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Chapter 1

Arithmetic in Revisited

1.1 The Division Algorithm

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = −5, r = 3.

2. (a) q = −9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

3. (a) q = 6, r = 19. (b) q = −9, r = 54. (c) q = 62720, r = 92.

4. (a) q = 15021, r = 132. (b) q = −14940, r = 335. (c) q = 39763, r = 3997.

5. Suppose a = bq + r, with 0 ≤ r < b. Multiplying this equation through by c gives ac = (bc)q + rc.
Further, since 0 ≤ r < b, it follows that 0 ≤ rc < bc. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc − 1. Since by Theorem 1.1 this representation is unique,
it must be that q is the quotient and rc the remainder on dividing ac by bc.

6. When q is divided by c, the quotient is k, so that q = ck. Thus a = bq + r = b(ck) + r = (bc)k + r.
Further, since 0 ≤ r < b, it follows (since c ≥ 1) than 0 ≤ r < bc. Thus a = (bc)k + r is the unique
representation with 0 ≤ r < bc, so that the quotient is indeed k.

7.

8.

9.

10.
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Answered in the text. 

Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4k,  
4k + 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if 
n is odd then n = 4k + 1 or 4k + 3. 

We know that every integer a is of the form 3q, 3q + 1 or 3q + 2 for some q. In the last case
 a = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9k + 8 where k = 3q3 + 6q2 + 4q. Other cases are similar. 

Suppose a = nq + r where 0 ≤ r < n and c = nq' + r' where 0 < r' < n. If r = r' then a – c =  
n(q – q') and k = q – q' is an integer. Conversely, given a – c = nk we can substitute to find:  
(r – r') = n(k – q + q'). Suppose r ≥ r  (the other case is similar). The given inequalities imply 
that 0 ≤ (r – r') < n and it follows that 0 ≤ (k – q + q') < 10000  k – q + q' = 0. 
Therefore r – r' = 0, so that r = r' as claimed. 

3

1 and we conclude that
'

Z
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1.2 Divisibility

1. (a) 8.

(b) 6.

(c) 1.

(d) 11.

(e) 9.

(f) 17.

(g) 592.

(h) 6.

2.

3.

4.

5. Since a | b, we have b = ak for some integer k, and a 6= 0. Since b | a, we have a = bl for some
integer l, and b 6= 0. Thus a = bl = (ak)l = a(kl). Since a 6= 0, divide through by a to get 1 = kl.
But this means that k = ±1 and l = ±1, so that a = ± b.

6.

7. Clearly (a, 0) is at most |a| since no integer larger than |a| divides a. But also |a| | a, and |a| | 0
since any nonzero integer divides 0. Hence |a| is the gcd of a and 0.

8.

9. No, ab need not divide c. For one example, note that 4 | 12 and 6 | 12, but 4 · 6 = 24 does not
divide 12.

10.

11.

12. (a) False. (ab, a) is always at least a since a | ab and a | a.

(b) False. For example, (2, 3) = 1 and (2, 9) = 1, but (3, 9) = 3.

(c) False. For example, let a = 2, b = 3, and c = 9. Then (2, 3) = 1 = (2, 9), but (2 · 3, 9) = 3.

11.
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Given integers a and c with c ≠ 0. Apply Theorem 1.1 with b = |c| to get a = |c| . q + r where 0 
≤ r < |c|. Let q = q0 if c > 0 and q = –q0 if c < 0. Then a = cq + r as claimed. The uniqueness is 
proved as in Theorem 1.1. 

If b | a then a = bx for some integer x. Then a = (–b)(–x) so that (–b) | a. The converse follows 
similarly. 

Answered in the text. 

(a) Given b = ax and c = ay for some integers x, y, we find b + c = ax + ay = a(x + y). 
Since x + y is an integer, conclude that a | (b + c). 

(b) Given x and y as above we find br + ct = (ax)r + (ay)t = a(xr + yt) using the associative 
and distributive laws. Since xr + yt is an integer we conclude that a | (br + ct). 

Given b = ax and d = cy for some integers x, y, we have bd = (ax)(cy) = (ac)(xy). Then ac | bd 
because xy is an integer. 

If d = (n, n + 1) then d | n and d | (n + 1). Since (n + 1) – n = 1 we conclude that d | 1. (Apply 
Exercise 4(b).) This implies d = 1, since d > 0. 

Since a | a and a | 0 we have a | (a, 0). If (a, 0) = 1 then a | 1 forcing a = ±1. 

(a) 1 or 2 (b) 1, 2, 3 or 6. Generally if d = (n, n + c) then d | n and d | (n + c). 
Since c is a linear combination of n and n+c, conclude that d | c. 

0
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14.

15. (a) This is a calculation.

(b) At the first step, for example, by Exercise 13 we have (a, b) = (524, 148) = (148, 80) = (b, r).
The same applies at each of the remaining steps. So at the final step, we have (8, 4) = (4, 0);
putting this string of equalities together gives

(524, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 8) = (8, 4) = (4, 0).

But by Example 4, (4, 0) = 4, so that (524, 148) = 4.

(c) 1003 = 56 · 17 + 51, 56 = 51 · 1 + 5, 51 = 5 · 10 + 1, 5 = 1 · 5 + 0. Thus (1003, 56) = (1, 0) = 1.

(d) 322 = 148 · 2 + 26, 148 = 26 · 5 + 18, 26 = 18 · 1 + 8, 18 = 8 · 2 + 2, 8 = 2 · 4 + 0, so that
(322, 148) = (2, 0) = 2.

(e) 5858 = 1436 · 4 + 114, 1436 = 114 · 12 + 68, 114 = 68 · 1 + 46, 68 = 46 · 1 + 22, 46 = 22 · 2 + 2,
22 = 2 · 11 + 0, so that (5858, 1436) = (2, 0) = 2.

(f) 68 = 148− (524− 148 · 3) = −524 + 148 · 4.

(g) 12 = 80− 68 · 1 = (524− 148 · 3)− (−524 + 148 · 4) · 1 = 524 · 2− 148 · 7.

(h) 8 = 68− 12 · 5 = (−524 + 148 · 4)− (524 · 2− 148 · 7) · 5 = −524 · 11 + 148 · 39.

(i) 4 = 12− 8 = (524 · 2− 148 · 7)− (−524 · 11 + 148 · 39) = 524 · 13− 148 · 46.

