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Chapter 1 solutions



1 Solutions to Chapter 1 problems

Problem 1.1: This problem requires the reading of Table 1.1 on which the units and dimensions
of important concepts and properties are given. Let us take one example. Let us verify the
dimension of pressure in terms of M, L and T; it is given as [p] = [M L™! T~2] in the table.
Recall that the unit of pressure in SI is N/m?. Recall also that a unit of force of 1 Newton,
N, is equal to 1 kg m/s?. Thus, the unit of pressure can also be expressed as kg m~! s=2 and,
hence, the dimension of pressure can also be expressed as follows: [M L~! T~2]. This is what
is given in the table.

Problem 1.2: The answer, as given in the text, is one divided by the correct answer. Based
on the formula given (which is correct), the unit of G must be [G] = [M~! T=2 L3]. The
gravitational constant can be found in any physics text; it is G = 6.670 x 107 N m? kg2 or
G =6.670 x 107! kg=! m? s72. Hence, the unit of G must be [G] = [M~! T2 L3].

Problem 1.3: This problem is the dimensional analysis of a pendulum. The period of oscilla-
tion is 7. The length mass of the object attached to the end of the pendulum is m. The length
of the pendulum is I. The acceleration of gravity is g. Let us examine the expression

T = Cm’¢°

The dimensions of each parameter is as follow:

a b L1°
(7] = C " (| 75
The exponents equate as follows: a =0, b+ ¢ =0 and 1 = —2¢. Thus, ¢ = —1/2, b =1/2 and

a = 0. This means that
T =Cm 1My = C\/l/g,

where C is a constant. This illustrates that 7 is independent of the mass, m.

Problem 1.4: We want to examine the power required to rotate a disk in a viscous fluid. We
assume (based on the problem statement) that the power is related to the other properties as
follows:

P=f(D,w,p,v)

The unit of power is N m s~! or kg m? s~3. Thus the dimension of power and its relationship
with the dimensions of the other properties are as follows:

[P] = C D" W]’ [p]° [»)*

ML? 170 (M [L2]?
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Equating the exponents we get: 1 = ¢, 2 = a —3c+d and —3 = —b — 2d. Let d be the
undetermined parameter. Hence, c =1, a =5 —d and b = 3 — 2d. Thus,

P = C’D5_dw3_2dp1/d

This can be rearranged as follows:

P = puw®D5 < v >d
Dw?



or

P = puPD%f (D” 2)
w

P v
Cp= ——— = -
P pw3 Db ! <Dw2)
This is one of a number of forms that can be written for this relationship. Part (b) provides

other nondimensional quantities that can be written from dimensional analysis. Of course, in
this case, the power coefficient reduces to a function of only one independent parameter.

or

Problem 1.5: The terminal velocity of a sphere is to be examined by dimensional analysis.
Assume V' depends on the diameter and density of the sphere, D and o, respectively. Also
assume it depends on g, the acceleration of gravity, and v, the kinematic viscosity of the fluid.
Thus, we assume

V= CDanpcgdl/e

The dimensions of each factor in this equation are

7)=er (5] (6] (7] 7]

T L3 L3] |12 T

Equating the coefficients, we get: 1 =a—3b—3c+d+2e, b=—cand —1 = —2d —e. If we let
a be the undetermined parameter, we get

V= C(Vg)1/3 f <Z> h (Dgl/3u’2/3)

where the variable in the function A is the dimensionless variable to the power of a as deter-
mined by this application of dimensional analysis. Another construction of this dimensional
relationship is given in the problem statement.

Problem 1.6: The model Re,, = Viom/vm. The full-scale value is R, = Vpcp/l/p. For
dynamic similarity the Reynolds numbers must be equal, i.e.,

VinCm B Vpcp

Vm Vp
Thus,
v, = @Vmcm
Cp VUm
The lift coefficient is
O L
Lo $pV2A
This also must be equal for model and full-scale conditions. Hence,
Ly, B L,
%PmVn%Am %PpVEAp
Thus,
1 L
Ly = =pmV2Ap-—b—
2 " %va;?Ap

This problem was graphically solved by applying the following MATLAB script:



% Problem 1.6

W = 60000; % N

b=17; % m

scale = 0.1; % size of model

p = 15 * 101000; % N/m"2

TO = 273;

T =15+ T0; % K

R = 287; % KJ/kg/K

rho = p/(R*T);

muo = 0.0000171; % kg/m/s

mu = muo * (T/TO)".75;

% Assume the viscosity if

num = mu/rho;

rhop = 1.2256;

nup = mu/rhop;

Vm = [20 21 22 23 24];

Vp = Vm*nup*scale/num;

Lmx = [2960 3460 4000 4580 5200];

plot (Vm,Lmx)

% title(’Model test data given in Problem 1.6°)
% xlabel(’Speed at maximum lift, m/s’),

% ylabel(’Maximum 1ift, N’)

Lm = rho*Vm."2.*scale”2.*W./(rhop*Vp."2);
hold on

plot(Vm,Lm,’r’)

figure(2)

plot(Vm,Vp),grid

xlabel(’Model speed, m/s’),ylabel(’Prototype speed, m/s’)

The first figure shows that the speed at maximum lift corresponding to the lift that is for
the prototype at take-off. The second figure indicates that the speed of take-off of the full scale
is V, =33 m/s.

Problem 1.7: The change in pressure over the first 60% of the chord is —.4. It linearly drops
to zero over the last 40% of the chord. The lift is the integral of this over the chord. The lift
is C, = (0.4 % 0.6 + 0.2 % 0.4) cos(4 * 7/180) = 0.3192. The moment about the leading edge is
Cy=-03%0.4%0.6—(0.6+.4/3)%0.2%0.4=—0.1307.

