed, $A, B \in \mathcal{F}$ implies that $A = A_1 \cup \ldots \cup A_m = (A_1^1 \cap \ldots \cap A_1^{k_1}) \cup \ldots \cup (A_m^1 \cap \ldots \cap A_m^{k_m})$ with $A_i^1, \ldots, A_i^{k_i}$ in $\mathcal{F}_1, i = 1, \ldots, m$, $B = B_1 \cup \ldots \cup B_n = (B_1^1 \cap \ldots \cap B_1^{l_1}) \cup \ldots \cup (B_n^1 \cap \ldots \cap B_n^{l_n})$ with $B_j^1, \ldots, B_j^{l_j}$ in $\mathcal{F}_1, j = 1, \ldots, n$, so that

$$A \cup B = [(A_1^1 \cap \ldots \cap A_1^{k_1}) \cup \ldots \cup (A_m^1 \cap \ldots \cap A_m^{k_m})] \cup$$

$$[(B_1^1 \cap \ldots \cap B_1^{l_1}) \cup \ldots \cup (B_n^1 \cap \ldots \cap B_n^{l_n})]$$

$$= (A_1^1 \cap \ldots \cap A_1^{k_1}) \cup \ldots \cup (A_m^1 \cap \ldots \cap A_m^{k_m}) \cup$$

$$(B_1^1 \cap \ldots \cap B_1^{l_1}) \cup \ldots \cup (B_n^1 \cap \ldots \cap B_n^{l_n}),$$

which is a finite union of finite intersections of members of \mathcal{F}_1 . It follows that $A \cup B$ is in $\mathcal{F}_3 (= \mathcal{F})$, so that \mathcal{F} is a field.

(ii) Trivially, $C \subseteq \mathcal{F}$, so that $\mathcal{F}(C) \subseteq \mathcal{F}$. To show that $\mathcal{F} \subseteq \mathcal{F}(C)$. Let $A \in \mathcal{F}$. Then, by part (i), $A = (A_1^1 \cap \ldots \cap A_1^{m_1}) \cup \ldots \cup (A_n^1 \cap \ldots \cap A_n^{m_n})$ with all $A_1^1, \ldots, A_1^{m_1}, \ldots, A_n^1, \ldots, A_n^{m_n}$ in \mathcal{F}_1 . Clearly, $\mathcal{F}_1 \subseteq \mathcal{F}(C)$ by the definition of \mathcal{F}_1 . Thus, $A_i^1, \ldots, A_i^{m_i}$ are in $\mathcal{F}(C)$, for $i = 1, \ldots, n$, and then the intersections $A_i^1 \cap \ldots \cap A_i^{m_i}$, $i = 1, \ldots, n$ are in $\mathcal{F}(C)$, and therefore so is their union $(A_1^1 \cap \ldots \cap A_1^{m_1}) \cup \ldots \cup (A_n^1 \cap \ldots \cap A_n^{m_n})$. Since this union is A, it follows that $A \in \mathcal{F}(C)$. Thus, $\mathcal{F} \subseteq \mathcal{F}(C)$, and the proof is completed. #

Remark: In Exercise 41, in the proof that $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$, the following property was used (in a slightly different notation for simplification); namely, $(C_1^1 \cup \ldots \cup C_n^{m_1}) \cap \ldots \cap (C_n^1 \cup \ldots \cup C_n^{m_n}) = \bigcup_{i_1=1}^{m_1} \ldots \bigcup_{i_n=1}^{m_n} (C_1^{i_1} \cap \ldots \cap C_n^{i_n})$.

This is justified as follows: Let ω belong to the right-hand side. Then ω belongs to at leats one of the $m_1 \times \ldots \times m_n$ members of the union, for example, $\omega \in (C_1^{i_1'} \cap \ldots \cap C_n^{i_n'})$ for some $1 \leq i_1' \leq m_1, \ldots, 1 \leq i_n' \leq m_n$. But then $\omega \in (C_1^1 \cup \ldots \cup C_1^{m_1}), \ldots, \omega \in (C_n^1 \cup \ldots \cup C_n^{m_n})$, and therefore $\omega \in [C_1^1 \cup \ldots \cup C_1^{m_1}) \cap \ldots \cap (C_n^1 \cup \ldots \cup C_n^{m_n})]$, or ω belongs to the left-hand side. Next, let ω belong to the left-hand side. Then $\omega \in (C_1^1 \cup \ldots \cup C_1^{m_1}), \ldots, \omega \in (C_n^1 \cup \ldots \cup C_n^{m_n})$, so that $\omega \in C_1^{i_1'}, \ldots, \omega \in C_n^{i_n'}$ for some $1 \leq i_1' \leq m_1, \ldots, 1 \leq i_n' \leq m_n$. But then $\omega \in (C_1^{i_1'} \cap \ldots \cap C_n^{i_n'})$, and $C_1^{i_1'} \cap \ldots \cap C_n^{i_n'}$ is one of the $m_1 \times \ldots \times m_n$ members of the union on the right-hand side. It follows that ω belongs to the right-hand side, and the justification is completed. #

42. Let $A \in \mathcal{A}$. Then $A = \bigcup_{i=1}^{\infty} A_i$, $A_i = A_i^1 \cap A_i^2 \cap \ldots$ with A_i^1, A_i^2, \ldots in $\mathcal{A}_1, i \geq 1$. Then

$$A^c = (\bigcup_{i=1}^{\infty} A_i)^c = \bigcap_{i=1}^{\infty} A_i^c = \bigcap_{i=1}^{\infty} (A_i^1 \cap A_i^2 \cap \ldots)^c$$