(j) Working the computation backwards gives 1 = 1003 · 11− 56 · 197.

16.

17. Since b | c, we know that c = bt for some integer t. Thus a | c means that a | bt. But then Theorem
1.4 tells us, since (a, b) = 1, that a | t. Multiplying both sides by b gives ab | bt = c.

18.

19.

1.2 Divisibility 3

13. (a) Suppose c | a and c | b. Write a = ck and b = cl. Then a = bq + r can be rewritten
ck = (cl)q + r, so that r = ck − clq = c(k − lq). Thus c | r as well, so that c is a common
divisor of b and r.

(b) Suppose c | b and c | r. Write b = ck and r = cl, and substitute into a = bq + r to get
a = ckq + cl = c(kq + l). Thus c | a, so that c is a common divisor of a and b.

(c) Since (a, b) is a common divisor of a and b, it is also a common divisor of b and r, by part (a).
If (a, b) is not the greatest common divisor (b, r) of b and r, then (a, b) > (b, r). Now, consider
(b, r). By part (b), this is also a common divisor of (a, b), but it is less than (a, b). This is a
contradiction. Thus (a, b) = (b, r).

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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By Theorem 1.3, the smallest positive integer in the set S of all linear combinations of a and b is 
exactly (a, b). 
 (a) (6, 15) = 3 (b) (12, 17)=1. 

Let a = da1 and b = db1. Then a1 and b1 are integers and we are to prove: (a1, b1) = l. By 
Theorem 1.3 there exist integers u, v such that au + bv = d. Substituting and cancelling we find 
that a1u + b1v = l. Therefore any common divisor of a1 and b1 must also divide this linear 
combination, so it divides 1. Hence (a1, b1) = 1. 

Let d = (a, b) so there exist integers x, y with ax + by = d. Note that cd | (ca, cb) since cd 
divides ca and cb. Also cd = cax + cby so that (ca, cb) | cd. Since these quantities are positive we 
get cd = (ca, cd). 

Let d = (a, b). Since b + c = aw for some integer w, we know c is a linear combination of a and b 
so that d | . But then d | (b ) = 1 forcing d = 1. Similarly ( ) = 1.  c  c ,  c ,a
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23.

24.

25.

26.

27.

28. Suppose the integer consists of the digits anan−1 . . . a1a0. Then the number is equal to

n∑
k=0

ak10k =

n∑
k=0

ak(10k − 1) +

n∑
k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 3, so that the first term is always divisible by 3. Thus

∑n
k=0 ak10k

is divisible by 3 if and only if the second term
∑n

k=0 ak is divisible by 3. But this is the sum of the
digits.

29. This is almost identical to Exercise 28. Suppose the integer consists of the digits anan−1 . . . a1a0.
Then the number is equal to

n∑
k=0

ak10k =

n∑
k=0

ak(10k − 1) +

n∑
k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 9, so that the first term is always divisible by 9. Thus

∑n
k=0 ak10k

is divisible by 9 if and only if the second term
∑n

k=0 ak is divisible by 9. But this is the sum of the
digits.

Arithmetic in Z Revisited4

20.

21.

22.
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Let d = (a, b) and e = (a, b + at). Since b + at is a linear combination of a and b, d | (b + at) so 
that d | e. Similarly since b = a(–t) + (b + at) is a linear combination of a and b + at we know e 
| b so that e | d. Therefore d = e. 

Answered in the text. 

Let d = (a, b, c). Claim: (a, d) = l. [Proof: (a, d) divides d so it also divides c. Then (a, d) | (a, c) 
= 1 so that (a, d)= 1.] Similarly (b, d)= 1. But d | ab and (a, d) = 1 so that Theorem 1.5 implies 
that d | b. Therefore d = (b. d) = 1. 

Define the powers bn recursively as follows: b1 = b and for every n ≥ 1, bn + 1 = b . bn. By 
hypothesis (a, b1) = 1. Given k ≥ 1, assume that (a, bk) = 1. Then (a, bk + 1) = (a, b . bk) = 1 by 
Exercise 24. This proves that (a, bn) = 1 for every n ≥ 1. 

Let d = (a, b). If ax + by = c for some integers x, y then c is a linear combination of a and b so 
that d | c. Conversely suppose c is given with d | c, say c = dw for an integer w. By Theorem 1.3 
there exist integers u, v with d = au + bv. Then c = dw = auw + bvw and we use x = uw and  
y = vw to solve the equation. 

(a) Given au + bv = 1 suppose d = (a, b). Then d | a and d | b so that d divides the linear 
combination au + bv = 1. Therefore d = 1. 

(b) There are many examples. For instance if a = b = d = u = v a, b) = (1, 1)= 1 
while d = au + bv = 1 + 1 = 2. 

Let d = (a, b) and express a = da1 and b = db1 for integers a1, b1. By Exercise 16, (a1, b1) = 1. 
Since a | c we have c = au = da1u for some integer u. Similarly c = bv = db1v for some integer v. 
Then a1u = c/d = b1V and Theorem 1.5 implies that a1 | v so that v = a1w for some integer w. 
Then c = da1b1w so that cd = d2a1b1w = abw and ab | cd. 

Answered in the text. 

 = 1 then (
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31. (a) [6, 10] = 30; [4, 5, 6, 10] = 60; [20, 42] = 420, and [2, 3, 14, 36, 42] = 252.

(b) Suppose ai | t for i = 1, 2, . . . , k, and let m = [a1, a2, . . . , ak]. Then we can write t = mq + r
with 0 ≤ r < m. For each i, ai | t by assumption, andai | m since m is a common multiple
of the ai. Thus ai | (t −mq) = r. Since ai | r for each i, we see that r is a common multiple
of the ai. But m is the smallest positive integer that is a common multiple of the ai; since
0 ≤ r < m, the only possibility is that r = 0 so that t = mq. Thus any common multiple of
the ai is a multiple of the least common multiple.

32. First suppose that t = [a, b]. Then by definition of the least common multiple, t is a multiple of
both a and b, so that t | a and t | b. If a | c and b | c, then c is also a common multiple of a and b,
so by Exercise 31, it is a multiple of t so that t | c.
Conversely, suppose that t satisfies the conditions (i) and (ii). Then since a | t and b | t, we see that
t is a common multiple of a and b. Choose any other common multiple c, so that a | c and b | c.
Then by condition (ii), we have t | c, so that t ≤ c. It follows that t is the least common multiple
of a and b.