Problem 1.8: We are given the pressure distribution around a cylinder. The diameter and the
upstream speed are given. The objective is to integrate the pressure to compute the drag. This
was done using the following MATLAB script. The results are, with density p = 1.23 kg/m3,
Cp=09and D=75Nm1.

% Problem 1.8

clear;clc

dtheta = 10;

theta = 0:dtheta:180; % degrees

thetac = theta + dtheta/2;

p = [569 502 301 -57 -392 -597 -721 -726 -707 -660 -626 ...
-588 -569 -569 -569 -569 -569 -569 -569]; % N/m/m/

%plot (theta,p)

D = 150/1000; % m
V =30; % m/s
R = D/2;



Dr = 0;

for n = 1:length(theta)-1;
dAx(n) = R * (dtheta*pi/180) * cos( thetac(n)*pi/180 );
dN(n) = dAx(m) * ( p(n) + p(n+l) ) / 2;
Dr = Dr + dN(n);

end
Dr = 2%Dr
CD = Dr/(1.23%30°2%D/2)

plot(thetac(1l:end-1),dAx)
figure(2)
plot(thetac(1l:end-1),dN)

Problem 1.9: This problem is an engineering problem. Thus, we should not expect to get
numerical results that are exactly like the answers given in the text. Three-significant figure
accuracy could be expected. However, for the calculation of the moment, it depends on the
calculation of ¢4 and, hence, on your interpretation of the meaning of the taper ratio. How do
you handle the fact that there is a fuselage between the half wings as illustrated in Figure 1.5
on page 27 in the text? How do you take into account that the fuselage, which is not part of the
two wings, and how do you handle the lift associated with the fuselage are engineering issues?
These questions require an exercise of engineering judgment and, hence, require engineering
guesses. The instructor’s solution to this problem is as follows:

h
% Homewrok problem 1.9: Sailplane
b

clear;clc

b = 18;

AR = 16;

S = b"2/AR;

cm = b/AR;

sig = 0.7;

rhoR = 1.22;

rho = sig*rhoR;

V = 115%1000/3600;

L = 3500;

CL = L/(rho*V"2%S/2)
D = 145;

CD = D/(rho*V~2xS/2)
CM = -0.03;

%
% AMC calculation:
%

dx = .01;
s = b/2;
xf = 0.3;
x = xf:dx:s;
TR = .3;

c_over_co = ( 1 -(1-TR)*(x-xf)/(s-xf) );
SS = 2*(sum(c_over_co(2:end-1))+ (c_over_co(1)+c_over_co(end))/2)*dx;



co = S/8S; % co is selected so that the wing area is equal to S.
C = CO*C_over_co;
c2 = c.”2;
ca = ( sum(c2(2:end-1))+ (c2(1)+c2(end))/2 )
/( sum(c(2:end-1)) + (c(1)+c(end))/2 )
%plot (x/s,c)
M = CM*(rho*V~2%S/2)*ca

Executing this script we get Cr, = 0.3967, Cp = 0.0164, M = —337.8 N m, and ¢4 = 1.276 m.

Problem 1.10: After studying Section 1.6.3 on pressure distribution within the context of
force and moment acting on an airfoil as well as C; and Cjs described in Section 1.6.4 the
student is expected to recognize that at zero angle of attack the symmetric airfoil lift is zero.
Obviously, the essay of any student addressing this question is the student’s first guess and,
hence, all the opinion reported (unless sloppy) is considered correct in terms of what is the
correct answer to this question.

Problem 1.11: This problem could be approached by dimensional analysis. The properties
of importance are a, speed of sound, V', speed, ¢, chord length, p, density of fluid and v, the
kinematic viscosity of the fluid. Thus, show that

L=y <VC) g (V) D=1 (VC) k <V>
2 v a 2 v a

where Re = Ve¢/v and M = V/a are the Reynolds number and Mach number, respectively.
Under ideal circumstances you would test the model at the same Re and M. This is usually
quite difficult. How the students discuss this matter at this stage of their investigation would
be interesting.

Problem 1.12: A pint is an eighth of a gallon and, hence, 28.8 cubic inches (this number is
not given correctly in the problem statement). This is equal to 0.0167 cubic feet. The density
of fresh water is 1.93 1b; s? ft =4, The reference value of gravitational acceleration is g = 32.174
ft/s/s. Hence, the weight of a pint is 1.0349 pounds force. Thus, the rhyme is not bad; it favors
the receiver of the liquid by 3.5%.

Problem 1.13: One kg is equal to one N s> m~'. It is a unit of mass. A mass of one kg weighs
9.81 N because weight is a force and it is equal to the mass of an object times the acceleration
of gravity. The weight of 1 kg just given is the weight at sea level, where ¢ = 9.81 m s~2. There
are a number of concepts reviewed in this problem that are useful for the student to clarify in
their own mind.

Problem 1.14: At lift off assume the lift is equal the weight and the drag is opposite the thrust.
Since the plot is a straight line with a constant slope equal to 3, the L/D is a constant for all
planes on the chart and it is equal to 3. This assumes the plane at takeoff is not accelerating.
If the fuselage is considered to contribute to half the drag, then the lift to drag ratio for the
wings is about 6 and it is constant for the airplanes on the chart.

Problem 1.15: This is a project for the students that is open-ended. Hence, in this case it
forces the students to include economics in the problem at the beginning of their investigation
of aerodynamics and the design of aircraft.



