Chapter 2

Problems

- 1. (a) $S = \{(r, r), (r, g), (r, b), (g, r), (g, g), (g, b), (b, r), b, g), (b, b)\}$ (b) $S = \{(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)\}$
- 2. $S = \{(n, x_1, ..., x_{n-1}), n \ge 1, x_i \ne 6, i = 1, ..., n-1\}$, with the interpretation that the outcome is $(n, x_1, ..., x_{n-1})$ if the first 6 appears on roll *n*, and x_i appears on roll, i, i = 1, ..., n-1. The event $(\bigcup_{n=1}^{\infty} E_n)^c$ is the event that 6 never appears.
- 3. $EF = \{(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)\}.$

 $E \cup F$ occurs if the sum is odd or if at least one of the dice lands on 1. $FG = \{(1, 4), (4, 1)\}$. EF^{c} is the event that neither of the dice lands on 1 and the sum is odd. EFG = FG.

- 4. $A = \{1,0001,0000001, ...\} B = \{01,00001,00000001, ...\}$ $(A \cup B)^c = \{00000 ..., 001,000001, ...\}$
- 5. (a) $2^5 = 32$
 - (b) $W = \{(1, 1, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 1, 0, 0, 0), (1, 0, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1), (0, 0, 1, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1)\}$
 - (c) 8
 - (d) $AW = \{(1, 1, 1, 0, 0), (1, 1, 0, 0, 0)\}$
- 6. (a) $S = \{(1, g), (0, g), (1, f), (0, f), (1, s), (0, s)\}$ (b) $A = \{(1, s), (0, s)\}$ (c) $B = \{(0, g), (0, f), (0, s)\}$ (d) $\{(1, s), (0, s), (1, g), (1, f)\}$
- 7. (a) 6^{15}
 - (b) $6^{15} 3^{15}$
 - (c) 4^{15}
 - (a) .8

8.

- (b) .3
- (c) 0

9. Choose a customer at random. Let A denote the event that this customer carries an American Express card and V the event that he or she carries a VISA card.

 $P(A \cup V) = P(A) + P(V) - P(AV) = .24 + .61 - .11 = .74.$

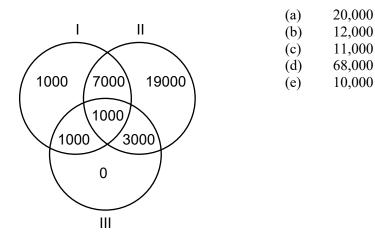
Therefore, 74 percent of the establishment's customers carry at least one of the two types of credit cards that it accepts.

- 10. Let *R* and *N* denote the events, respectively, that the student wears a ring and wears a necklace.
 - (a) $P(R \cup N) = 1 .6 = .4$
 - (b) $.4 = P(R \cup N) = P(R) + P(N) P(RN) = .2 + .3 P(RN)$ Thus, P(RN) = .1
- 11. Let *A* be the event that a randomly chosen person is a cigarette smoker and let *B* be the event that she or he is a cigar smoker.
 - (a) $1 P(A \cup B) = 1 (.07 + .28 .05) = .7$. Hence, 70 percent smoke neither.
 - (b) $P(A^cB) = P(B) P(AB) = .07 .05 = .02$. Hence, 2 percent smoke cigars but not cigarettes.
- 12. (a) $P(S \cup F \cup G) = (28 + 26 + 16 12 4 6 + 2)/100 = 1/2$ The desired probability is 1 - 1/2 = 1/2.
 - (b) Use the Venn diagram below to obtain the answer 32/100.



(c) Since 50 students are not taking any of the courses, the probability that neither one is taking a course is $\binom{50}{2} / \binom{100}{2} = 49/198$ and so the probability that at least one is taking a course is 149/198.

13.



14. P(M) + P(W) + P(G) - P(MW) - P(MG) - P(WG) + P(MWG) = .312 + .470 + .525 - .086 - .042 - .147 + .025 = 1.057

15. (a)
$$4\binom{13}{5} / \binom{52}{5}$$

(b) $13\binom{4}{2}\binom{12}{3}\binom{4}{1}\binom{4}{1}\binom{4}{1} / \binom{52}{5}$
(c) $\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{4}{4} / \binom{52}{5}$
(d) $13\binom{4}{3}\binom{12}{2}\binom{4}{1}\binom{4}{1} / \binom{52}{5}$
(e) $13\binom{4}{4}\binom{48}{1} / \binom{52}{5}$