33. Let d = (a, b), and writea = da1 and b = db1. Write m = ab
d = da1db1

d = da1b1. Since a and b are
both positive, so is m, and since m = da1b1 = (da1)b1 = ab1 and m = da1b1 = (db1)a1 = ba1, we
see that m is a common multiple of a and b. Suppose now that k is a positive integer with a | k
and b | k. Then k = au = bv, so that k = da1u = db1v. Thus k

d = a1u = b1v. By Exercise 16,
(a1, b1) = 1, so that a1 | v, say v = a1w. Then k = db1v = db1a1w = mw, so that m | k. Thus
m ≤ k. It follows that m is the least common multiple. But by construction, m = ab

(a,b) = ab
d .

34. (a) Let d = (a, b). Since d | a and d | b, it follows that d | (a + b) and d | (a − b), so that d is a
common divisor of a + b and a − b. Hence it is a divisor of the greatest common divisor, so
that d = (a, b) | (a+ b, a− b).

(b) We already know that (a, b) | (a+b, a−b). Now suppose that d = (a+b, a−b). Then a+b = dt
and a − b = du, so that 2a = d(t + u). Since a is even and b is odd, d must be odd. Since
d | 2a, it follows that d | a. Similarly, 2b = d(t− u), so by the same argument, d | b. Thus d is
a common divisor of a and b, so that d | (a, b). Thus (a, b) = (a+ b, a− b).

(c) Suppose that d = (a+ b, a− b). Then a+ b = dt and a− b = du, so that 2a = d(t+ u). Since
a and b are both odd, a+ b and a− b are both even, so thatd is even. Thus a = d

2 (t+ u), so

that d
2 | a. Similarly, d

2 | b, so that d
2 = (a+b,a−b)

2 | (a, b) | (a+ b, a− b). Thus (a, b) = (a+b,a−b)
2

or (a, b) = (a + b, a − b). But since (a, b) is odd and (a + b, a − b) is even, we must have
(a+b,a−b)

2 = (a, b), or 2(a, b) = (a+ b, a− b).

5

30.
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Let S = {a1x1 + a2x2 + … + anxn : x1 x2, ..., x are integers}. As in the proof of Theorem 1.3, S 
does contain some positive elements (for if aj ≠ 0 then aj

2 ∈ S is positive). By the Well Ordering 
Axiom this set S contains a smallest positive element, which we call t. Suppose t = a1u1 + a2u2 + 
… + anun for some integers uj. 
Claim. t = d. The first step is to show that t | a . By the division algorithm there exist integers q 
and r such that a1 = tq + r with 0 ≤ r < t. Then r = a1 – tq = a1(1 – u1q) + a2(–u2q) + … +  
an(–unq) is an element of S. Since r < t (the smallest positive element of S), we know r is not 
positive. Since r ≥ 0 the only possibility is r = 0. Therefore a1 = tq and t | a1. Similarly we have
 t | aj for each j, and t is a common divisor of a1, a2,…, an. Then t ≤ d by definition. 
 On the other hand d divides each aj so d divides every integer linear combination of a1, a2,..., an. 
In particular, d | t. Since t > 0 this implies that d ≤ t and therefore d = t. 

1.2 Divisibility

1
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Arithmetic in Z Revisited

5.

6. The possible remainders on dividing a number by 10 are 0, 1, 2, . . . , 9. If the remainder on dividing
p by 10 is 0, 2, 4, 6, or 8, then p is even; since p > 2, p is divisible by 2 in addition to 1 and itself
and cannot be prime. If the remainder is 5, then since p > 5, p is divisible by 5 in addition to 1
and itself and cannot be prime. That leaves as possible remainders only 1, 3, 7, and 9.

7. Since p | (a + bc) and p | a, we have a = pk and a + bc = pl, so that pk + bc = pl and thus
bc = p(l − k). Thus p | bc. By Theorem 1.5, either p | b or p | c (or both).

8. (a) As polynomials,
xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

(b) Since 22n · 3n − 1 = (22 · 3)n − 1 = 12n − 1, by part (a), 12n − 1 is divisible by 12− 1 = 11.

9.

10.

6

2. (a) Since 25 − 1 = 31, and
√

31 < 6, we need only check divisibility by the primes 2, 3, and 5.
Since none of those divides 31, it is prime.

(b) Since 27 − 1 = 127, and
√

127 < 12, we need only check divisibility by the primes 2, 3, 5, 7,
and 11. Since none of those divides 127, it is prime.

(c) 211 − 1 = 2047 = 23 · 89.

3. They are all prime.

4. The pairs are {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}, {59, 61}, {71, 73}, {101, 103},
{107, 109}, {137, 139}, {149, 151}, {179, 181}, {191, 193}, {197, 199}.

1.3 Primes and Unique Factorization

1. (a) 24 · 32 · 5 · 7.

(b) −5 · 7 · 67.

(c) 2 · 5 · 4567.

(d) 23 · 3 · 5 · 7 · 11 · 13 · 17.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) Answered in the text. These divisors can be listed as 2j.3k for 0 ≤ j ≤ s and 0 ≤ k ≤ t. 
(b) The number of divisors equals (r + l)(s + l)(t + 1) 

If p is a prime and p = rs then by the definition r, s must lie in {1, –1, p, –p  r = ±1 
or r = ±p and s = p/r = ±1, Conversely if p is not a prime then it has a divisor r not in {1, –1, 
p, –p  p = rs for some integer s. If s equals ±1 or ±p then r = p/s would equal ±p or +1, 
contrary to assumption. This r, s provides an example where the given statement fails. 

Assume first that p > 0. If p is a prime then (a, p) is a positive divisor of p, so that (a, p) = 1 or 
p. If (a, p) = p then p | a. Conversely if p is not a prime it has a divisor d other than ±1 and ±p. 
We may change signs to assume d > 0. Then (p, d) = d ≠ l. Also p |  d since otherwise p | d and 
d = p implies d = p. Then a = d provides an example where the required statement fails. Finally 
if p < 0 apply the argument above to –p. 

. 

}. Then either

}. Then
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1.3 Primes and Unique Factorization

15.

16.

17.

18.

