
An Application of Residues

If f is a complex function defined at least for all z on the half-line [0,∞),
then the Laplace transform of f is

L[f ](z) =

∫ ∞
0

e−ztf(t) dt

for all z such that this integral converges. If L[f ] = F then we write f = L−1[F ]
for the inverse transform.

In Chapter Three we saw techniques for manipulating L and L−1. The
following theorem provides a formula for the inverse Laplace transform of F (s)
in terms of residues of etzF (z).

Theorem (Inverse Laplace Transform) Let F be differentiable for all z
except for poles z1, · · · , zn. Suppose for some real number σ, F is differentiable
for all z with Re(z) ≥ σ. Suppose there are numbers M and R such that

|zF (z)| ≤M for |z| ≥ R.

Then

L−1[F (s)](t) =
n∑
j=1

Res(etzF (z), zj). �

Because F is differentiable for Re(z) ≥ σ, F ′(z) exists at least for z to the
right of the vertical line x = σ. The condition that |zF (z)| ≤ M for |z| ≥ R
means that zF (z) is bounded for all z on and outside some sufficiently large
circle. This condition is satisfied by any rational function p(z)/q(z) if the degree
of q(z) exceeds that of p(z).

The theorem can be proved using an alternative version of the Cauchy inte-
gral given the module A Variation on Cauchy’s Integral Formula. Following a
sketch of the argument and two examples computing inverse Laplace transforms
of functions, we will use the theorem to solve a problem of heat diffusion in a
homogeneous solid cylinder.

Begin by writing

F (s) = − 1

2πi
lim
b→∞

∫ σ+ib

σ−ib

F (z)

z − s
dz.

Interchange L−1 and the integral (this is justified by hypotheses of the the-
orem) to compute

f(t) = L−1[F (s)](t) =
1

2πi
lim
b→∞

∫ σ+ib

σ−ib
L−1

[
F (z)

s− z

]
dz

=
1

2πi
lim
b→∞

∫ σ+ib

σ−ib
etzF (z) dz

=
∑
p

Res(etzF (z), p),
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with this summation extending over all of the poles of etzF (z). σ is chosen so
that all of these poles are to the right of σ.

Example 1 Let a be a positive number. We will find the inverse Laplace
transform of F (z) = 1/(a2 + z2). We have several ways of doing this, but we
want to illustrate the residue method.

F (z) has simple poles at ±ai. Write

etzF (z) =
etz

(z + ai)(z − ai)

to compute the residues:

Res(etzF (z), ai) =
eai

2ai
and Res(etzF (z),−ai) =

e−ai

−2ai
.

Then

L−1[F ](t) =
1

2ai

(
eai − e−ai

)
=

1

a
sin(at). �

Example 2 Let

F (z) =
1

(z2 − 4)(z − 1)2
.

Then F (z) has simple poles at ±2 and a double pole at 1. Compute

Res(etzF (z), 2) = lim
z→2

etz

(z + 2)(z − 1)2
=

1

4
e2t,

Res(etzF (z),−2) = lim
z→−2

etz

(z − 2)(z − 1)2
= − 1

36
e−2t,

and

Res(etzF (z), 1) = lim
z→1

d

dz
((z2 − 4)−1etz)

= lim
z→1

(−2z(z2 − 4)−2etz + tetz(z2 − 4)−1)

= −1

3
tet − 2

9
et.

Then

L−1[F ](t) =
1

4
e2t − 1

36
e−2t − 1

3
tet − 2

9
et. �

Problems

In each of Problems 1–10 use the theorem to find the inverse Laplace trans-
form of the function.

1.
z2

(z − 2)2
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2.
z + 3

(z3 − 1)(z + 2)

3.
z

z2 + 9

4.
1

(z + 3)2

5.
1

(z − 5)2(z + 4)

6.
1

(z2 + 9)(z − 2)2

7.
1

(z + 5)3

8.
1

z3 + 8

9.
1

z4 + 1

10.
1

ez(z − 1)

11. How does the formula for f(t) given in the theorem relate to Heaviside’s
formula?

Diffusion in a Cylinder

We will find the temperature distribution function for a homogeneous solid
cylinder of radius R centered along the z - axis. This problem was solved in
Section 8.3.2 using separation of variables.