16. (a) $\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{6^5}$

(d)
$$\frac{6\cdot 5\cdot 4\binom{5}{3}}{21}$$

$$\frac{6\binom{5}{2}5\cdot 4\cdot 3}{6^5}$$

(b)

(e)

$$\frac{6\cdot 5\binom{5}{3}}{6^5}$$

$$\frac{\binom{6}{2}4\binom{5}{2}\binom{3}{2}}{6^5}$$
$$\frac{6\cdot 5\binom{5}{4}}{6^5}$$

(c)

(f)

(g) $\frac{6}{6^5}$

17.
$$\frac{\binom{15}{8}\binom{10}{8}\binom{7}{1}}{\binom{25}{16}\binom{9}{1}} = .1102$$

$$18. \qquad \frac{2 \cdot 4 \cdot 16}{52 \cdot 51}$$

- 19. 4/36 + 4/36 + 1/36 + 1/36 = 5/18
- 20. Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt blackjack. Then,

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

= $\frac{4 \cdot 4 \cdot 16}{52 \cdot 51} + \frac{4 \cdot 4 \cdot 16 \cdot 3 \cdot 15}{52 \cdot 51 \cdot 50 \cdot 49}$
= .0983

where the preceding used that $P(A) = P(B) = 2 \times \frac{4 \cdot 16}{52 \cdot 51}$. Hence, the probability that neither is dealt blackjack is .9017.

21. (a)
$$p_1 = 4/20, p_2 = 8/20, p_3 = 5/20, p_4 = 2/20, p_5 = 1/20$$

(b) There are a total of $4 \cdot 1 + 8 \cdot 2 + 5 \cdot 3 + 2 \cdot 4 + 1 \cdot 5 = 48$ children. Hence,

$$q_1 = 4/48, q_2 = 16/48, q_3 = 15/48, q_4 = 8/48, q_5 = 5/48$$

- 22. The ordering will be unchanged if for some k, $0 \le k \le n$, the first k coin tosses land heads and the last n k land tails. Hence, the desired probability is $(n + 1/2^n)$
- 23. The answer is 5/12, which can be seen as follows:

 $1 = P\{\text{first higher}\} + P\{\text{second higher}\} + p\{\text{same}\}$ $= 2P\{\text{second higher}\} + p\{\text{same}\}$ $= 2P\{\text{second higher}\} + 1/6$

Another way of solving is to list all the outcomes for which the second is higher. There is 1 outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four, 4 when it lands on five, and 5 when it lands on six. Hence, the probability is (1+2+3+4+5)/36 = 5/12.

25.
$$P(E_n) = \left(\frac{26}{36}\right)^{n-1} \frac{6}{36}, \quad \sum_{n=1}^{\infty} P(E_n) = \frac{2}{5}$$

27. Imagine that all 10 balls are withdrawn

$$P(A) = \frac{3 \cdot 9! + 7 \cdot 6 \cdot 3 \cdot 7! + 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 5! + 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 3 \cdot 3!}{10!}$$
$$P\{\text{same}\} = \frac{\binom{5}{3} + \binom{6}{3} + \binom{8}{3}}{\binom{19}{3}}$$

$$P\{\text{different}\} = \binom{5}{1}\binom{6}{1}\binom{8}{1} / \binom{19}{3}$$

If sampling is with replacement

$$P\{\text{same}\} = \frac{5^3 + 6^3 + 8^3}{(19)^3}$$

 $P\{\text{different}\} = P(RBG) + P\{BRG\} + P(RGB) + \dots + P(GBR)$

$$=\frac{6\cdot 5\cdot 6\cdot 8}{\left(19\right)^3}$$

29. (a)
$$\frac{n(n-1) + m(m-1)}{(n+m)(n+m-1)}$$

(b) Putting all terms over the common denominator $(n + m)^2(n + m - 1)$ shows that we must prove that

$$n^{2}(n+m-1) + m^{2}(n+m-1) \ge n(n-1)(n+m) + m(m-1)(n+m)$$

which is immediate upon multiplying through and simplifying.

30. (a)
$$\frac{\binom{7}{3}\binom{8}{3}3!}{\binom{8}{4}\binom{9}{4}4!} = 1/18$$

(b)
$$\frac{\binom{7}{3}\binom{8}{3}3!}{\binom{8}{4}\binom{9}{4}4!} - 1/18 = 1/6$$

(c)
$$\frac{\binom{7}{3}\binom{8}{4}\binom{9}{4}4!}{\binom{8}{4}\binom{9}{4}} = 1/2$$

28.