19. If ri ≤ si for every i, then

b = ps11 p
s2
2 . . . pskk = pr11 p

s1−r1
1 pr22 p

s2−r2
2 . . . prkk p

sk−rk
k = (pr11 p

r2
2 . . . prkk ) ·

(
ps1−r1
1 ps2−r2

2 . . . ps2−rk
k

)
= a ·

(
ps1−r1
1 ps2−r2

2 . . . ps2−rk
k

)
.

Since each si − ri ≥ 0, the second factor above is an integer, so that a | b.
Now suppose a | b, and consider prii . Since this is composed of factors only of pi, it must divide psii ,
since pi - pj for i 6= j. Thus prii | p

si
i . Clearly this holds if ri ≤ si, and also clearly it does not hold

if ri > si, since then prii > psii .

7

13. By Theorem 1.8, the Fundamental Theorem of Arithmetic, every integer except 0 and ±1 can be
written as a product of primes, and the representation is unique up to order and the signs of the
primes. Since in our case n > 1 is positive and we wish to use positive primes, the representation
is unique up to order. So write n = q1 q2 . . . qs where each qi > 0 is prime. Let p1, p2, . . . , pr be the
distinct primes in the list. Collect together all the occurrences of each pi, giving ri copies of pi,
i.e. prii .

14.

11. Since p | a − b and p | c − d, also p | (a − b) + (c − d) = (a + c) − (b + d). Thus p is a divisor of
(a+ c)− (b+ d); the fact that p is prime means that it is a prime divisor.

12.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Suppose d | p so that p = dt for some integer t. The hypothesis then implies that p | d or p | t. If 
p | d then (applying Exercise 1.2.5) d = ±p. Similarly if p | t then, since we know that t | p, we 
get t = +p, and therefore d = ±1. 

Apply Corollary 1.9 in the case a1 =a2 = … = an to see that if p | an then p | a. Then a = pu for 
some integer u, so that an = pnun and pn | an. 

Generally, p | a and p | b if and only if p | (a, b), as in Corollary 1.4. Then the Exercise is 
equivalent to: (a, b) = 1 if and only if there is no prime p such that p | (a, b). This follows using 
Theorem 1.10. 

First suppose u, v are integers with (u, v) = 1. Claim. (u2, v2) = 1. For suppose p is a prime  
such that p | u2 and p | v2. Then p | u and p | v (using Theorem 1.8), contrary to the hypothesis 
(u, v) = 1. Then no such prime exists and the Claim follows by Exercise 8. 
 Given (a, b) = p write a = pa1 and b = pb1. Then (a1, b1) = 1 by Exercise 1.2.16. Then (a2, b2) = 
(p2a1

2, p2b1
2) = p2(a1

2, b1
2), using Exercise 1.2.18. By the Claim we conclude that (a2, b2) = p2.  

The choices p = 2, a = b = 0, c = d = 1 provide a counterexample to (a) and (b). 
(c) Since p | (a2 + b2) – a.a = b2, conclude that p | b by Theorem 1.8. 

 
Since n > 1 Theorem 1.10 implies that n equals a product of primes. We can pull out minus signs 
to see that n = p1 p  2 … pr where each pj is a positive prime. Re-ordering these primes if necessary,
 to

 
assume p1 ≤ p2 ≤ … ≤ pr. For the uniqueness, suppose there is another factorization n = q1 q2…qs 

for some positive primes qj with q1 ≤ q2 … ≤ qs. By theorem 1.11 we know that r = s and the pj’s 
are just a re-arrangement of the q js. Then p1 is the smallest of the pj’s, so it also equals the 
smallest of the q j’s and therefore p1 = q1. We can argue similarly that p2 = q2, …, pr = qr. (This 
last step should really be done by a formal proof invoking the Well Ordering Axiom.) 
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Arithmetic in Z Revisited

25. The binomial coefficient

(
p

k

)
is

(
p

k

)
=

p!

k!(p− k)!
=
p · (p− 1) · · · (p− k + 1)

k(k − 1) · · · 1
.

Now, the numerator is clearly divisible by p. The denominator, however, consists of a product of
integers all of which are less than p. Since p is prime, none of those integers (except 1) divide p,
so the product cannot have a factor of p (to make this more precise, you may wish to write the
denominator as a product of primes and note that p cannot appear in the list).

26.

27.

24. This is almost identical to the previous exercise. If n > 0 is an integer, suppose a = pr11 p
r2
2 . . . prkk

and b = ps11 p
s2
2 . . . pskk where the pi are distinct positive primes and ri ≥ 0, si ≥ 0. Then an =

pnr11 pnr22 . . . pnrkk and b2 = pns11 pns22 . . . pnskk . Then using Exercise 19 (twice), we have a | b if and
only if ri ≤ si for each i if and only if nri ≤ nsi for each i if and only if an | bn.

8

22.

23. Suppose a = pr11 p
r2
2 . . . prkk and b = ps11 p

s2
2 . . . pskk where the pi are distinct positive primes and ri ≥ 0,

si ≥ 0. Then a2 = p2r11 p2r22 . . . p2rkk and b2 = p2s11 p2s22 . . . p2skk . Then using Exercise 19 (twice), we
have a | b if and only if ri ≤ si for each i if and only if 2ri ≤ 2si for each i if and only if a2 | b2.

20.

21.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) The positive divisors of a are the numbers d = p1
m1p2

m2…pk
mk where the exponents mj 

satisfy 0 ≤ mj ≤ rj for each j = 1, 2,,.., k. This follows from unique factorization. If d also 
divides b we have 0 ≤ mj ≤ sj for each i = 1, 2,... k. Since nj = min{rj, sj} we see that the 
positive common divisors of a and b are exactly those numbers d = p1

m1p2
m2 … pk

mk where 
0 ≤ mj ≤ nj for each j = 1, 2,..., k. Then (a, b) is the largest among these common 
divisors, so it equals p1

n1p2
n2…pk

nk. 
(b) For [a, b] a similar argument can be given, or we can apply Exercise 1.2.31, noting that 

max{r, s} = r + s – min{r, s} for any positive numbers r, s. 

Answered in the text. 

If every ri is even it is easy to see that n is a perfect square. Conversely suppose n is a square. 
First consider the special case n = pr is a power of a prime. If pr = m2 is a square, consider the 
prime factorization of m. By the uniqueness (Theorem 1.11), p is the only prime that can occur, 
so m = ps for some s, and pr = m2 = p2s. Then r = 2s' is even. Now for the general case, suppose  
n = m2 is a perfect square. If some ri is odd, express n = pi

ri . k where k is the product of the 
other primes involved in n. 
 Then pi

ri and k are relatively prime and Exercise 13 implies that pi
ri is a perfect square. By the 

special case, ri. is even. 