We will assume facts about the Bessel functions J0(x) and J1(x), and also the
modified Bessel function I0(x) = J0(ix). Using these, we will use the Laplace
transform to obtain the temperature distribution function.

Assuming angular independence, we will use cylindrical coordinates. The
boundary value problem is

∂u

∂t
=
∂2u

∂r2
+

1

r

∂u

∂r
for 0 ≤ r ≤ R, t > 0

u(r, 0) = 0, u(R, t) = T0.
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Apply the Laplace transform with respect to t to this problem to obtain

∂2U

∂r2
+

1

r

∂U

∂r
− sU(r, s) = 0.

This is a modified Bessel equation of order zero. A solution that isbounded at
r = 0, the center of the cylinder, is given by

U(r, s) = cI0(
√
sr).

Transform the condition u(R, t) = T0 to obtain U(R, s) = T0/s. Then

U(R, s) = cI0(
√
sR) =

T0
s
.

This means that

c =
T0

sI0(
√
sR)

.

The transform of the solution is therefore

U(r, s) =
T0I0(

√
sr)

sI0(
√
sR)

.

We must invert this to obtain u(r, t). We need the singularities of

etzU(r, z) = etz
I0(
√
zr)

zI0(
√
zR)

.

Singularities of etzU(r, z) occur at zeros of the denominator. There is also a
simple pole at z = 0 because I0(0) = 1 6= 0. Further,

I0(
√
zR) = J0(i

√
zR) = 0

if i
√
zR is a zero of J0. These zeros are real, simple and nonzero, and if the pos-

itive zeros are labeled j1, j2, · · · , then all the zeros are ±j1,±j2, · · · . Therefore
I0(
√
zR) = 0 if

√
zR = ±ijn for some n. Then

z = −j2n/R2.

Therefore etzU(r, z) has simple poles at 0 and−j2n/R2 for n = 1, 2, · · · . Inverting
U(r, s) yields the solution

u(r, t) = Res(etzU(r, z), z = 0) +
∞∑
n=1

Res(etzF (z), z = −j2n/R2).

All that is left is to compute these residues. First,

Res(etzU(r, z), 0) = lim
z→0

zetz
I0(
√
zr)

zI0(
√
zR)

= lim
z→0

etz
I0(
√
zr)

I0(
√
zR)

=
I0(0)

I0(0)
= 1.
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For the residues at the other poles, use the fact that these poles are simple zeros
of the denominator of a function of the form g(z)/h(z), with

g(z) =
etzI0(

√
zr)

z
and h(z) = I0(

√
zR).

Then

Res(g(z)/h(z),−j2n/R2)

=
e−j

2
nt/R

2

I0(jnri/R)

−j2n/R2

[
1

d
dz I0(

√
zR)

]
−j2n/R2

=
e−j

2
nt/R

2

I0(jnri/R)

−j2n/R2

[
2
√
z

RI ′0(
√
zR)

]
z=−j2n/R2

=
−2Ri

jn
e−j

2
nt/R

2 I0(jnri/R)

I ′0(jni)
.

Now use the facts that
I ′0(z) = iJ ′0(iz)

and
J ′0(z) = −J1(z) = J1(−z)

to obtain

Res(g(z)/h(z), jn)

=
−2R

jn

J0(jnr/R)

J1(jn)
e−j

2
nt/R

2

.

The solution is

u(r, t) = T0

(
1− 2

∞∑
n=1

−2R

jn

J0(jnr/R)

J1(jn)
e−j

2
nt/R

2

)
.

Problem

1. Relate the solution of this diffusion problem for the cylinder with the
solution obtained by separation of variables in Chapter Eight.
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