31.
$$P(\{\text{complete}\} = P\{\text{same}\} =$$

32. $\frac{g(b+g-1)!}{(b+g)!} = \frac{g}{b+g}$
33. $\frac{\binom{5}{2}\binom{15}{2}}{\binom{20}{4}} = \frac{70}{323}$
34. $\binom{32}{13} / \binom{52}{13}$
35. (a) $\frac{\binom{12}{3}\binom{16}{2}\binom{18}{2}}{\binom{46}{7}}$
(b) $1 - \frac{\binom{34}{7}}{\binom{46}{7}} - \frac{\binom{12}{1}\binom{34}{6}}{\binom{46}{7}}$
(c) $\frac{\binom{12}{7} + \binom{16}{7} + \binom{18}{7}}{\binom{46}{7}}$

(d)
$$P(R_3 \cup B_3) = P(R_3) + P(B_3) - P(R_3B_3) = \frac{\binom{12}{3}\binom{34}{4}}{\binom{46}{7}} + \frac{\binom{16}{3}\binom{30}{4}}{\binom{46}{7}} - \frac{\binom{12}{3}\binom{16}{3}\binom{18}{1}}{\binom{46}{7}}$$

36. (a)
$$\binom{4}{2} / \binom{52}{2} \approx .0045$$
,
(b) $13\binom{4}{2} / \binom{52}{2} = 1/17 \approx .0588$

37. (a)
$$\binom{7}{5} / \binom{10}{5} = 1/12 \approx .0833$$

(b) $\binom{7}{4} \binom{3}{1} / \binom{10}{5} + 1/12 = 1/2$
38. $1/2 = \binom{3}{2} / \binom{n}{2}$ or $n(n-1) = 12$ or $n = 4$.
39. $\frac{5 \cdot 4 \cdot 3}{5 \cdot 5 \cdot 5} = \frac{12}{25}$
40. .8134; .1148
41. $1 - \frac{5^4}{6^4}$
42. $1 - \left(\frac{35}{36}\right)^n$

43.
$$\frac{2(n-1)(n-2)}{n!} = \frac{2}{n} \text{ in a line}$$
$$\frac{2n(n-2)!}{n!} = \frac{2}{n-1} \text{ if in a circle, } n \ge 2$$

44. (a) If A is first, then A can be in any one of 3 places and B's place is determined, and the others can be arranged in any of 3! ways. As a similar result is true, when B is first, we see that the probability in this case is $2 \cdot 3 \cdot 3!/5! = 3/10$

(b)
$$2 \cdot 2 \cdot 3!/5! = 1/5$$

(c)
$$2 \cdot 3!/5! = 1/10$$

45. $1/n$ if discard, $\frac{(n-1)^{k-1}}{n^k}$ if do not discard

46. If n in the room,

$$P\{\text{all different}\} = \frac{12 \cdot 11 \cdot \cdots \cdot (13 - n)}{12 \cdot 12 \cdot \cdots \cdot 12}$$

When n = 5 this falls below 1/2. (Its value when n = 5 is .3819)

47.
$$\frac{\binom{8}{2}\binom{5}{2}}{\binom{14}{5}} = .1399$$
48.
$$\binom{12}{4}\binom{8}{4}\frac{(20)!}{(3!)^4(2!)^4} / (12)^{20}$$
49.
$$\binom{6}{3}\binom{6}{3} / \binom{12}{6}$$
50.
$$\binom{13}{5}\binom{39}{8}\binom{8}{8}\binom{31}{5} / \binom{52}{13}\binom{39}{13}$$
51.
$$\binom{n}{m}(n-1)^{n-m} / N^n$$

52. (a)
$$\frac{20 \cdot 18 \cdot 16 \cdot 14 \cdot 12 \cdot 10 \cdot 8 \cdot 6}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}$$

(b)
$$\frac{\binom{10}{1}\binom{9}{6}\frac{8!}{2!}2^{6}}{20\cdot19\cdot18\cdot17\cdot16\cdot15\cdot14\cdot13}$$

53.

Let
$$A_i$$
 be the event that couple *i* sit next to each other. Then

$$P(\bigcup_{i=1}^{4} A_i) = 4\frac{2 \cdot 7!}{8!} - 6\frac{2^2 \cdot 6!}{8!} + 4\frac{2^3 \cdot 5!}{8!} - \frac{2^4 \cdot 4!}{8!}$$

and the desired probability is 1 minus the preceding.