Claim: Each Ak = (n + 1)! + k is composite, for k = 2, 3,. .. , n + 1. Proof. Since k ≤ n + 
have k | (n + 1)! and therefore k | Ak . Then Ak  is composite since I < k < Ak . 

12k + 3 is a multiple of 3. Similarly if p = 6k + 5 then p2 +2 = 36k2 + 60k + 27 is a multiple of 
3. So in each case, p2 + 2 is composite. 

By the division algorithm p = 6k + r where 0 ≤ r < 6. Since p > 3 is prime it is not divisible by 2 
or 3, and we must have r = 1 or 5. If p = 6k + 1 then p2 = 36k2 + 12k + 1 and p2 + 2 = 36k2 + 

1 we 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



33. Suppose n is composite, and write n = rs where 1 < r, s < n. Then, as you can see by multiplying
it out,

2n − 1 = (2r − 1)
(

2s(r−1) + 2s(r−2) + 2s(r−3) + · · ·+ 2s + 1
)
.

Since r > 1, it follows that 2r > 1. Since s > 1, we see that 2s + 1 > 1, so that the second factor
must also be greater than 1. So 2n− 1 has been written as the product of two integers greater than
one, so it cannot be prime.

34.

35.

36.

91.3 Primes and Unique Factorization

31.

32.

30.

29.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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This assertion follows immediately from the Fundamental Theorem 1.11. 

(b) If 2  is rational it can be expressed as a fraction a
b  for some positive integers a, b. 

Clearing denominators and squaring leads to: a2 = 2b2, and part (a) applies. 

The argument in Exercise 20 applies. More generally see Exercise 27 below. 

Suppose all the primes can be put in a finite list p1, p2,…, pk and consider N = p1 p2 …pk + 1. None 
of these pj can divide N (since 1 can be expressed as a linear combination of pj and N). But N > 1 
so N must have some prime factor p. (Theorem 1.10). This p is a prime number not equal to any 
of the primes in our list, contrary to hypothesis. 

Proof: Since n > 2 we know that n! – 1 > 1 so it has some prime factor p. If p ≤ n then p | n!, 
contrary to the fact that p | n  n < p < n!. 

We sketch the proof (b). Suppose a > 0 (What if a < 0?), rn = a and r = u/v where u, v are 
integers and v > 0. Then un = avu. If p is a prime let k be the exponent of p occurring in a (that 
is: pk | a and 1 |kp a+ ). The exponents of p occurring in un and in vn must be multiples of n, so 
unique factorization implies k is a multiple of n. Putting all the primes together we conclude that 
a = bn for some integer b. 

If p is a prime > 3 then 2 | p and 3 | p, so by Exercise 1.2.34 we know 24 | p2 – 1. Similarly 24 | 
(q2 – 1) so that p2 – q2 = (p2 – 1) – (q2 – 1) is a multiple of 24. 

28. The sums in question are: 1 + 2 + 4 + … + 2n. When n = 7 the sum is 255 = 3.5.17 and when  
n = 8 the sum is 511 = 7.73. Therefore the assertion is false. The interested reader can verify that 
this sum equals 2n+1 – 1. These numbers are related to the  “Mersenne primes”.

(a) If a2 = 2b2 for positive integers a, b, compare the prime factorizations on both sides. The 
power of 2 occurring in the factorization of a2 must be even (since it is a square). The power 
of 2 occurring in 2b2 must be odd. By the uniqueness of factorizations (The Fundamental 
Theorem) these powers of 2 must be equal, a contradiction. 

!. Therefore
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Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes

1.

2.

3. (a) Computing the checksum gives

10 · 3 + 9 · 5 + 8 · 4 + 7 · 0 + 6 · 9 + 5 · 0 + 4 · 5 + 3 · 1 + 2 · 8 + 1 · 9
= 30 + 45 + 32 + 54 + 20 + 3 + 16 + 9 = 209.

Since 209 = 11 · 19, we see that 209 ≡ 0 (mod 11), so that this could be a valid ISBN number.

(b) Computing the checksum gives

10 · 0 + 9 · 0 + 8 · 3 + 7 · 1 + 6 · 1 + 5 · 0 + 4 · 5 + 3 · 5 + 2 · 9 + 1 · 5
= 24 + 7 + 6 + 20 + 15 + 18 + 5 = 95.

Since 95 = 11 · 8 + 7, we see that 95 ≡ 7 (mod 11), so that this could not be a valid ISBN
number.

(c) Computing the checksum gives

10 · 0 + 9 · 3 + 8 · 8 + 7 · 5 + 6 · 4 + 5 · 9 + 4 · 5 + 3 · 9 + 2 · 6 + 1 · 10

= 27 + 64 + 35 + 24 + 45 + 20 + 27 + 12 + 10 = 264.

Since 264 = 11 · 24, we see that 264 ≡ 0 (mod 11), so that this could be a valid ISBN number.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) 25–1 = 24 = 16 ≡ 1 (mod 5). (b) 47−1 = 46 = 4096 ≡ 1 (mod 7). 
(c) 311−1 = 310= 59049 1 (mod 11). 

(a) Use Theorems 2.1 and 2.2: 6k + 5 ≡ 6.1 + 5 ≡ 11 ≡ 3 (mod 4). 
(b) 2r + 3s ≡ 2.3 + 3.(–7) ≡ –15 ≡ 5 (mod 10). 

≡
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4. (a) Computing the checksum gives

3 · 0 + 3 + 3 · 7 + 0 + 3 · 0 + 0 + 3˙ 3 + 5 + 3 · 6 + 6 + 3 · 9 + 1 = 90.

Since 90 = 10 · 9, we have 90 ≡ 0 (mod 10), so that this was scanned correctly.

(b) Computing the checksum gives

3 · 8 + 3 + 3 · 3 + 7 + 3 · 3 + 2 + 3˙0 + 0 + 3 · 0 + 6 + 3 · 2 + 5 = 71.

Since 71 = 10 · 7 + 1, we have 71 ≡ 1 (mod 10), so that this was not scanned correctly.

