An Application of Residues

If f is a complex function defined at least for all z on the half-line [0, c0),
then the Laplace transform of f is

Clf)(z) = / Ty de

for all z such that this integral converges. If L[f] = F then we write f = L~ ![F]
for the inverse transform.

In Chapter Three we saw techniques for manipulating £ and £7'. The
following theorem provides a formula for the inverse Laplace transform of F(s)
in terms of residues of et* F(z).

Theorem (Inverse Laplace Transform) Let F' be differentiable for all z
except for poles z1,- -+, z,. Suppose for some real number o, F' is differentiable
for all z with Re(z) > 0. Suppose there are numbers M and R such that

|2F(z)| < M for |z| > R.
Then .
L7HE(s)](t) = ZRes(etzF(z), zj). ©

Because F is differentiable for Re(z) > o, F'(z) exists at least for z to the
right of the vertical line z = 0. The condition that |zF(z)] < M for |z| > R
means that zF(z) is bounded for all z on and outside some sufficiently large
circle. This condition is satisfied by any rational function p(z)/q(z) if the degree
of ¢q(z) exceeds that of p(z).

The theorem can be proved using an alternative version of the Cauchy inte-
gral given the module A Variation on Cauchy’s Integral Formula. Following a
sketch of the argument and two examples computing inverse Laplace transforms
of functions, we will use the theorem to solve a problem of heat diffusion in a
homogeneous solid cylinder.

Begin by writing

o-+1ib
F(s) = —=— lim / FE) g,

2T b—oo Jo_ip 2 — S

Interchange £~ and the integral (this is justified by hypotheses of the the-
orem) to compute

F(t) = L-F(s)](t) = —— lim / Mbcl{F (2)} dz

27 b—oo J i s—z

1 o+ib .
BT 22
2 broo 7 F(z) dz

o—ib

Z Res(e"” F(z),p),
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with this summation extending over all of the poles of €' F(z). o is chosen so
that all of these poles are to the right of o.

Example 1 Let a be a positive number. We will find the inverse Laplace
transform of F(z) = 1/(a? + 2%). We have several ways of doing this, but we
want to illustrate the residue method.

F(z) has simple poles at +ai. Write

etz

tZF —
" F(2) (z+ ai)(z — ai)
to compute the residues:

at —at

Res(e” F(2), ai) = 2ai and Res(e"*F(z), —ai) = i2ai'
Then 1 ;
LTUFI(t) = 5= (" —e™*") = —sin(at). ©
Example 2 Let
F(z) = :

(22 —4)(z — 1)2°
Then F(z) has simple poles at +2 and a double pole at 1. Compute

tz 1
tz S H - = 2t
Res(e*F(z),2) —lg EETEEE 1€

tz
tz Loy T e 1y
Res(e*F(z), —2) = Zl_l)H_lz EEEEEA 6¢

and
Res(e”F(z),1) = lim i((22 —4)7tet?)
’ z—1 dz
= 111111(722(,22 —4)7 2 ftet* (22 —4)7h
z—r
1
= —gtet — §€t
Then 1 g 1 5
L7YF|(t) = Ze% %6_% - gtet —Zelo
Problems

In each of Problems 1-10 use the theorem to find the inverse Laplace trans-
form of the function.

1.

(2 —2)?
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z+3
(23 —1)(z +2)
3.
A
2249
4.
1
(z+3)
5.
(z=5)%(z +4)
6.
v
(22 +9)(2 — 2)2
7.
1
(z+5)3
8.
1
23+ 8
9.
1
zA4+1
10.
1
e*(z—1)

11. How does the formula for f(¢) given in the theorem relate to Heaviside’s
formula?

Diffusion in a Cylinder

We will find the temperature distribution function for a homogeneous solid
cylinder of radius R centered along the z - axis. This problem was solved in
Section 8.3.2 using separation of variables.

We will assume facts about the Bessel functions Jy(z) and J; (x), and also the
modified Bessel function Iy(z) = Jy(iz). Using these, we will use the Laplace
transform to obtain the temperature distribution function.

Assuming angular independence, we will use cylindrical coordinates. The
boundary value problem is

2
%:g%—&—%% for0<r<R,t>0
u(r,0) = 0,u(R,t) = Tp.

169



Apply the Laplace transform with respect to ¢ to this problem to obtain
U, 10U
or2 r or

This is a modified Bessel equation of order zero. A solution that isbounded at

r = 0, the center of the cylinder, is given by

U(r,s) = clo(v/s7).
Transform the condition u(R,t) = Ty to obtain U(R, s) = Ty/s. Then

U(R, s) = clo(v/5R) = %

sU(r,s) = 0.

This means that
1o

slo(v/sR)

The transform of the solution is therefore

_ Tolo(y/sr)
Ul(r,s) = ST (Vo)

We must invert this to obtain u(r,t). We need the singularities of

Io(v/2r)

eU(r,z) = e — Y=~

zlo(VzR)

Singularities of e'*U(r, z) occur at zeros of the denominator. There is also a
simple pole at z = 0 because Iy(0) = 1 # 0. Further,

In(V2R) = Jo(iv2R) = 0

if i/2R is a zero of Jy. These zeros are real, simple and nonzero, and if the pos-

itive zeros are labeled j1, jo,- - -, then all the zeros are +j;, +js,---. Therefore
Iy(v/zR) = 0 if /2R = %ij, for some n. Then

z=—j2/R%
Therefore e!*U (r, z) has simple poles at 0 and —j2 /R? forn = 1,2, ---. Inverting

U(r, s) yields the solution

u(r,t) = Res(e”U(r,2),z = 0) + Z Res(e*F(z),z = —j2/R?).

n=1

All that is left is to compute these residues. First,
Io(v/2r)

tz 1 tz
Res(e U(r,z),O)—Zh_r%ze AN

— lim tz IO( Z’I")
o z—0 Io(\/ER)
Io(0) 1
Ip(0)



For the residues at the other poles, use the fact that these poles are simple zeros
of the denominator of a function of the form g(z)/h(z), with

e Io(\/zr)

g(z) = and h(z) = Iy(v/zR).

Then

Res(g(2)/h(z), —jn/R?)

_ eIt/ [y (Gri/ R) 1
_Jn/R2 %IO(\/ER) —j2/R?
_ e Lo(juri/R) [ 2\/z ]
—Jjn/R? RIG(VZR) |2 /po
_ —2Rz _i2t/R? Io(jn’l‘Z/R)'
jn I3 (jnd)

Now use the facts that
Ij(2) = iJi(i2)
and
Jo(2) = =Ji(2) = Ji(—2)

to obtain

Res(g(2)/h(2), jn)
_ Z2R Jo(nr/R) _j2i ke

Jn Jl(]n)
The solution is
—2R JO ]nT/R) i2t/R?
1-2 2O T o=t/ BT
= (1-23 AL

Problem

1. Relate the solution of this diffusion problem for the cylinder with the
solution obtained by separation of variables in Chapter Eight.
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