54.
$$P(S \cup H \cup D \cup C) = P(S) + P(H) + P(D) + P(C) - P(SH) - \dots - P(SHDC)$$

$$= \frac{4\binom{39}{13}}{\binom{52}{13}} - \frac{6\binom{26}{13}}{\binom{52}{13}} + \frac{4\binom{13}{13}}{\binom{52}{13}}$$
$$= \frac{4\binom{39}{13} - 6\binom{26}{13} + 4}{\binom{52}{13}}$$

55. (a)
$$P(S \cup H \cup D \cup C) = P(S) + \dots - P(SHDC)$$

$$= \frac{4\binom{2}{2}}{\binom{52}{13}} - \frac{6\binom{2}{2}\binom{2}{2}\binom{48}{9}}{\binom{52}{13}} + \frac{4\binom{2}{2}^{3}\binom{46}{7}}{\binom{52}{13}} - \frac{\binom{2}{2}^{4}\binom{44}{5}}{\binom{52}{13}}$$

$$= \frac{4\binom{50}{11} - 6\binom{48}{9} + 4\binom{46}{7} - \binom{44}{5}}{\binom{52}{13}}$$
(b) $P(1 \cup 2 \cup \dots \cup 13) = \frac{13\binom{48}{9}}{\binom{52}{13}} - \frac{\binom{13}{2}\binom{44}{5}}{\binom{52}{13}} + \frac{\binom{13}{3}\binom{40}{13}}{\binom{52}{13}}$

 \sim

Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b) then B chooses (a). If A chooses (c) then B chooses (b). In each case B wins probability 5/9. 56.

Theoretical Exercises

- 5. $F_i = E_i \bigcap_{j=1}^{i=1} E_j^c$
- 6. (a) EF^cG^c
 - (b) *EF*^c*G*
 - (c) $E \cup F \cup G$
 - (d) $EF \cup EG \cup FG$
 - (e) *EFG*
 - (f) $E^c F^c G^c$
 - (g) $E^c F^c G^c \cup EF^c G^c \cup E^c FG^c \cup E^c F^c G$
 - (h) $(EFG)^c$
 - (i) $EFG^c \cup EF^cG \cup E^cFG$
 - (j) *S*
- 8. The number of partitions that has n + 1 and a fixed set of *i* of the elements 1, 2, ..., *n* as a subset is T_{n-i} . Hence, (where $T_0 = 1$). Hence, as there are $\binom{n}{i}$ such subsets.

$$T_{n+1} = \sum_{i=0}^{n} \binom{n}{i} T_{n-i} = 1 + \sum_{i=0}^{n-1} \binom{n}{i} T_{n-i} = 1 + \sum_{k=1}^{n} \binom{n}{k} T_{k} .$$

11.
$$1 \ge P(E \cup F) = P(E) + P(F) - P(EF)$$

12.
$$P(EF^c \cup E^cF) = P(EF^c) + P(E^cF)$$
$$= P(E) - P(EF) + P(F) - P(EF)$$

13.
$$E = EF \cup EF^{c}$$

15.
$$\frac{\binom{M}{k}\binom{N}{r-k}}{\binom{M+N}{r}}$$

16.
$$P(E_1 \dots E_n) \ge P(E_1 \dots E_{n-1}) + P(E_n) - 1$$
 by Bonferonni's Ineq.

$$\geq \sum_{i=1}^{n-1} P(E_i) - (n-2) + P(E_n) - 1$$
 by induction hypothesis

19.
$$\frac{\binom{n}{r-1}\binom{m}{k-r}(n-r+1)}{\binom{n+m}{k-1}(n+m-k+1)}$$

21. Let $y_1, y_2, ..., y_k$ denote the successive runs of losses and $x_1, ..., x_k$ the successive runs of wins. There will be 2k runs if the outcome is either of the form $y_1, x_1, ..., y_k x_k$ or $x_1y_1, ..., x_k, y_k$ where all x_i, y_i are positive, with $x_1 + ... + x_k = n, y_1 + ... + y_k = m$. By Proposition 6.1 there are $2\binom{n-1}{k-1}\binom{m-1}{k-1}$ number of outcomes and so

$$P\{2k \text{ runs}\} = 2\binom{n-1}{k-1}\binom{m-1}{k-1} / \binom{m+n}{n}.$$

There will be 2k + 1 runs if the outcome is either of the form $x_1, y_1, ..., x_k, y_k, x_{k+1}$ or $y_1, x_1, ..., y_k, x_k y_{k+1}$ where all are positive and $\sum x_i = n$, $\sum y_i = m$. By Proposition 6.1 there are $\binom{n-1}{k}\binom{m-1}{k-1}$ outcomes of the first type and $\binom{n-1}{k-1}\binom{m-1}{k}$ of the second.