(c) Computing the checksum gives

3 · 0 + 4 + 3 · 0 + 2 + 3 · 9 + 3 + 3˙6 + 7 + 3 · 3 + 0 + 3 · 3 + 4 = 83.

Since 83 = 10 · 8 + 3, we have 83 ≡ 3 (mod 10), so that this was not scanned correctly.

5. Since 5 ≡ 1 (mod 4), it follows from Theorem 2.2 that 52 ≡ 12 (mod 4), so that (applying Theorem
2.2 again) 53 ≡ 13 (mod 4). Continuing, we get 51000 ≡ 11000 ≡ 1 (mod 4). Since 51000 ≡ 1
(mod 4), Theorem 2.3 tells us that

[
51000

]
= [1] in Z4.

6.

7.

8.

9.

10.

11.

12.

13.

Congruence in Z and Modular Arithmetic
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Given n ⎟ (a – b) so that a – b = nq for some integer q. Since k ⎟ n it follows that k ⎟ (a – b) and 
therefore a ≡ b (mod k). 

By Corollary 2.5, a ≡ 0, 1, 2 or 3 (mod 4). Theorem 2.2 implies a2 ≡ 0, 1 (mod 4). Therefore a2 
cannot be congruent to either 2 or 3 (mod 4). 

By the division algorithm, any integer n is expressible as n = 4q + r where r ∈ {0, 1, 2, 3}, and n 
≡ r (mod 4). If r is 0 or 2 then n is even. Therefore if n is odd then n ≡ 1 or 3 (mod 4). 

(a) (n − a)2 ≡ n2 – 2na + a2 ≡ a2 (mod n) since n ≡ 0 (mod n). 
(b) (2n − a)2 ≡ 4n2 – 4na + a2 ≡ a2 (mod 4n) since 4n ≡ 0 (mod 4n). 

 Suppose the base ten digits of a are (cncn–1 . . . c1co). (Compare Exercise 1.2.32). Then a = 
cn10n + cn− 10n−1 +. . . c110 + c0 ≡ c0 (mod 10), since 10k ≡ 0 (mod 10) for every k ≥ 1. 

Since there are infinitely many primes (Exercise 1.3.25) there exists a prime p > ⎪a – b⎪. By 
hypothesis, p ⎪ (a – b) so the only possibility is a – b = 0 and a = b. 

If p ≡ 0, 2 or 4 (mod 6), then p is divisible by 2. If p ≡ 0 or 3 (mod 6) then p is divisible by 3. 
Since p is a prime > 3 these cases cannot occur, so that p ≡ 1 or 5 (mod 6). By Theorem 2.3 this 
says that [p] = [1] or [5] in 6. 

Suppose r, r' are the remainders for a and b, respectively. Theorem 2.3 and Corollary 2.5 imply: a ≡ b 
(mod n) if and only if [a] = [b] if and only if [r] = [r']. Then r = r' as in the proof of Corollary 
2.5(2). 

Z

1

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



14.

15.

16.

17.

18.

19.

20.

21.

22.

2.2 Modular Arithmetic

1.
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(a) Here is one example: a = b = 2 and n = 4. 
(b) The assertion is: if n ⎪ ab then either n ⎪ a or n ⎪b. This is true when n is prime by 

Theorem 1.8. 

Since (a, n) = 1 there exist integers u, v such that au + nv = 1, by Theorem 1.3. Therefore  
au ≡ au + nv ≡ 1 (mod n), and we can choose b = u. 

Given that a ≡ 1 (mod n), we have a = nq + 1 for some integer q. Then (a, n) must divide a − nq 
= 1, so (a, n) = 1. One example to see that the converse is false is to use a = 2 and n = 3. Then 
(a, n) = 1 but [a] ≠ [1]. 

Since 10 ≡ –1 (mod 11), Theorem 2.2 (repeated) shows that 10n ≡ (–l)n (mod 11). 

By Exercise 23 we have 125698 ≡ 31 ≡ 4 (mod 9), 23797 ≡ 28 ≡ 1 (mod 9) and 2891235306 ≡ 39 ≡ 
12 ≡ 3 (mod 9). Since 4⋅1 ≢ 3 (mod 9) the conclusion follows. 

Proof: If [a] = [b] then a ≡ b (mod n) so that a = b + nk for some integer k. Then (a, n) = (b, n) 
using Lemma 1.7. 

(a) One counterexample occurs when a = 0, b = 2 and n = 4. 
(b) Given a2 ≡ b2 (mod n), we have n ⎪ (a2 – b2) = (a + b)(a – b). Since n is prime, use 

Theorem 1.8 to conclude that either n⎪(a + b) or n ⎪ (a − b).Therefore, either a ≡ b  
(mod n) or a ≡ −b (mod n). 

(a) Since 10 ≡ 1 (mod 9), Theorem 2.2 (repeated) shows that 10n ≡ 1 (mod 9). 
(b) (Compare Exercise 1.2.32). Express integer a in base ten notation: a = cn10n

c110+ c0. Then a ≡ cn+ cn - t + . . . c1 + c0 (mod 9), since 10k ≡ 1 (mod 9). 

(a) Here is one example: a = 2, b = 0, c = 2, n = 4. 
(b) We have n | ab – ac = a(b – c). Since (a, n) = l Theorem 1.5 implies that n ⎪(b – c) and 

therefore b ≡ c (mod n).  

(a) Answered in the text. 

(b) + 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

 0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 
3 0 3 2 1 

 + . . . + 

–

2.2 Modular Arithmetic
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2. To solve x2 ⊕ x = [0] in Z4, substitute each of [0], [1], [2], and [3] in the equation to see if it is a
solution:

x x2 ⊕ x Is x2 ⊕ x = [0]?

[0] [0]⊗ [0]⊕ [0] = [0] + [0] = [0] Yes; solution.

[1] [1]⊗ [1]⊕ [1] = [1] + [1] = [2] No.

[2] [2]⊗ [2]⊕ [2] = [0] + [2] = [2] No.

[3] [3]⊗ [3]⊕ [3] = [1]⊕ [3] = [0] Yes; solution.

Congruence in Z and Modular Arithmetic
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(c) Answered in the text. 

(d) + 0 1 2 3 4 5 6 7 9 10 11 
0 0 1 2 3 4 5 6 7 8 9 10 11 
1 1 2 3 4 5 6 7 8 9 10 11 0 
2 2 3 4 5 6 7 8 9 10 11 0 
3 3 4 5 6 7 8 9 10 11 0 1 2 
4 4 5 6 7 8 9 10 11 0 1 2 3 
5 5 6 7 8 9 10 11 0 1 2 3 4 
6 6 7 8 9 10 11 0 1 2 3 4 5 
7 7 8 9 10 11 0 1 2 3 4 5 6 
8 8 9 10 11 0 1 2 3 4 5 6 7 
9 9 10 11 0 1 2 3 4 5 6 7 8 
10 10 11 0 1 2 3 4 5 6 7 8 9 
11 11 0 1 2 3 4 5 6 7 8 9 10 
 

 
 0 1 2 3 4 5 6 7 8 9 10 11 
0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 10 11 
2 0 2 4 6 8 10 0 2 4 6 8 10 
3 0 3 6 9 0 3 6 9 0 3 6 9 
4 0 4 8 0 4 8 0 4 8 0 4 8 
5 0 5 10 3 8 1 6 11 4 9 2 7 
6 0 6 0 6 0 6 0 6 0 6 0 6 
7 0 7 2 9 4 11 6 1 8 3 10 5 
8 0 8 4 0 8 4 0 8 4 0 8 4 
9 0 9 6 3 0 9 6 3 0 9 6 3 
10 0 10 8 6 4 2 0 10 8 6 4 2 
11 0 11 10 9 8 7 6 5 4 3 2 1 

3. x = 1, 3, 5 or 7 in ℤ0. 

However, the notation must be changed to correspond to the new notation. See the tables
in Example 2 to see what it must look like.

However, the notation should be changed to use, for example,

[3] instead of 3.

1 

8 
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2.2 Modular Arithmetic

4.

5.

6. To solve x2 ⊕ [8]⊗ x = [0] in Z9, substitute each of [0], [1], [2], . . . , [8] in the equation to see if it is
a solution:

x x2 ⊕ [8]⊗ x Is x2 ⊕ [8]⊗ x = [0]?

[0] [0]⊗ [0]⊕ [8]⊗ [0] = [0] + [0] = [0] Yes; solution.

[1] [1]⊗ [1]⊕ [8]⊗ [1] = [1] + [8] = [0] Yes; solution.

[2] [2]⊗ [2]⊕ [8]⊗ [2] = [4] + [7] = [2] No.

[3] [3]⊗ [3]⊕ [8]⊗ [3] = [0]⊕ [6] = [6] No.

[4] [4]⊗ [4]⊕ [8]⊗ [4] = [7]⊕ [5] = [3] No.

[5] [5]⊗ [5]⊕ [8]⊗ [5] = [7]⊕ [4] = [2] No.

[6] [6]⊗ [6]⊕ [8]⊗ [6] = [0]⊕ [3] = [3] No.

[7] [7]⊗ [7]⊕ [8]⊗ [7] = [4]⊕ [2] = [6] No.

[8] [8]⊗ [8]⊕ [8]⊗ [8] = [1]⊕ [1] = [2] No.

The solutions are x = [0] and x = [1].

7. To solve x3 ⊕ x2 ⊕ x⊕ [1] = [0] in Z8, substitute each of [0], [1], [2], . . . , [7] in the equation to see if
it is a solution:

x x3 ⊕ x2 ⊕ x⊕ [1] Is x3 ⊕ x2 ⊕ x⊕ [1] = [0]?

[0] [1] No.

[1] [4] No.

[2] [7] No.

[3] [0] No.

[4] [5] No.

[5] [4] No.

[6] [3] No.

[7] [0] Yes; solution.

The only solution is x = [7].

8. To solve x3 + x2 = [2] in Z10, substitute each of [0], [1], . . . , [9] in the equation to see if it is a

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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x = 1, 2, 4, 5 in ℤ 6. 

x = 1, 2, 3 or 4 in ℤ 5. However, the notation should be changed to use, for example,

[3] instead of 3.

However, the notation should be changed to use, for example,

[3] instead of 3.
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solution:
x x3 ⊕ x2 Is x3 ⊕ x2 = [2]?

[0] [0] No.

[1] [2] Yes; solution.

[2] [2] Yes; solution..

[3] [6] No.

[4] [0] No.

[5] [0] No.

[6] [2] Yes; solution.

[7] [2] Yes; solution.

[8] [6] No.

[9] [0] No.

The solutions are x = [1], [2], [6], and [7].

9.

10.

11.

12. See Exercise 2.1.14.

13. See Exercise 2.1.22.

14.

Congruence in Z and Modular Arithmetic
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(a) a = 3 or 5. (b) a = 2 or 3. (c) No such element exists in ℤ 6. 

 

Part 3: [a] ⊕ [b] = [a + b] = [b + a] = [b] ⊕ [a] since a + b = b + a in ℤ. 
 
Part 7: [a]  ([b]  [c]) = [a]  [be] = [a(bc)] = [(ab)c] = [ab]  [c] = ([a]  [b])  [c]. 
 
Part 8: [a]  ([b] ⊕ [c]) = [a]  [b + c] = [a(b + c)] = [ab + ac] = [ab] ⊕ [ac] = ([a]  [b]) ⊕ ([a

 [c]). 
 
Part 9: [a]  [b] = [ab] = [ba] = [b]  [a]. 

Every value of x satisfies these equations. 

(a) x = 0 or 4 in ℤ 5
. (b) x = 0, 2, 3 or 5 in ℤ 6. 

However, the notation should be changed to use, for example, [3] instead of 3.

However, the notation should be changed to use, for example, [3] instead of 3.
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2.3 The Structure of Zp (p Prime) and Zn

1.

2. (a) Since 7 is prime, part (3) of Theorem 2.8 says that there are no zero divisors in Z7.

(b) The zero divisors are 2, 4, and 6, since 2 · 4 = 0 and 6 · 4 = 0. Further computations will show
that the other elements of Z8 are not zero divisors.

(c) The zero divisors are 3 and 6, since 3 · 6 = 0. Further computations will show that the other
elements of Z9 are not zero divisors.

(d) The zero divisors are 2, 4, 5, 6, and 8, since 2 ·5 = 4 ·5 = 6 ·5 = 8 ·5 = 0. Further computations
will show that the other elements of Z10 are not zero divisors.

3. In Zn, it appears that every nonzero element is either a unit or a zero divisor.

4.

5. We first show that ab 6= 0. If ab = 0, then since a is a unit, then a−1ab = 0, so that b = 0. But b is
a zero divisor, so that b 6= 0 and thus ab 6= 0. Now, since b is a zero divisor, choose c 6= 0 such that
bc = 0; then (ab)c = a(bc) = 0 shows that ab is also a zero divisor.

6. Since n is composite, write n = ab where 1 < a, b < n. Then in Zn, [a] 6= 0 and [b] 6= 0, since both
a and b are less than n, but [a][b] = [ab] = [n] = 0, so that a and b are zero divisors.

7.

8.

9. (a) Suppose a is a unit. Choose b such that ab = 0. Then since a is a unit, we have a−1ab =
a−10 = 0, so that b = 0. Thus a is not a zero divisor, since any such b must be zero.

(b) This statement is the contrapositive of part (a), so is also true.

2.3 The Structure of Zp (p Prime) and Zn
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(a) 1, 2, 3, 4, 5, 6  (b) 1, 3, 5, 7  
(c) 1, 2, 4, 5, 7, 8  (d) 1, 3, 7, 9 

(a) 1 solution in ℤ 7  (b) 2 solutions in ℤ 8  

(c) 0 solutions in ℤ 9 (d) 2 solutions in ℤ |0. 

If ab = 0 in ℤ p then ab ≡ 0 (mod p) so that p ⎪ ab. By Theorem 1.8 we conclude that p ⎪ a or  
p ⎪ b. Then a ≡ 0 (mod p) or b ≡ 0 (mod p). Equivalently, a = 0 or b = 0 in ℤ p . 

(a) For instance choose a even and b odd. (b) Yes. 

15.

16.

(a) (a + b)5 = a5 + b5 in ℤ 5. (b) (a + b)3 = a3 + b3 in ℤ 3. 
 
(c) (a + b)2 = a2 + b2 in ℤ 2.  
(d) One is led to conjecture that (a + b)7 = a7 + b7 in 7 

 
To investigate the general result for any prime exponent, use the Binomial Theorem and Exercise 
1.4.13. 

(a) a = 1, 2, 3 or 4 in ℤ 5. (b) a = 1 or 3 in ℤ 4.  
(c) a = 1 or 2 in ℤ 3  (d) a = l or 5 in ℤ 6. 

However, the notation should be changed to use, for example, [ ] instead of .a a

However, the notation should be changed to use, for example, [3] instead of 3.

ℤ . 
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12.

13.

14.

15.

16. By Exercise 10, every nonzero element of Zn is a unit or a zero divisor, but not both. So the
statement we are trying to prove is equivalent to the following statement: If a 6= 0 and b are
elements of Zn and ax = b has no solutions in Zn, prove that a is not a unit. The contrapositive
of this statement, which is equivalent to the statement itself, is: If a 6= 0 and b are elements of Zn

and a is a unit, then ax = b has at least one solution in Zn. But Exercise 11 proves this statement.

17. Suppose that a and b are units. Then (ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = 1, so that ab is a unit.

18. See the Hint when 0 < 1. Otherwise, if 0 6< 1, then since 0 = 1, we must have 1 < 0 since we have
fully ordered Zn. Adding 1 to both sides repeatedly, using rule (ii), gives n−1 < n−2 < · · · < 1 < 0,
so that, by rule (i), n− 1 < 0. Now add 1 to both sides to get 0 < 1, which is a contradiction.

Congruence in Z and Modular Arithmetic
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If x = [r] is a solution then [ar] = [b] so that ar ≡ b (mod n) and ar – b = kn for some integer k. 
Then d ⎪ a and d ⎪ n implies d ⎪ (ar – kn) = b. 

Since d divides each of a, b and n there are integers a1, n1, b1. with a = da1, b = db1. and n = 
dn1. By Theorem 1.3 there are integers u, v with au + nv = d so that au ≡ d (mod n). Therefore 
a(ub1) ≡ b1d = b (mod n) so that x = [ub1] is one solution. Since an  = a1dn1 = a1n ≡ 0 (mod n) we 
see that x = [ub1 + n1t] is a solution for every integer t. 

(a) If [ub1 + sn1] and [ub1 + tn1] are equal in ℤn for some 0 ≤ s < t < d, then n ⎪ (tn1 – sn1)  
= (t – s)n1 so that d ⎪ (t – s) contrary to 0 < (t – s) < d. 

(b) If x = [r] is a solution then [ar] = [b] = [a⋅ub1] so that n ⎪ a(r – ub1) so that a(r – ub1) = 
nw for some integer w. Cancel d to obtain a1(r – ub1) = n1w. Since (a1, n1) = 1, (Why?) 
Theorem 1.5 implies n1⎪(r – ub1) so that r = ub1 + tn1 for some t. Then x = [r] = [ub1 + 
tn1]. Divide t by d to get t = dq + k where 0 ≤ k < d. Then x = [ub1 + (dq + k)n1] = [ub1 
+ kn1] because [dn1] = [n] = [0]. 

(a) 15x = 9 in Z18 if and only if 15x ≡ 9 (mod 18) if and only if 5x ≡ 3 (mod 6) if and only if x 

 3 (mod 6) if and only if x  3, 9, 15 (mod 18) if and only if x = [3], [9], [15] in Z18. 

(b) x = 3, 16, 29, 42 or 55 in Z65. 

10. No element can be both a unit and a zero divisor, by Exercise 9. Choose x 6= 0 ∈ Zn, and consider
the set of products {x ·1, x ·2, . . . , x · (n−1)}. This set has n−1 elements. If x is not a zero divisor,
then 0 is not one of those elements. So there are two possibilities: either no element is duplicated
in that list, or there is a duplicate. If there is no duplicate, then since there are n− 1 elements and
n − 1 possible values, one of the elements must be 1; that is, for some a ∈ Zn, we have x · a = 1.
Thus x is a unit. If there is a duplicate, say x · a = x · b, then x · (a − b) = 0, so that x is a zero
divisor, which contradicts our original assumption. This shows that if x is not a zero divisor, then
it is a unit.

11. Since a is a unit, the equation ax = b has the solution a−1b, since aa−1b = b. Now, suppose that
ax = b and also ay = b. Then a(x − y) = 0. Since a is not a zero divisor, and a 6= 0 since it is a
unit, it follows that x− y = 0 so that x = y. Hence the solution is unique.

1

≡≡
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